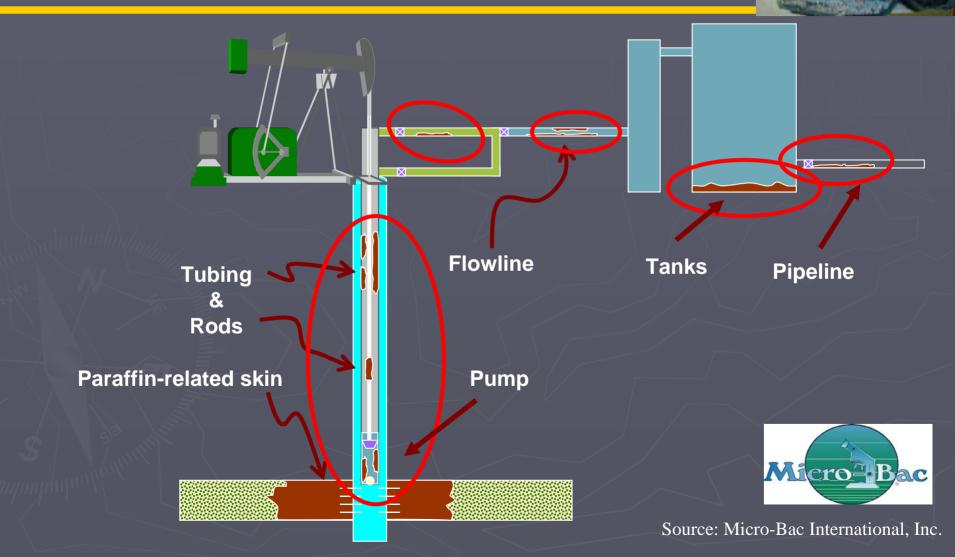
REMOVAL OF PARAFFIN DEPOSITION USING YEAST'S MANNOPROTEIN

Prepared by : Suria Riza Radzali

Advisor :

Dr Firdausi Razali


PARAFFIN DEPOSITION

Paraffin deposition occurred when the oil temperature falls below the Wax Appearance Temperature

These deposits generally consist of straight and branched chain hydrocarbons

Paraffin Accumulation in Production System

Reduced inner diameter

Original inner diameter

Paraffin deposition control methods :

Chemical

Mechanical

Solution 10 Thermal

8 Electromagnetic

8 Biological

Biological Methods

TWO MECHANISMS:

Dispersion

Metabolic by-product of microorganisms or the microorganisms itself as **biosurfactant** act to loose the paraffin deposit.

[Micro-Bac International, 1993-1995]

Solubilization

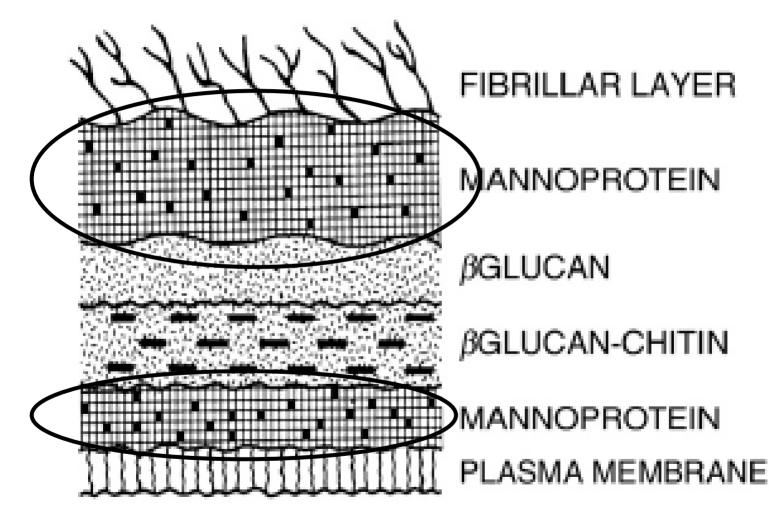
When the bacteria increase the solubilization of the oil by :

 increasing the percentage of oil volatilities

 increase solubility of long chain
 [Fabien Marino, 1998]

Biosurfactant used in HC Removal

Surfactin from B. subtilis [Makkar & Cameotra, 1997] **8** Rhamnolipid from P.aeruginosa [Noordman et al., 2002] **8** BOD-BalanceTM from cactus [Nakhla et al., 2003] Sophorolipid from C. bombicola [Schippers, 2000] Trehalose-6monocoryno-mycolate from Rhodococcus arithropolis [Marino, 1998]


Mannoprotein from Baker Yeast

- Solution Widely-used in food industry as emulsifier [Manwart, 1979; Torabizadeh *et al.*, 1996; Freimund *et al.*, 2003]
- Currently used in preservation of immunological properties [Richard et al., 2005]
- Not extensively investigated in petrochemical industry
- However, a report indicated a success attempt to solubilize HC [Michael & George, 1984; Jeffrey et al., 1999;]

Mannoprotein

- Located in the outermost layer of S. cerevisiae cell wall [Kappeli & Fiecher, 1976; Jigami, 1998]
- Polysaccharide-fatty acid complex [Kappeli & Fiecher, 1977]
- Belong to one of two classes of compounds
 - i. macromolecules of the yeast cell: 10% protein and 90% carbohydrate
 - ii. mannan enzymes :30–50% protein, 50-70% carbohydrate

Slice of the Cell Wall Structure of *S. cerevisiae*

[G.Kogan & A.Kocher,2007]

To explore the potential of employing yeast's mannoprotein to disperse wax deposit

Solution To quantify the percentage of surface area reduction of the wax at 5, 10 and 20 w/v% yeast concentration

Solution To investigate the stability of complex hydrocarbon-mannoprotein emulsion

MOLDING PROCESS

SOLIDIFIED AT ROOM TEMPERATURE

MELTING PROCESS

WAX OBTAINED FROM Merck KGaA, Darmstadt, Germany

SAMPLE OF WAX

- HOMOGENOUS SHAPE
- FLAT SURFACE

CELL DISRUPTION

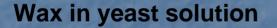
3 DIFFERENT CONCENTRATIONS

- 5 % w/v
- •10 % w/v
- 20% w/v

HOMOGENISATION

[Harrison *et al.*,1991; Middleberg *et al.*,1991; Baldwin & Robinson,1992]

WAX


YEAST SOLUTION

SHAKE FLASK ON ROTARY SHAKER

- room temperature
- 75-100 rpm
- 7 days

REMOVAL PROCESS OF WAX

After 7 days of removal process :

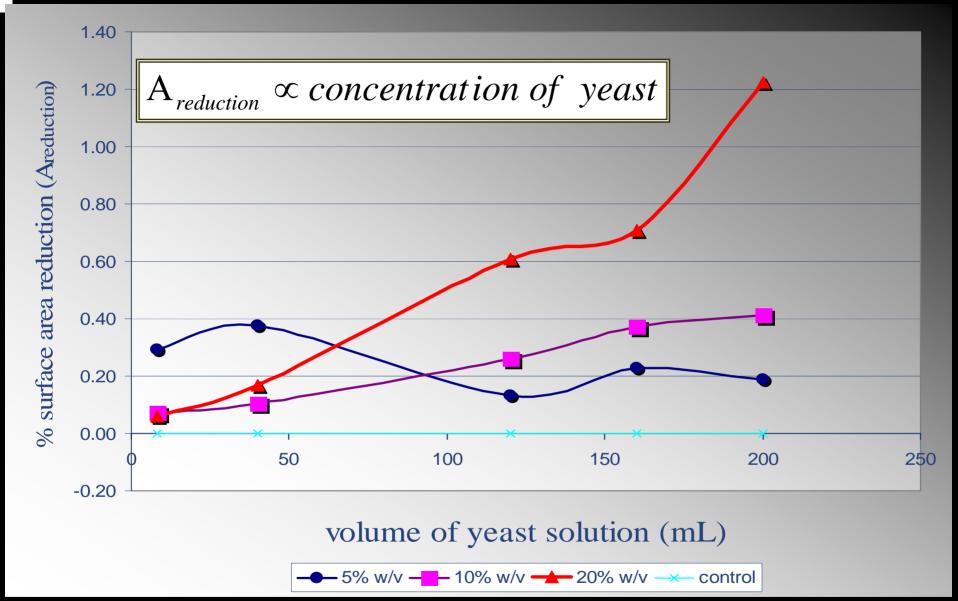
weighing

Measurement of weight(m) reduction

Initial weight – final weight = m reduction

[Method described by Giedraityte *et al.*, 2001]

EMULSION TEST


[Modification of the method described by Bosch *et al.*,1988 and Willumsen and Karlson 1997]

VORTEX FOR 10 MINUTES & LEFT FOR 24 HOUR

Percentage of Surface Area Reduction

Yeast can disperse the wax &

consequently the surface area will be reduced

Observation of Physical and Surface Changes

Control- wax in distilled water- no change after 7 days!

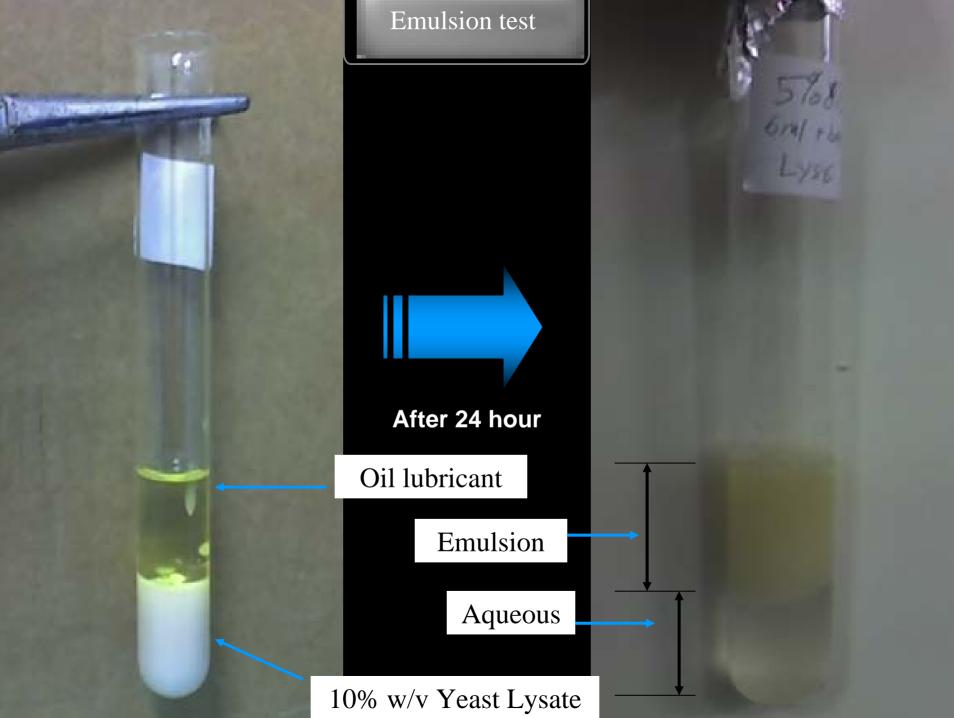
Sample wax

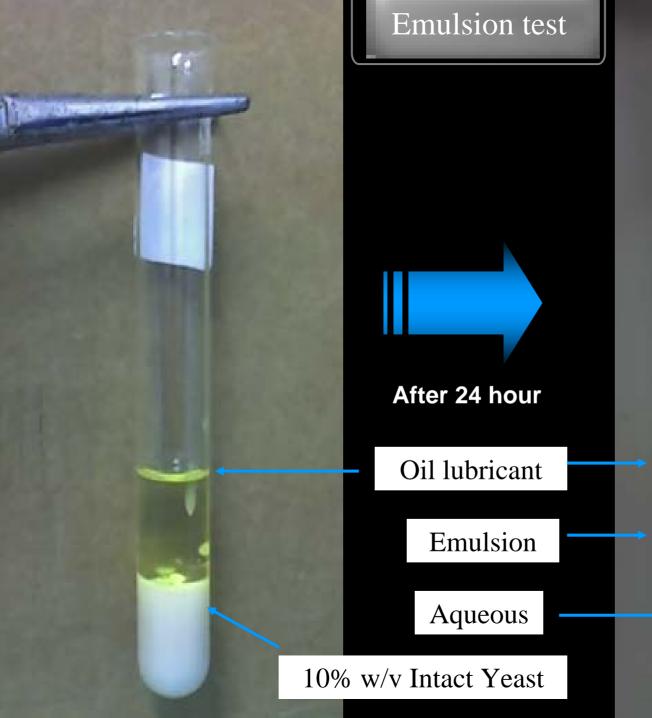
Wax in 20%w/v yeast- small particles of dispersed wax floating in the shake flask after 7 days!

Dispersed wax

MANNOPROTEIN CAN PEEL OFF THE WAX SURFACE

SACCHAROMYCES CEREVISIAE CELL CAN ATTACH TO THE WAX SURFACE!


MANNOPROTEIN attach ON THE WAX SURFACE


and THAT CAUSES THE OUTER LAYER OF WAX DISPERSED!

Wax with yeast

Control (distilled water)

Effect of Lysis on Emulsification of Complex Hydrocarbon

Emulsion phase remains after 24 hour

Lysate yeast

Emulsion phase reduced after 24 hour

(EI-24)=29%

1.4 cm (emulsified layer)

(EI-24)=29%

Non-Lysis yeast

CONCLUSION

Current investigation indicated some promising results HOWEVER

the potential of employing mannoprotein to remove wax deposit on the site is still inconclusive due to the following factors:

- i. Low adherence & emulsification decrease the transfer mode of HC to the cell surface of *S.cerevisiae*
- ii. Low mannoprotein released from the lysate insufficient to completely react & resulting of low removal rate
- iii. Low removal rate, may not economically attractive

FUTURE IMPROVEMENT

Solution Investigate the influence of other factors such pH, ionic charge, affinity and hydrophobicity effect

Solution with other biosurfactant may enhance the *S.cerevisiae* potential in dispersing wax deposit

Sechnically :

✓ Increase close contact between mannoprotein and wax surface

✓ Raise the amount of mannoprotein release via harsh, simple and inexpensive extraction method

Thank You

Why emulsion test was conducted using oil lubricant?

Problem with wax emulsification - no appropriate experimental approach to conduct wax-mannoprotein emulsion test
 Oil lubricant represent the complex hydrocarbon with low solubility

HOW TO CALCULATE A_{reduction}?

Put equation (1) into (2)

 $m/\rho = Ah$

Thus,

A=m/ph

p= density (g/cm³)
m= weight of wax (g)
V= volume (cm³)
h= height (cm)
A= surface area (cm²)

Emulsion test

- The emulsions produced are thick and viscous
- The emulsification index (EI-24)
 Height of emulsion layer x 100
 Total height of liquid column
- [⊗] EI-24 \geq 50% → STABLE EMULSION

Why mannoprotein?

- Abundant component from cheap source
- Non toxic due to its widely-used in food industry
- Fulfills the current consumer demand for natural and environmentally safe products