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ABSTRACT 

  

 

 

Time series forecasting is an active research area that has drawn most attention 

for applications in various fields such as engineering, finance, economic, and science.  

Despite the numerous time series models available, the research to improve the 

effectiveness of forecasting models especially for time series forecasting accuracy still 

continues. Several research of commonly used time series forecasting models had 

concluded that hybrid forecasts from more than one model often led to improved 

performance. Recently, one sub-model of neural network, the Group Method of Data 

Handling (GMDH) and several hybrid models based on GMDH method have been 

proposed for time series forecasting. They have been successfully applied in diverse 

applications such as data mining and knowledge discovery, forecasting and systems 

modeling, optimization and pattern recognition. However, to produce accurate results, 

these hybrid models require more complex network generating architecture. In addition, 

several types and parameters of transfer function must be predetermined and modified. 

Thus, in this study, two enhancements of GMDH models were proposed to alleviate the 

problems inherent with the GMDH algorithms. The first model was the modification of 

conventional GMDH method called MGMD. The second model was an enhancement of 

MGMDH model named HMGMDH, in order to overcome the shortcomings of MGMDH 

model that did not perform well in uncertainty type of data. The proposed models were 

then applied to forecast two real data sets (tourism demand and river flow data) and three 

well-known benchmarked data sets. The statistical performance measurement was 

utilized to evaluate the performance of the two afore-mentioned models. It was found 

that average accuracy of MGMDH compared to GMDH in term of R, MAE, and MSE 

value increased by 1.27 %, 10.96%, and 16.9%, respectively. Similarly, for HMGMDH 

model, the average accuracy in term of R, MAE, and MSE value also increased by 

1.39%, 14.05%, 24.28%, respectively. Hence, these two models provided a simple 

architecture that led to more accurate results when compared to existing time-series 

forecasting models. The performance accuracy of these models were also compared with 

Auto-regressive Integrated Moving Average (ARIMA), Back-Propagation Neural 

Network (BPNN) and Least Square Support Vector Machine (LSSVM) models. The 

results of the comparison indicated that the proposed models could be considered as a 

useful tool and a promising new method for time series forecasting. 
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ABSTRAK 

 

 

Peramalan siri masa merupakan satu bidang penyelidikan yang aktif  yang telah 

menarik perhatian di dalam pelbagai bidang aplikasi seperti kejuruteraan, kewangan, 

ekonomi dan sains. Walaupun telah banyak muncul model-model siri masa, tetapi 

penyelidikan untuk meningkatkan keberkesanan model-model peramalan terutamanya di 

dalam ketepatan peramalan siri masa ini tidak pernah berhenti. Pelbagai penyelidikan 

peramalan siri masa yang biasa digunakan telah merumuskan bahawa ramalan hibrid 

atau gabungan lebih daripada satu model selalunya mampu meningkatkan prestasi. 

Kebelakangan ini, satu sub-model rangkaian neural (NN), iaitu, Kaedah Kumpulan 

Pengendalian Data (GMDH) dan pelbagai model-model hibrid berasaskan kaedah 

GMDH telah dicadangkan bagi peramalan siri masa ini. Ia telah berjaya digunakan di 

dalam pelbagai bidang yang besar seperti perlombongan data dan penemuan 

pengetahuan, sistem peramalan dan permodelan, pengoptimuman dan pengecaman 

corak. Bagaimanapun, untuk mendapatkan hasil yang tepat, model-model hibrid ini 

memerlukan penjanaan  senibina rangkaian yang lebih kompleks. Di samping itu,  

pelbagai jenis dan parameter fungsi peralihan dengan memberi kesan kepada hasil kualiti 

haruslah dikenalpasti dahulu dan diubahsuai. Oleh itu, di dalam kajian ini, dua 

penambahbaikan terhadap model GMDH telah dicadangkan untuk mengatasi masalah di 

dalam algoritma GMDH ini. Model pertama adalah pengubahsuaian ke atas kaedah 

GMDH yang konvensional yang dinamakan sebagai model Modifikasi GMDH 

(MGMDH). Model kedua adalah penambahbaikan model MGMDH yang dikenali 

sebagai Hibrid MGMDH (HMGMDH) untuk mengatasi kelemahan model MGMDH 

yang tidak mampu menangani dengan baik data berjenis ketidak-tentuan. Model-model 

cadangan ini kemudian digunakan untuk memodelkan dua set data sebenar (data aliran 

sungai dan data pelancongan) dan tiga set data piawai yang telah dikenali umum. 

Pengukuran prestasi secara berstatistik adalah digunakan untuk menilai  prestasi ketiga-

model yang dicadangkan ini. Hasil kajian mendapati bahawa purata ketepatan bagi 

model MGMDH jika dibandingkan dengan model GMDH melalui pengukuran dari segi 

nilai R, MAE, dan MSE adalah masing-masing bertambah sebanyak 1.27%, 10.96% dan 

16.9%. Begitu juga dengan model HMGMDH, purata ketepatannya juga meningkat 

sebanyak 1.39%, 14.05% dan 24.28%. Oleh itu, kedua model ini menyediakan satu 

senibina yang mudah dan mampu memberikan hasil yang lebih tepat berbanding dengan 

model-model peramalan siri masa sedia ada.  Ketepatan prestasi model-model cadangan 

ini juga turut dibandingkan dengan model Auto-regressive Integrated Moving Average 

(ARIMA), Back-Propagation Neural Network (BPNN), dan Least Square Support 

Vector Machine (LSSVM). Hasil dari perbandingan ini juga telah menunjukkan bahwa 

model-model cadangan ini merupakan satu alat yang berguna dan boleh menjanjikan satu 

kaedah baru dalam peramalan siri masa. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Overview     

 

Time series prediction or forecasting is an important practical problem with a 

diverse range of applications in many observational disciplines, such as physics, 

engineering, finance, economics, meteorology, biology, medicine, hydrology, 

oceanography and geomorphology. The accuracy of time series forecasting is 

fundamental for the organization to plan or adopt the necessary policies. Forecasting can 

assist them to make a better development and decision-making for most of the 

organization. The identification of highly accurate and reliable time series forecasting 

models for future time series is an important precondition for successful planning and 

management for applications in variety of areas.  

 

Generally, time series forecasting models can be grouped into the two main 

techniques: knowledge-driven modelling and data-driven modelling. The knowledge-

driven modelling is so-called physically-based model approachs, which generally use a 

mathematical framework based on external factors often require economic and 

demographic data or climatic characteristics such as temperature, humidity and wind 

characteristics (Jain and Kumar, 2007). As all the external factors have already impacted 

the generation of the observed time series, it is hypothesized that the forecasts could be 

improved if external factors variables which affect this time series were to be included. 

Although incorporating other variables may improve the prediction accuracy, in practice 

such  information is often either not available or difficult to obtain. Moreover, the 

influence of these variables and many of their combinations in generating external 

factors especially due to the data collection of multiple inputs and parameters, which 

vary in space and time and is not understood clearly (Zhang and Govindaraju, 2000). 
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Owing to the complexity of this process, most conventional approaches are often unable 

to provide sufficiently accurate and reliable forecasts (Firat and Turan, 2010). 

 

The data-driven modelling which use the univariate time series modelling 

approach is based on extracting and re-using information that is implicitly contained in 

past data without directly taking into account the external factors are becoming 

increasingly popular due to their rapid development times and minimum information 

requirements (Adamowski and Sun, 2010, Atiya et al., 1999; Lin et al., 2006; Wang et 

al. 2006; Wu et al., 2009; Firat and Güngör,, 2007; Kisi, 2008, 2009; Wang et al., 2009). 

Moreover, using only the past time series of the same variable are analyzed to develop a 

model describing the underlying relationship can reduce the data dimensionality for the 

problem being modeled, which improves generalization and forecasting performance. 

This modeling approach is particularly useful when little knowledge is available on the 

underlying data generating process or when there is no satisfactory explanatory model 

that relates the prediction variable to other explanatory variables (Zhang, 2003). The 

ultimate goal of time series forecasting is to be able to obtain some information about the 

series in order to predict future values.  

 

Generally, there are two main types of forecasting methods that are widely used 

in time series problem: statistical methods and Artificial Intelligence (AI) methods 

(Sallehuddin et al., 2007). The example of Statistical method includes Box-Jenkins 

method, Multiple Regressions and Exponential Smoothing while methods under AI 

technique are neural networks, genetic algorithm, fuzzy logic, etc. Statistical methods 

have been used successfully in time series forecasting for several decades. Despite being 

simple and easy to interpret, statistical methods have several limitations. One of the 

major limitations of statistical methods is it is merely depicted as a linear model, also 

known as model driven approach. It is desirable to fit the data with the available data and 

the prior knowledge about the relationships between the inputs and outputs before 

modeling process is conducted (Zhang, 2000). 

 

Over the past several decades, much effort has been devoted to the development 

and improvement of univariate time series forecasting models. Time series analysis and 

prediction refers to the branch of statistics where observations are collected sequentially 

in time, usually (but not necessarily) at equally-spaced time points, and the analysis 

relies, at least in part, on understanding or exploiting the dependence among the 

observations. Because of the importance of time series analysis, many works can be 
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found in the literature, especially those based on statistical models. One of the most 

popular and extensively used seasonal time series forecasting models is the auto-

regressive integrated moving average (ARIMA) model. The popularity of the ARIMA 

model is due to its statistical properties as well as the well-known Box–Jenkins 

methodology in the model building process. In addition, ARIMA model provides a 

comprehensive statistical modelling methodology for input and output processes. It 

covers a wide variety of patterns, ranging from stationary to non-stationary and seasonal 

(periodic) time series, and has been used extensively in the literature (M´elard and 

Pasteels, 2000; Valenzuela et al., 2008) and has been successfully adopted in numerous 

fields such in social, economic, engineering, foreign exchange, stock and hydrological 

problems (Goh and Law, 2002; Huang and Min, 2002;  Navarro-Esbri et al., 2002). 

ARIMA models have been originated from the autoregressive models (AR), the moving 

average models (MA) and the combination of the AR and MA, the ARMA models. 

Although the ARIMA model has been highly successful in both academic research and 

variety areas of applications during the past three decades, their major limitation is the 

pre-assumed linear form of the model. ARIMA models assume that future values of a 

time series have a linear relationship with current and past values as well as with white 

noise, so approximations by ARIMA models may not be adequate for complex nonlinear 

real-world problems. However, real world systems are often nonlinear (Zhang et al., 

1998), thus, it is unreasonable to assume that a particular realization of a given time 

series is generated by a linear process.  

 

In fact, the drawbacks of these linear methods, the artificial neural networks 

(ANNs) are one of the most important types of nonparametric nonlinear time series or 

Artificial Intelligence (AI) models, which have been proposed and examined for time 

series forecasting, have led to the development of alternative solutions using nonlinear 

modelling. Since the 1990s, ANN, based on the understanding of the brain and nervous 

systems, was gradually used in time series forecasting. ANNs represent an important 

class of nonlinear prediction models that has generated a lot of interests in the 

forecasting community over the past decade (Adya and Collopy, 1998; Alves da Silva et 

al., 2008; Balkin and Ord, 2000; Ter¨asvirta, et al., 2006; Zhang et al., 1998). ANNs are 

one of the most accurate and widely used forecasting models that have enjoyed fruitful 

applications in forecasting social, economic, engineering, foreign exchange, stock 

problems, hydrology etc. Given the advantages of artificial neural networks, it is not 

surprising that this methodology has attracted overwhelming attention in time series 

forecasting. One of the main reasons that ANN performs better than the statistical 
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method is due to its influential feature in handling nonlinear time series data. In addition, 

ANN has also been shown to be effective way with can handle noise or without noise 

data in modeling and forecasting nonlinear time series. Besides that, ANN also does not 

require any knowledge about systems of interest. Although ANNs have the advantages of 

accurate forecasting, their performance in some specific situation is inconsistent. In the 

literature, several papers have shown ANNs are significantly better than the conventional 

linear models and their forecast considerably and consistently more accurately, some 

other studies have reported inconsistent results. Moreover, there are some disadvantages 

of ANN due its network structure which is hard to determine and usually established by 

using a trial-and-error approach (Kisi, 2004). 

 

Over the last few years, kernel methods (Scholkopf and Smola, 2001) have 

proved capable of forecasting more accurately than other techniques such as neural 

networks, neuro-fuzzy systems or linear models (ARIMA), in terms of various different 

evaluation measures during both the validation and test phases (Hong and Pai, 2006; 

Wang et al., 2009; Xu et al., 2006). Kernel methods are defined by operations over the 

kernel function values for the data, ignoring the structure of the input data and avoiding 

the curse of dimensionality problem (Bellman, 1966). The main motivation for using 

kernel methods in the field of time series prediction is their ability to forecast time series 

data accurately when the model could be non-linear, non-stationary and not defined a 

priori (Sapankevych and Sankar, 2009). The two most promising kernel methods for 

time series prediction are Support Vector Machines (SVM) (Misra et al., 2009; 

Sapankevych and Sankar, 2009; Zhou et al., 2008) and Least Square Support Vector 

Machines (LSSVM) (Van Gestel et al., 2001; Xu and Bian, 2005).  

 

Support Vector Machine (SVM) is proposed by Vapnik and his co-workers in 

1995 through statistical learning theory have become a key machine learning technique 

(Quan et al. 2010). Originally, SVM has been developed to solve pattern recognition 

problems. However, with the introduction of Vapnik’s ε-insensitive loss function, SVM 

has been extended to solve nonlinear regression estimation problems, such as new 

techniques known as support vector machines for regression, which have been shown to 

exhibit excellent performance (Vapnik et al., 1997). The SVM is a powerful 

methodology and has become a hot topic of intensive study due to its successful 

employed to solve most non-linear regression and time series problem and becoming 

increasingly in the modeling and forecasting of chaotic processes, water resources 

engineering (Lau and Wu, 2008). The standard SVM is solved by using quadratic 
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programming methods. However, this method is often time consuming and has a higher 

computational burden due to the requisite constrained optimization programming, and is 

only found to be useful for the classification and prediction of small sample cases 

(Vapnik, 1999).  

 

Least squares support vector machines (LSSVM), as a modification of SVM was 

introduced by Suykens in 1999. Both SVM and LSSVM have been applied to time series 

prediction with promising results, as can be seen in the work of Tay and Cao (2001) and 

Thiessen and Van Brakel (2003) for Support Vector Regression (SVR) and Van Gestel et 

al. (2001) and Xu and Bian (2005) for LSSVM.  The LSSVM has a similar advantage to 

that of the SVM, but its additional advantage is that it only requires the solving of set 

linear equations, which is much easier and computationally more simples. The method 

uses equality constraints instead of inequality constraints and adopts the least squares 

linear system as its loss function, which is computationally attractive. LSSVM also has 

good convergence and high precision. Hence, this method is easier to use than quadratic 

programming solvers in SVM method. Extensive empirical studies have shown that 

LSSVM is comparable to SVM in terms of generalization performance (Wang and Hu, 

2005). The major advantage of LS-SVM is that it is computationally very cheap while it 

still possesses some important properties of the SVM. Recently, LSSVM has been 

successfully applied to chaotic time series forecasting, for example, see Mei-Ying and 

Xiau-Dong (2004),  Herrera et al. (2007),  Wang et al. (2005), Liu and Wang (2008), 

Rubio et al. (2011), Du (2009), and Quan et al. (2010). 

 

One sub-model of neural network is a group method of data handling (GMDH) 

algorithm which was first developed by Ivakhnenko (1971) for modeling and 

identification of complex systems (Kim and Park, 2005). GMDH is a heuristic self-

organizing modeling method. The main idea of GMDH is to build an analytical function 

in a feed-forward network based on a quadratic node transfer function whose coefficients 

obtained by using a regression technique. The GMDH model has the ability of self-

selecting such the number of layers, the number of neurons in hidden layers and self-

selecting useful input variables (Hwang, 2006). The method offers the advantages of 

improved forecasting performance (Abdel-Aal, 2004; Abdek-Aal et al., 2009), faster 

model development requiring little or no user intervention, faster convergence during 

model synthesis without the problems of getting stuck in local minima, automatic 

selection of relevant input variables, and automatic configuration of model structures 

(Ravisankar and Ravi, 2010). This model has been successfully used to deal with 
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uncertainty, linear, nonlinearity or chaotic of systems in a wide range of disciplines such 

as engineering, science, economy, medical applications, signal processing and control 

systems (Tamura and Kondo, 1980; Ivakhnenko and Ivakhnenko, 1995; Voss and Feng, 

2002, Lin et al. 1994, Onwubolu, 2008).  

 

 

 

1.2 Challenges of  GMDH Model in time series forecasting 

 

 The major goal of time series forecasting is to get the best accuracy model 

in order to make a good decision for the organization. As mentioned above, artificial 

intelligence techniques have been extensively studied and a lot of attention has been 

directed to developing advance technique in time series forecasting. Neural networks, 

fuzzy systems and machine learning techniques have been widely used and have been 

investigated by many authors. The approximation capability of neural networks, such as 

multilayer perceptrons, radial basis function (RBF) networks, or dynamic recurrent 

neural networks has been investigated by many authors (Chen and Chen, 1995; Li, 

1992). On the other hand, fuzzy systems have been proved to be able to approximate 

nonlinear functions with arbitrary accuracy (Wang and Mendel, 1992). But the resultant 

neural network representation is very complex and difficult to understand and fuzzy 

systems require too many fuzzy rules for accurate function approximation.  As another 

method, there is a Group Method of Data Handling (GMDH)- type algorithms which was 

introduced by Ivakhnenko in the early 1970’s (Ivakhnenko, 1971; Ivakhnenko and 

Ivakhnenko, 1975). GMDH-type algorithms have been extensively used since the mid-

1970’s for prediction and modelling complex nonlinear processes. Recently the GMDH 

has been successfully applied in a great variety of areas for data mining and knowledge 

discovery, forecasting and systems modelling, optimization and pattern recognition. The 

main characteristics of GMDH is that it is a self-organizing and provides an automated 

selection of essential input variables without using a prior information on the relationship 

among input-output variables (Farlow, 1984). This research is focusing on the efforts of 

improving the accuracy of forecasting methods based on GMDH model.  
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1.3 Background of the problem 

 

 The GMDH algorithm is a heuristic method which provides the 

foundation for the construction of high-order regression models of complex systems. The 

basic building block of GMDH is a quadratic polynomial of two variables. The GMDH 

algorithm generates an optimal structure of the model through successive generations of 

partial descriptions of data (PD) by using quadratic regression polynomials of two input 

variables.  

 

GMDH usually consists of many "layers", each layer consists of a bank of 

quadratic polynomial functions that requires input from the previous layer after having 

passed a selection criteria. Each layer consists of nodes (PD) for which the number of 

input variables could be same as in the previous layers or may differ across the network 

depend on the selection criteria. Although the GMDH is structured by a systematic 

design procedure, it has some drawbacks to be solved. In the standard GMDH, the issues 

to address are how to determine the optimal number of input variables and how to 

determine which input variables are chosen. If a small number of input variables are 

available, GMDH tends to generate more complex polynomials even for relatively 

simple systems as in experimental data. On the other hand, if there are sufficiently large 

numbers of input variables and data points, GMDH algorithm has a tendency to produce 

more complex networks (Oh and Pedrycs, 2002). Furthermore, the method of GMDH is 

difficult to follow its network architecture, required advanced knowledge of the final 

network structure, and require a large amount of time to train. Moreover, the 

performances of GMDH depend strongly on the number of input variables and types or 

order in each PD. They must be chosen in advance before the architecture of GMDH is 

constructed. In most cases, they are determined by the trial and error method with a 

heavy computational burden and low efficiency.  

 

In order to alleviate the problems associated with the GMDH, many modified 

methods have been proposed. For example, Oh and Pedrycz (2002) introduced a family 

of multi-layer self organizing neural networks (PNN), the Self-Organizing Fuzzy 

Polynomial Neural Networks (SOFPNN) and the hybrid Self-Organizing Fuzzy 

Polynomial Neural Networks. The design procedure of multi-layer self-organizing neural 

networks exhibits some tendency to produce more complex networks as well as comes 
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with a repetitive computation load caused by the trial and error method being a part of 

the development process. 

 Kondo and Euno (2006, 2007) modified GMDH model by introducing many 

types of neurons or transfer function such as the sigmoid function, the radial basis 

function, the high order polynomial and the linear function. The structural parameters 

such as the number of the layers, and the number of the neurons in the hidden layers, the 

useful input variables etc. are automatically determined so as to minimize the error 

criterion defined as Akaike’s information criterion (AIC) and stepwise regression (SW). 

Although AIC and SW criterions are suitable to find the optimal number of neurons and 

layers of the modified GMDH networks, this criterion is not always satisfactory. Some 

time such regularization takes into account just the complexity of GMDH network and 

the outputs from neurons in a layer can be highly correlated.  

 

Zadeh et al. (2002) introduced a modified GMDH algorithm called the error-driven 

approach. In this approach, the number of layers as well as the number of neurons in 

each layer is determined according to a threshold value before the algorithm even begins 

developing the network.   The single best neuron out of each layer which gives the 

smallest of such as mean square error (MSE) the data set is combined with the previous 

input variables. The model are used for simultaneous determination of structure of input 

variables identification and tested for the modelling of explosive cutting process of plates 

using shaped charges. In their study shown that this model is easy to understand, simple 

to use and has been successfully used for modelling of very complex process of 

explosive cutting of plates by shaped charges. However, in this model, unlike the basic 

GMDH algorithm, the effect of the basic input variables in the first layer can be included 

in the subsequent layers and the model obtained at each layer is progressively more 

complex than the model at the preceding layers. The inherent computational cost of this 

approach can be significant and the need for a less iterative method is obvious. 

Furthermore, the basic building blocks of this model consist of polynomials. If the time 

series or the system is very complex, it does not guarantee to obtain a good prediction 

accuracy by using the conventional polynomial function type neural network.  

 

In practice it is quite common that one forecasting model performs well in certain 

periods while other models perform better in other periods. It is difficult to find a 

forecast model that outperforms all competing models. Several researchers have argued 

that the forecast model performance can be improved when using hybrid models. 
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Hybridization of existing competitive modelling methodologies is now an active area of 

research. The basic idea of this multi-model approach is the use of each component 

model’s unique capability to better capture different patterns in the data. Bates and 

Granger (1969), Newbold and Granger (1974), Granger and Newbold (1986), Granger 

and Jeon (2004) and Yang  (2004) show that forecast hybridization model can improve 

forecast accuracy over a single model.  

 

The hybridization forecast model is a process which gives the results of several 

individual forecasting models different weights.  The hybrid models are then the 

weighted average of the forecasts provided by the individual models in order to obtain a 

better result. A simpler way is to use the equal weights (simple mean). This becomes a 

common strategy when the models are of similar quality or because their relative 

performance is unknown or unstable over time. Simple mean only makes sense if the 

class of models under consideration is reasonable. The other hybridizing models are the 

regression based methods (Granger and Ramanathan (1984), the weighted average 

method (Shamseldin et al. ,1997; Gao et al. (2000)), the mean squared error and mean 

absolute error (Zhang and Joung, 1999). However, the application of these hybridization 

forecast models have many limitations. One of the main problems in one of the above-

mentioned forecasts methods is the choice of the optimal weight obtained between the 

forecast models.  

 

Several hybridization model involved GMDH algorithm are introduced and 

modified to alleviate the problems inherent with the GMDH algorithms. It includes 

combining the GMDH with intelligent model such as Genetic Algorithms (Zadeh et al., 

2002), GMDH and Fuzzy Logic (Oh et al., 2005); GMDH and differential evolution 

(Onwubolu 2008), neuro-fuzzy and GMDH algorithm (Kim et al., 2009) and GMDH and 

Bayesian (Xiao et al., 2009), GMDH and ANN (Kim et al., 2009). However, to get the 

high level of accuracy, the issues here are, these hybridization models tend to generate 

more complex architecture and several types and parameters of transfer function should 

be predetermined and amended. This requires a diverse set of heuristic settings to be 

devised and for each case the building process is repeatedly applied until an optimal 

hybridization is found. This leads to model with large number of parameters and high 

computational burden.  
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1.4 Problem Statement 

 

 

Accurate forecasts are extremely important in diverse applications in any 

organizations. However, each organization must select the forecasting methods that 

help their particular situation. This forecasting dilemma is further complicated by the 

fact that most time series conditions are constantly changing.  

 

Many research efforts have been expended to use of GMDH methods as 

effective tools for time series forecasting. Among these methodologies, the GMDH 

was developed by Zadeh et al. (2002) as a multi-variate analysis method are 

successfully used for modelling the explosive cutting process of plates by shaped 

charges. This research will concentrate on extension of the GMDH model proposed 

by Zadeh et al. (2002) by modifying and hybridizing this model in order to improve 

the existing model in time series forecasting. The GMDH model established by 

Zadeh et al. (2002) is chosen because the algorithm of this model has self organizing 

of termination network and simple structures that lead to work well in modelling. 

These improved methods expand the capabilities of combined forecast models 

enabling them to become more practical and effective. This study describes 

improvements to this effective forecasting method. 

 

 

The problem statement can be dictated as follows: 

“ Given time series data, the challenge is to enhance GMDH model that can produce a 

simple, accurate, and robust forecasting for time series data.” 

 

In order to find the best prediction model, the following issues will be need to be 

considered:  

 

i.  Many GMDH methods are developed using polynomial equations that are not 

able to detect complex problems and are limited to the very specific uses for 

which they were designed. The first issue relates to GMDH model is how to 

modify GMDH model in order to improve the prediction accuracy. The goal is to 

ensure the forecasting model will achieve better accuracy after the modification 

model is performed.   
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ii.  Many researchers have demonstrated that hybridizing of several models 

frequently results in higher forecasting accuracy than that of the individual 

models. However, in the development of the hybridizing model between two or 

more forecasting models, the problems is how to determine the optimal weights 

for the network in order to improve the capability of time series forecasting. 

  

 

 

1.5 Research Goal 

 

The goal of this research is to develop an enhanced GMDH model that is capable 

of forecasting diverse types of time series data.  

 

 

 

1.6 Research Objectives 

 

 The main objectives of this research are:  

 

1. To propose a new modification of conventional GMDH model that outperform 

conventional model in time series forecasting in term of statistical performance 

measurement. 

 

2. To further enhance the modified GMDH model by hybridizing the conventional 

GMDH with modified GMDH models in order to improve the performance 

accuracy of modified GMDH model. 

 

 

 

1.7 Research Scope 

 

1. The proposed model is based on the GMDH model proposed by Zadeh et al. 

(2002) by modifying and hybridizing this model in order to improve of existing 

model in time series forecasting.  
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2. Four models namely are ARIMA, ANN, original GMDH and LSSVM models 

were used to test and validate the performance of these proposed models. 

3. Two type of data set will be used. The first data sets are the monthly stream flow 

of Selangor river of Selangor and monthly of tourism in Johor. The second data 

set is the benchmarked data. These are three well-known data sets - the 

international airline passengers, the Canadian Lynx data and the gas furnace data. 

These data are utilized to forecast through an application aimed to handle real life 

time series.  

 

4. The performance measurement for accuracy prediction is based on the standard 

statistical performance evaluation such as the sum of square error (SSE), mean 

square error (MSE), mean absolute percentage error (MAPE), root mean squared 

error (RMSE), and correlation coefficient (R). MSE, MAE and R is used in this 

study due to its different statistical characteristics. In addition, these 

measurements are the most widely used in time series forecasting. 

 

 

 

1.8 Justification of the Research 

 

This thesis presents a new algorithm by modifying and combining models based 

on GMDH. The new updated and refined GMDH is based on GMDH algorithm and its 

variation proposed by Zadeh et al. (2002). This research is expected to contribute 

towards the fulfilment of needs to produce a new model of the GMDH model which is 

more flexible as well as robust than the conventional GMDH, and the obtained results 

demonstrate the proposed model exhibits higher accuracy in comparison to some 

previous models available in the literature. 
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1.9 Organization of Report 

 

This thesis is organized into six chapters. A brief description on the content of each 

chapter is given below: 

 

(i) Chapter 1 defines the challenges, problems, objectives, scopes and significance of 

the study.  

 

(ii) Chapter 2 reviews the main subjects of interest, which are time series forecasting 

model, traditional time series forecasting model such as ARIMA model and 

artificial intelligence model such as GMDH model, LSSVM model, and ANN 

model. 

 

(iii) Chapter 3 presents the design of the computational method that supports the 

objectives of the study. This includes performance measurement, data sources 

and  instrumentations. 

 

 (iv) Chapter 4 shows the development of the first proposed model, MGMDH. This 

chapter describes the steps of the development process for this proposed model. 

Comparison with previous individual models also implemented to evaluate the 

performance of this model. The two real data sets and three bench mark data sets 

are employed to validate this model. 

 

(v) Chapter 5 describes the development of the enhancement of MGMDH model 

which hybridize MGMDH with GMDH namely, HMGHDH model. This chapter 

describes the steps of the development process for this hybrid HMGMDH model. 

Comparison with previous individual models and previous literature models also 

implemented to evaluate the performance of this model. The two real data sets 

and three bench mark data sets are employed to validate this model. 

 

(vi) Chapter 6 draws general conclusions of the accomplished results and presents the 

contributions of the study as well as recommends the potential enhancements for 

future study. 
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