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ABSTRACT 

 
 
 

 
Major principle behind the development of computational intelligence is to 

address complex problem of real world application.  Over the years, numerous 

computational intelligence algorithms have been developed in finding a solution to 

combinatorial optimization problem.  Ant colony system (ACS) algorithm is one of 

the biologically inspired algorithms that have been applied to effectively solve 

various combinatorial optimization problems. In this study, ACS is going to be 

employed in solving DNA sequence design which is a study under the topics of 

DNA computing. The dependability of DNA computation is highly influenced by the 

information represents on the DNA strand and the strand reaction. We desire a set of 

stable double stranded DNA to retrieve the information encoded on the DNA 

sequence and to operate the computation without output error. To accomplish this, 

the DNA sequence design problem requires a set of objectives to be optimized and 

some constraints to be fulfilled. Therefore, DNA sequence design can be regarded as 

a constrained multi-objectives design problem. The multi-objective design problem 

is simplified into single-objective using the weighted sum method and objective 

functions used to obtain a good DNA sequence are Hmeasure, similarity, hairpin, and 

continuity. The sequence is subjected to two constraints which are Tm and GCcontent. 

The problem is modeled using finite state machine where each node represents the 

DNA bases {A, C, T, G}. In this study, 9 sets of studies have been conducted using 

5, 7, 10, 15, 20, 25, 30, 35 and 40 agents/ants each with 100 independent runs. The 

number of iterations is set to be 300 for each set.  Observation and analysis of the 

model with increasing number of ants was made and the performance of the model is 

measured by comparing the result with existing algorithm such as Genetic Algorithm 

(GA), Multi-Objective Evolutionary Algorithm (MOEA), Particle Swarm 

Optimization (PSO) etc. Based on the result, the suitable number of ants used for 

DNA sequence design was also proposed. 
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ABSTRAK 

 
 
 
 

 
Prinsip utama di sebalik pembangunan pengkomputeran pintar adalah untuk 

menangani masalah kompleks yang melibatkan aplikasi dunia sebenar. Sejak 

kebelakangan ini, pelbagai algoritma serta perisian penkomputeran pintar telah 

dibangunkan dalam mencari penyelesaian kepada masalah pengoptimuman 

kombinatorik. Algoritma Ant Colony System (ACS) adalah salah satu algoritma yang 

telah digunakan dengan berkesan dalam menyelesaikan pelbagai masalah 

pengoptimuman kombinatorik. Dalam kajian ini, algoritma ACS telah digunakan 

dalam menyelesaikan masalah rekabentuk turutan DNA. Kebolehpercayaan 

pengkomputeran DNA sangat dipengaruhi oleh maklumat yang terdapat pada lembar 

DNA serta tindak balas antara DNA. Set DNA yang stabil adalah sangat diperlukan 

bagi mendapatkan maklumat yang tepat dan memastikan pengendalian pengiraan 

tanpa ralat. Untuk mencapai tujuan ini, masalah reka bentuk jujukan DNA 

memerlukan satu set objektif yang perlu dioptimumkan dan beberapa kekangan yang 

perlu dipenuhi. Oleh itu, masalah turutan DNA boleh dianggap sebagai masalah 

rekabentuk multi-objektif dan telah dipermudahkan menjadi masalah satu-objektif 

menggunakan kaedah jumlah wajaran. Fungsi objektif yang digunakan bagi 

mendapatkan turutan DNA yang baik adalah Hmeasure, similarity, hairpin, and 

continuity dan tertakluk kepada dua kekangan iaitu Tm and GCcontent. Masalah ini 

dimodel menggunakan mesin keaadan terhingga dimana setiap nodus mewakili asas 

DNA {A, C, T, G}. Dalam kajian ini, 9 set kajian telah dijalankan menggunakan 5, 7, 

10, 15, 20, 25, 30, 35 dan 40 bilangan agen/semut. Pemerhatian dan analisis dengan 

peningkatan bilangan agen telah dibuat serta prestasi model diukur melalui 

perbandingan dengan algoritma yang sedia ada seperti as Genetic Algorithm (GA), 

Multi-Objective Evolutionary Algorithm (MOEA), Particle Swarm Optimization 

(PSO) dan lain-lain. Hasil kajian ini juga digunakan bagi mencadangkan bilangan 

agen/semut yang sesuai bagi aplikasi masalah rekabentuk turutan DNA. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

Major principle behind the development of computational intelligence is to 

address complex problem of real world application.  Over the years, numerous 

computational intelligence algorithms have been developed in finding a solution to 

combinatorial optimization problem.  Most of these algorithms are nature-inspired or 

biologically inspired as they have been developed based on the behaviour and 

performance of the natural systems. Enormous success has been achieved through 

modelling of biological and natural intelligence which is reflected in numerous 

algorithms such as genetic algorithm (GA), particle swarm optimization (PSO), bee 

algorithm, ant colony algorithm and many more. The establishment of these 

algorithms and its application in solving various optimization problems have greatly 

improved many area of our social-economic life and have been successfully applied 

in complex real-world application such as pattern recognition (image, speech or 

handwriting), robotics, forecast and different kind of decision-making in uncertainty 

conditions. 

 

Among the first algorithm that was developed is genetic algorithm (GA). GA 

is a search method based on the abstraction of Darwin's evolution and natural 

selection of biological systems and representing them in the mathematical operators: 

crossover or recombination, mutation, fitness, and selection of the fittest (She Yang, 

2010). Ever since, genetic algorithms become so successful in solving a wide range 



2 
 

of optimization problems, many researchers have been motivated in producing 

nature inspired algorithm. 

 

Ant colony optimization (ACO) is one of the biologically inspired algorithms 

that have been applied to effectively solve various combinatorial optimization 

problems. It was first introduced in 1992 by Marco Dorigo. It is derived from 

observation of real ants behaviour. The main idea behind the algorithm is the self-

organizing and highly coordinated behaviour of the ants which can be exploited to 

solve complex computational problems (Dorigo and Struzel, 2004). Ant colony 

system (ACS) is an extension of ACO which was develop by Gambardella and 

Dorigo in 1997. In this study, ACS is going to be employed in solving DNA 

sequence design which is a study under the topics of DNA computing.  

 

The next subchapter will introduced the basic of DNA and its structure 

followed by a review of DNA computing and the importance of DNA sequence 

design.  

 

 

1.2 Theory of DNA 

 

The basic building block of DNA is known to be nucleotide consisting of the 

five-carbon sugar deoxyribose to which one phosphate is esterified at the 5’ position 

of sugar ring and   one nitrogenous base is attached at the 1’ site as illustrated in 

Figure 1.1. There are two types of nitrogenous bases present in nucleic  

 

 
Figure 1.1: Chemical structure of DNA molecule 
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acid. One is pyrimidines, which contain a single ring and another one is purines, 

which contain two rings. There are two type of DNA pyrimidines which are thymine 

(T) and cytosine (C) and the two types of purines which are guanine (G) and adenine 

(A). The nucleotides are known to be covalently linked to one another to form a 

linear polymer, or strand with a backbone compose of alternating sugar and 

phosphate and the bases are attached to each sugar as shown in Figure 1.2. A key 

feature of DNA is that it has two distinctive ends: A 5’ (5-prime) end and a 3’ (3-prime) end. 

The 5’ end is the phosphate group (-PO4) attached to the 5th C atom of the sugar ring and 

the 3’ end is the hydroxyl group (-OH) at the 3rd C atom of the sugar ring. Using enzymes, 

the 3’ and 5’ ends can be linked. Through this process single stranded DNA is built. 
 

 
Figure 1.2: Backbone of the DNA structure 

 
 

The complementary base of A is T. When coming close to one another they 

are kept together through 2 hydrogen bonds. The complementary base of C is G. C 

and G build 3 hydrogen bonds. When two strands with complementary base 

sequences are mixed together, they anneal and form double stranded DNA. A strand 

5’-ATGC-3’ and its complementary strand also called Watson-Crick complement 3’-

TACG-5’ would build double stranded DNA. This structure is also called “double 

helix” (Schaefer, 2002). 

 



4 
 

 DNA basically has three primary functions. The first is to store genetic 

information. DNA contains a stored record of instruction that determine all the 

heritable characteristics that an organism exhibits. Second function is self-

duplication and inheritance. DNA contain information for its own replication 

(duplication). DNA replication allows genetic instruction to be transmitted from one 

call to its daughter cells and from one individual to its offspring. And the third 

primary function is expression of the genetic message. DNA is more than a storage 

center, it is also a director of a cellular activity. Consequently, the information 

encoded in DNA has to be expressed in some form that can take part in events that 

are taking place within the cell. 

 

 For application in molecular computation, some basic chemical operations 

need to be implemented on the DNA. The operations are annealing, polymerase 

chain reaction (PCR) and electrophoresis. Annealing refers to hybridization of DNA 

to form a double stranded nucleic acid. It is often used to describe binding of primer 

of DNA in PCR. PCR is a technique to replicate and amplify the DNA molecule in 

creating a complementary copy of the template DNA strand. Agarose gel 

electrophoresis is a technique to separate DNA macromolecules depending on their 

size, and electric charge by applying electric field in moving the negatively charged 

molecules through an agarose matrix. Shorter molecules move faster and migrate 

farther than longer ones because shorter molecules migrate more easily through the 

pores of the gel. The application of these operations in DNA computing will be 

further discussed in the next subsection. 

 

 

1.3 DNA Computing 

 

DNA computing is one interdisciplinary research area that is growing fast. 

Lars Schaefer (2002) describes DNA as the construction plan of all life on earth. 

This capability suggests that DNA can be used as a storage of data. One of the main 

objectives of this research area is to produce, in near future, a biologically inspired 

computer based on DNA molecules to replace or at least beneficially complement 

with a silicon based computer (Watada and Bakar, 2008). DNA computing, a new 

computational paradigm that uses DNA molecule to solve computational problem, 
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promises massive parallelism and can potentially increase the speed in solving large 

parallel combinatorial search problems. 
 

 

Figure 1.3: Hamiltonian Path Problem. The bold lines represent the only correct path 

that is 0→1, 1→2, 2→3, 3→4, 4→5, 5→6 

 

The area of DNA computing was initiated by Dr. Adleman  in 1994 when he 

discover a method of solving hard combinatorial problem using DNA. Adleman used 

a method of manipulating DNA to solve seven-node Hamiltonian Path Problem 

(HPP). The goal of Adleman’s experiment is to determine the existence of a path 

which commence at the start city, finish at the end city and pass through each of the 

remaining cities exactly once. In DNA computation, each city is assigned a DNA 

sequence (Adleman, 1998). HPP is a directed graph with designated input and output 

vertices, vin and vout. A path from vin to vout is termed Hamiltonian if it involves every vertex 

exactly one. This implies that vin  vout, because vin = vout would be in the path twice. For 

example the graph depicted in Figure 1.3 has the designated input vertex 0 and 

output vertex 6. The path consisting of the directed edges 0→1, 1→2, 2→3, 3→4, 

4→5, 5→6 is the only Hamiltonian path in this figure, which is shown bold arrows. 

In general, a Hamiltonian path is present for a given graph with directed edges and a 

specified start vertex and end vertex, if and only if there is a path that starts at the 

start vertex, ends at the end vertex and passes though each remaining vertex exactly 

once.  

0 

3 

4 

1 

2 5 

6 

START 

END 
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For Each vertex i in the graph shown in Figure 1.3, a random 20-mer DNA is 

generated and denoted as Oi. Table 1.1 shows the encoding O2, O3 and O4 for 

vertices 2,3, and 4, respectively. For edge ij in the graph, DNA Oij is derived 

from the 3' 10-mer of Oi and from the 5' 1 0-mer of Oj.  as shown in Table 1.2 for 

edges O23, O34 and O24.  

 

Table 1.1: Encoding of the vertices of Hamiltonian Path Problem in DNA 

Vertices Sequences 
O2 5’ – TATCGGATCGGTATATCCGA – 3’ 
O3 5’ – GCTATTCGAGCTTAAAGCTA – 3’ 
O4 5’ – GGCTAGGTACCAGCATGCTT – 3’ 

 

Table 1.2: Encoding of the edges of Hamiltonian Path Problem in DNA 

Vertices Sequences 
O2→3 GTATATCCGAGCTATTCGAG 
O3→4 CTTAAAGCTAGGCTAGGTAC 
O2→4 GTATATCCGAGGCTAGGTAC 

 

The encoded DNA was amplified by polymerase chain reaction (PCR) using 

O0 and complementary of O6 as primers. The two primers worked together in 

signalling the PCR process. The first alerted DNA polymerase to copy complements 

of sequence that had the right start city and the second initiated the duplication of 

molecule that encoded the right start city. Thus, only those molecules encoding paths 

that begin with vertex 0 and end with vertex 6 were amplified. Then, electrophoresis 

and affinity separation   is used to ensure that the molecules have the right length and 

to find the shortest path.  

 

Based on Adleman’s success, researchers around the world are currently 

working to exploit the the extremely dense information storage and massive 

parallelism properties of DNA in hopes of one day producing a DNA computer 

which have a better performance compare to the conventional electronics computer.   
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1.4 ACS Based DNA Sequence Design  

 

The reliability of DNA computation is highly dependable and influenced by 

the information represents on the DNA strand and the strand reaction. But due to 

technological difficulties and the nature of chemical characteristics of the molecules, 

DNA reactions may result in inaccuracies of the computation. One of the main 

approaches to overcome the possibilities of illegal reactions and consequently 

removing the potential error due to biochemical reaction in advance is to focus on 

designing a good set of independent DNA sequence. The independent DNA 

sequence set means a set of DNA sequences which have minimal tendency of cross-

hybridization and maximal difference among them. In addition, they must have the 

similar physical conditions such as length and melting temperature. By removing the 

error before hand, no DNA is wasted due to illegal reaction, reliability of 

computation is improved and consequently ensuring high computation accuracy. 

 

ACS algorithm in general should not limit the number of ants used in the 

system and always allow a new ant to be introduced into the system in hope of 

finding the optimum solution. Current method of solving DNA sequence using ACS 

restricts the number of ants used because the number of ant in the system dependent 

on the solution. Therefore, a new algorithm need to be developed to improve the 

current method for DNA sequence design using ACS which allow flexibility in 

terms of number of ants and to eliminate the dependability of solution produced by 

the system and the number of ants. 

 

1.5 Objective  

 

The objectives of the study are: 

  

(i) To derive DNA computational model based on ACS algorithm that 

can be efficiently used for DNA sequence design and improved the 

limitation of the original computational model. 
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(ii) To assess the performance of the extended computational model over 

original computational model 

(iii) To come out with the suitable number of ants for application of ACS 

algorithm in DNA sequence design 

 

1.6 Scope of work 

 

The boundary of the research is defined as follows: 

  

(i) The proposed approach is developed by considering four objective 

functions namely: Hmeasure, similarity, continuity, and hairpin and two 

constraints, which are GCcontent and melting temperature (Tm). 

(ii) The number of ants used for the ACS algorithm will be varied until 

the optimum solution have been found 

(iii) The performance of the system will be assessed by comparing the 

sequences generated by the proposed ACS model with the sequences 

generated using GA, SA, MOEA, PSO, P-ACO as well as the original 

ACS model  

 

 

1.7 Thesis organization 

 

The thesis is organized as follows. First, a brief review of the previous work 

DNA sequence design as well as several applications of ACS algorithms in solving 

optimization problem in Chapter 2. Previous work on DNA sequence design 

includes the algorithm, objective function and constraints that were employed in 

solving the problem and the ACS algorithm application will discussed the type of 

problem that was solved and the number of agent/ants used in solving the problem.  

In chapter 3, the design criteria of DNA sequence design problem will be 

outlined and the formulations of the objective functions and constraints will be 

explained in detail. An introductory overview of the ACS algorithm, which includes 

background and history of the algorithm can be found in Chapter 4. Chapter 4 also 
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discuss in detail the construction steps in generating a good set of DNA sequence as 

well as the improved ACS model in generating the sequences. 

Chapter 5 will review the realization of DNA sequence based on ACS 

algorithm, and will present all the results obtained in this study. Validation of the 

model as well as the overall performance of the proposed ACS model is also 

discussed in this chapter. The overall performance is analyzed and discussed based 

on the comparison with other established algorithm such as GA, SA, PSO etc. The 

conclusion of the thesis as well as the research direction of the work will be 

concluded in Chapter 6. 
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