Stability study of meat tenderizer POWDER

by:

NASSYA MOHD SAID

Supervisor: Assoc. Prof. Dr. Fadzilah Adibah Abdul Majid

Caking prevention methods...

- a) Drying to low moisture content
- b) Treatment of the powders at low humidity atmospheres

& packaging in high barrier packages

- c) Storage at low temperatures
- d) In package desiccation
- e) Agglomeration
- f) Addition of anti-caking agents

Anti-caking agent action:

compete with the host powder for available humidity due to its large water adsorptive capacity, thus reducing their hygroscopicity and tendency to cake

..SCOPES..

Determine...

- 1) effects of anti-caking agent percentage in the base formulation
- 2) effects of types of sugar & anti-caking agent used on the base formulation with time
- 3) effect of different types of storage container

...RESULTS & discussion...

Base: Salt, sugar, anti-caking agent

Day 0

Active ingredient: Bromelain (5-6%)

-anti-caking agent percent content (0,1.0,1.5,2.0%) and type of sugar (lactose, sucrose) were varied for this test

After 30 days of storage (air-tight container)...

► Guide:

- (1) Lactose+ NaCI+ MCC
- (2) Lactose + NaCl + Soda Bicarbonate
- (3) Lactose + NaCl + TPC
- (4) Sucrose+ NaCl+ MCC
- (5) Sucrose+ NaCl+ Soda Bicarbonate
- (6) Sucrose+ NaCl+ MCC
- (7) Lactose + Sucrose + NaCl+ MCC
- (8) Lactose+ NaCl (control)
- (9) Sucrose+ NaCl (control)

After 60 days of storage...

~ All of the base formulation are free-flowing and did not cake prior to storage

Method

- I- Measuring mass flow rate of powder
- Measure the mass of powder
- 2) Start timer the moment the glass hour were turned upside-down
- 3) Divide mass of powder by period of powder to be totally fall down

- (1) Lactose+ NaCl+ MCC
- (2) Lactose + NaCl + Soda
 Bicarbonate
- 3) Lactose + NaCl + TPC
- (4) Sucrose+ NaCl+ MCC
- (5) Sucrose+ NaCI+ Soda Bicarbonate
- (6) Sucrose+ NaCI+ TPC
- (7) Lactose + Sucrose + NaCl+ MCC
- (8) Lactose+ NaCl (control)
- (9) Sucrose+ NaCl (control)

Conclusion...

Higher percentage of anti-caking agent in the base formulation have higher ability to improve the powder flowability by maintaining its low moisture content

After 30 days of storage (non-airtight container)...

-early sign of caking showed when big lumps were formed

1% anti-caking agent

2% anti-caking agent

1.5% anti-caking agent

After 60 days of storage...

► Guide :

- (1) 0% anti-caking agent
- (2) 1.0% anti-caking agent
- (3) 1.5% anti-caking agent

~ large chunks of powder mass were formed before it being shake for homogeneity

Conclusion...

1) None of the base formulation prepared in the air-tight container caked during storage

Potential factor: storage time is not long enough

2) Storage of powder in a non-airtight container could rapidly lead to caking phenomenon even with the addition of anticaking agent

Potential factor: Non-air-tight container allow moisture to be absorbed by the powder inside

Potential factor: Its ability to absorb moisture will retain the low-moisture property of the host powder

4) Lactose gives better stabilizing effect than sucrose

Potential factor: it has better non-hygroscopicity characteristic and thus reduce the water activity of the powder

III- Moisture sorption characteristics determination

~ Addition of anti-caking agent have slightly reduced water absorption of base powder

~ Significant water absorption could only be seen as water activity value exceed 0.6. Rate of absorption with or without the presence of anti-caking agent does not differ much

Conclusion..

- 1) Moisture content in powder increase with increasing water activity
- 2) Anti-caking agent addition in the powder are able to lower moisture intake from ambient
- 3) At higher temperature, moisture uptake decreased as the water molecules are activated. This will lower the water holding ability of the powder

...Thank You...

Importance of knowing water activity of powders as a function of moisture content & temperature

..control water content during processing, handling, packaging and storage to prevent caking, collapse & stickiness.

Caking

..when low moisture, free-flowing powder transformed into lumps & agglomerated solid » loss of functionality & lowered quality

..a_w, t & T dependent

Pactors affecting caking kinetics

- a) the powder itself (particle size distribution, hygroscopicity & charge of particles, state of the material, presence of impurities)
- b) external factors (temperature, relative humidity and mechanical stress applied to the substance)

? Water activity

definition: ratio of vapor pressure of water in a powder to the vapor pressure of pure water at the same temperature

- = equilibrium relative humidity
- = relative humidity of the air surrounding the powder when the water vapor pressure in the air is the same as in the powder
- = ERH/100