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ABSTRACT

Random effect and time delay are inherent properties of many real
phenomena around us, hence it is required to model the system via stochastic
delay differential equations (SDDEs). However, the complexity arises due to the
presence of both randomness and time delay. The analytical solution of SDDEs
is hard to be found. In such a case, a numerical method provides a way to solve
the problem. Nevertheless, due to the lacking of numerical methods available
for solving SDDEs, a wide range of researchers among the mathematicians and
scientists have not incorporated the important features of the real phenomena,
which include randomness and time delay in modeling the system. Hence,
this research aims to generalize the convergence proof of numerical methods for
SDDEs when the drift and diffusion functions are Taylor expansion and to develop
a stochastic Runge–Kutta for solving SDDEs. Motivated by the relative paucity
of numerical methods accessible in simulating the strong solution of SDDEs, the
numerical schemes developed in this research is hoped to bridge the gap between
the evolution of numerical methods in ordinary differential equations (ODEs),
delay differential equations (DDEs), stochastic differential equations (SDEs) and
SDDEs. The extension of numerical methods of SDDEs is far from complete.
Rate of convergence of recent numerical methods available in approximating the
solution of SDDEs only reached the order of 1.0. One of the important factors of
the rapid progression of the development of numerical methods for ODEs, DDEs
and SDEs is the convergence proof of the approximation methods when the drift
and diffusion coefficients are Taylor expansion that had been generalized. The
convergence proof of numerical schemes for SDDEs has yet to be generalized.
Hence, this research is carried out to solve this problem. Furthermore, the
derivative-free method has not yet been established. Hence, development of a
derivative–free method with 1.5 order of convergence, namely stochastic Runge–
Kutta, to approximate the solution of SDDEs with a constant time lag, r > 0, is
also included in this thesis.
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ABSTRAK

Kesan rawak dan masa lengahan adalah ciri-ciri yang dipunyai
oleh kebanyakan fenomena di sekeliling kita. Maka fenomena ini perlu
dimodelkan menggunakan persamaan pembezaan stokastik lengahan (SDDEs).
Walaubagaimanapun, kerawakan dan masa lengahan menyebabkan persamaan
pembezaan bertambah rumit. Penyelesaian analitik SDDEs sukar untuk dicari.
Bagi kes tersebut, kaedah berangka menyediakan cara untuk menyelesaikan
masalah yang terlibat. Namun, disebabkan oleh kekurangan kaedah-kaedah
berangka yang sedia ada untuk menyelesaikan SDDEs, ramai penyelidik
dari kalangan ahli matematik dan saintis tidak memasukkan ciri-ciri penting
fenomena nyata iaitu kesan rawak dan masa lengahan dalam memodelkan
sistem tersebut. Maka, kajian ini bertujuan untuk mengitlakkan pembuktian
penumpuan kaedah-kaedah berangka SDDEs apabila fungsi hanyutan dan
resapan merupakan pengembangan Taylor dan membangunkan kaedah berangka
stokastik Runge–Kutta untuk menyelesaikan SDDEs. Dimotivasikan oleh
kekurangan relatif kaedah-kaedah berangka yang boleh diakses dalam simulasi
penyelesaian kukuh SDDEs, skema-skema berangka yang dibangunkan diharap
dapat merapatkan jurang di antara perkembangan kaedah-kaedah berangka
persamaan pembezaan biasa (ODEs), persamaan pembezaan lengahan (DDEs),
persamaan pembezaan stokastik (SDEs) dan SDDEs. Perkembangan kaedah-
kaedah berangka SDDEs adalah jauh ketinggalan. Kadar penumpuan kaedah-
kaedah berangka yang boleh didapati kini bagi menghampirkan penyelesaian
SDDEs hanya mencapai peringkat 1.0. Salah satu daripada faktor-faktor penting
perkembangan pesat pembangunan kaedah-kaedah berangka untuk ODEs, DDEs
dan SDEs ialah pembuktian penumpuan kaedah-kaedah penghampiran apabila
pekali-pekali hanyutan dan resapan merupakan kembangan Taylor yang telah
diitlakkan. Pembuktian penumpuan kaedah-kaedah berangka SDDEs masih
belum diitlakkan. Maka, kajian ini dijalankan untuk menyelesaikan masalah
tersebut. Tambahan pula, kaedah bebas terbitan belum pernah dibangunkan.
Maka, pembangunan kaedah bebas terbitan dengan kadar penumpuan 1.5, iaitu
stokastik Runge–Kutta, untuk menghampirkan penyelesaian SDDEs dengan masa
lengahan malar, r > 0, juga telah dimuatkan di dalam tesis ini.
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CHAPTER 1

INTRODUCTION

1.1 Background

Modeling of physical phenomena and biological system via ordinary

differential equations (ODEs) and stochastic differential equations (SDEs) had

been intensively researched over the last few decades. In both types of equations,

the unknown functions and their derivatives are evaluated at the same instant

time, t. However, many of the natural phenomena do not have an immediate

effect from the moment of their occurrence. The growth of a microbe, for

example, is non–instantaneous but responds only after some time lag r > 0.

Generally, many systems in almost any area of science, for which the principle

of causality, i.e. the future state of the system is independent of the past

states and is determined solely by the present, does not apply. A crucial point

with delay equations is the dynamics of the systems differ dramatically if the

corresponding characteristic equations involve time delay. Therefore, ODEs and

SDEs which are simply depending on the present state will be better of should

the model incorporate time delay. Such phenomenon can then be modeled via

delay differential equations (DDEs) for deterministic setting and stochastic delay

differential equations (SDDEs) for their stochastic counterpart. However, DDEs

are inadequate to model the process with the presence of random effects. Thus,

the dynamical systems whose evolution in time is governed by uncontrolled
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fluctuations as well as the unknown function is depending on its history can

be modeled via SDDEs.

Most of the SDDEs do not have an explicit solution. Hence, there is

a need for the development of reliable and efficient numerical integrators for

such problems. The research on numerical methods for SDDEs is still new.

Among the recent works are of Baker [1], Baker and Buckwar [2], Buckwar [3],

Küchler and Platen [4], Hu et al. [5], Hofmann and Muller [6] and Kloeden and

Shardlow [7]. Euler scheme for SDDEs was introduced by Baker [1] and Baker and

Buckwar [2]. The derivation of numerical solutions for SDDEs from stochastic

Taylor expansions with time delay showed a strong order of convergence of 1.0

was studied by Küchler and Platen [4]. Hu et al. [5] introduced Itô formula

for tame function in order to derive the same order of convergence but with a

different scheme. They provide the convergence proof of Milstein scheme to the

solution of SDDEs with the presence of anticipative integrals in the remainder

term. Moreover, Hofmann and Muller [6] presented an approximation of double

stochastic integral involving time delay and introduce the modification of Milstein

scheme. The convergence proof of Euler–Maruyama method for SDDEs was

provided in Baker [1]. Baker and Buckwar [2] and Buckwar [3] provided the

convergence proof of discrete time approximations of SDDEs in a general way.

Meanwhile, Hu et al. [5] and Kloeden and Shardlow [7] prepared the proof of

the order of convergence for Milstein scheme. Later work on numerical method

for SDDEs can be found in Kloeden and Shardlow [7]. They improved the

convergence proof of Milstein scheme presented in [5] by avoiding the used of

anticipative calculus and anticipative integrals in the remainder term. Hence, the

convergence proof of Milstein scheme in [7] is much simpler than the convergence

proof expounded in [5]. The proof of the order of convergence of Taylor methods

of SDEs had been generalized by Milstein [8]. Theorem 1.1 on page 12 in the book

of Milstein [8] showed this result, which underlying the significant development of

numerical methods from stochastic Taylor expansion that occurred in the SDEs.

However, the proof is not yet generalized in SDDEs. It is quite natural now to

ask, can the convergence proof of numerical methods for SDDEs when the drift

function, f and diffusion function, g are Taylor expansion be generalized?
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Stochastic delay differential equation is a stochastic generalization of

DDEs, which is systematically treated in Mohammed [9]. In fact, SDDEs

generalize both DDEs and SDEs. Therefore, numerical analysis of DDEs and

SDEs provide some bearing on the problems regarding the SDDEs which is of

concern here. The derivation of numerical methods for solving SDDEs found in

the literature up to the date are based on stochastic Taylor expansion. As the

order increases, the complexity of implementing those numerical methods can

become more complicated as one needs to compute more partial derivatives of

the drift and diffusion functions. To overcome the above-mentioned difficulty, it

is natural to look for a derivative-free method for solving the problem at hand.

Among the references therein, we realize that there is no derivative-free method

such as stochastic Runge–Kutta (SRK) to facilitate the approximation of the

strong solution to SDDEs. Moreover, the approximation schemes to the solution

for SDDEs in the literature up to the date do not achieve the order of convergence

higher than 1.0. Conversely, evolutionary works on the numerical method in SDEs

are much more advance. Until now, most researchers have ignored both delay and

stochastic effects because of the difficulty in approximation of the solution due

to the involvement of multiple stochastic integrals with time delay. However,

both of them cannot be neglected as many natural phenomena involve random

disturbances as well as non–instantaneous effects. It is now natural to ask the

question, is it possible for us to extend the pioneering work of Runge–Kutta (RK)

over the last few decades to approximate the solution of SDDEs.

Thus, this research proposes to generalize the convergence proof of

numerical methods of SDDEs when the drift and diffusion functions are Taylor

approximation as well as to develop SRK for SDDEs. SRK method is a

derivative–free method, hence it does not require the computation of derivative

for drift and diffusion functions. The method proposed in this research having

the order of convergence of 1.5, improves the convergence rate of numerical

approximation of SDDEs arising from the literature so far. Moreover, both

time delay and stochastic extensions of a mathematical model for bio–process

engineering is considered. In this research, the system of batch fermentation

involving the growth of the microbe and solvent production of acetone and
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butanol is highlighted. The simulated result of the mathematical model is

approximated using the newly developed SRK method of order 1.5.

1.2 Problem Statement

As mentioned earlier in the previous section, most of the SDDEs do not

have analytical solution, and numerical method provides a tool in handling this

problem. Baker et al. [10] modified RK of ODE to approximate DDE. It was

emphasized by Bellen and Zennaro [11] that the main difficulty arising from the

numerical integration of DDEs is the discontinuity. Obviously, the discontinuity

may occur in DDEs because of the initial function, Φ(t) specified on the entire

interval [t0 − r, t0], instead of the use of initial values problem in ODEs. The

term t0 corresponds to the starting time of the process. In fact, Baker et al.

[10] had verified that Runge–Kutta methods are natural candidates for solving

DDEs because they can be easily modified to handle discontinuities. On the other

hand, SDE was taken care by the SRK. It is a derivative-free method with the

order of convergence of at least 2.0 for SDEs with additive noise and 1.5 if the

corresponding SDEs is multiplicative. Further advantages of implementing the

RK methods for ODEs and DDEs and the SRK methods for SDEs, are they are

stable and easy to adapt for variable step–size. The investigation of stability and

variable step–size adaptation of RK (for ODEs and DDEs) and SRK (for SDEs)

methods was prepared by Butcher [12] and Hairer et al. [13] for ODEs, Baker et

al. [10] and Bellen and Zennaro [11] for DDEs and Rumelin [14], Burrage and

Burrage [15] and Burrage [16] for SDEs.

RK and SRK methods of ODEs and SDEs respectively have difficulties in

achieving high accuracy at reasonable cost. To overcome the disadvantage of the

methods in maintaining a particular order, Butcher [12] developed rooted–trees

theory so that these order conditions of RK methods can be expressed using trees.

Then, Burrage [16] extending the Butcher’s rooted–trees theory to the area of

stochastic. This theory allowed us to compute the order of RK and SRK methods
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for ODEs and SDEs respectively in an easy way. The suitability and efficiency of

employing RK in DDE and SRK in SDE motivate us to explore the applicability of

this method in approximating the solution of SDDE. To the best of our knowledge,

the literature on SRK for SDDE has not been found. The exploration of numerical

approximation to the strong solution of SDDEs is just relied on the truncating of

stochastic Taylor expansions, up to 1.0 order of accuracy. Accordingly, the Euler–

Maruyama and Milstein schemes had been proposed to apply them in practice

or to study their properties. Indeed, the implementation of Taylor method in

differential equations leads to complexity, as it requires the computation of the

derivative in drift and diffusion functions should a high-order method is needed.

Since no effort has been made to derive the derivative-free method with the

convergence rate greater than 1.0 and specifically stochastic Runge–Kutta with

time delay, we propose to derive SRK for SDDE in this research as well as to

approximate the strong solution of SDDE via this method. Obviously, when

constructing a numerical method of differential equations, the rate of convergence

between the true and numerical solutions is one of the important features to be

considered. The key to the rapid progress of numerical methods in handling SDEs

is the convergence proof of the corresponding methods when the drift and diffusion

coefficients are Taylor expansion had been generalized. It was Milstein [8] who

proved in a more general way of numerical methods of SDEs when the drift and

diffusion functions are Taylor expansion. However, the later is not yet discovered

in SDDEs, hence it is the aim of this research to provide the convergence proof of

Taylor methods of SDDEs in a more general way. Therefore, the main research

questions are set up as;

(i) Will the convergence proof of numerical methods of SDDEs when the drift

and diffusion coefficients are Taylor approximations be generalized?

(ii) What is the SRK scheme for SDDEs?

(iii) Will the general 4–stage stochastic Runge–Kutta (SRK4) for SDDE be a

more efficient tool in approximating the solution of SDDE?
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Problem (i) is covered in Chapter 4, whereas Chapter 6 provides the answer

to problem (ii) and problem (iii).

1.3 Research Objectives

Based on the research questions in Section 1.2, this study embarks on the

following objectives:

(i) To derive a stochastic Taylor expansion of SDDE. It is a key

feature to the development of higher–order methods for solving

SDDE numerically.

(ii) To generalize a convergence proof of numerical methods for

SDDEs when the drift and diffusion coefficients are Taylor

approximations.

(iii) To develop a Stochastic Runge–Kutta of order 1.5 for SDDE by

modifying SRK for SDE and RK for DDE.

(iv) To analyze the stability of SRK for SDDE.

(v) To apply the SRK method of 1.5 in simulating the strong solution

of SDDE for batch fermentation process.

1.4 Scope of the Study

This study was undertaken to generalize the convergence proof of

numerical methods for SDDEs when the drift and diffusion are Taylor expansion

as well as to propose a derivative–free method, i.e. SRK up to order of 1.5 for

solving SDDEs. To achieve this goal, the following scopes will be covered;

(i) The derivation of Stratonovich Taylor series expansion for both actual and

numerical solutions.
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(ii) The convergence proof of numerical methods from Taylor expansion has

been generalized. The Euler–Maruyama, Milstein scheme and Taylor

method having the order of convergence of 0.5, 1.0 and 1.5 respectively

have been proposed.

(iii) The derivation of SRK4 for solving SDDEs with 1.5 order of convergence.

(iv) Stability analysis of Euler–Maruyama (EM), Milstein scheme and 4–stage

SRK (SRK4) for solving SDDEs are measured via MS–stability. The

algebraic computation is performed using Maple 15.

(v) Model the two phases of fermentation namely the growth phase of C.

acetobutylicum P262 and the production of Acetone and Butanol via

SDDEs. The strong solution of the corresponding mathematical model is

simulated via newly developed SRK4.

1.5 Significance of the Findings

The influence of noise and delay in many fields of applications such as

engineering, physics and biology contributes to an accelerating interest in the

development of stochastic models with time delay. As a result, numerical methods

for solving SDDEs are required, and work in this area is far less advanced. The

recent work of numerical methods for SDDEs were based on the truncating

of stochastic Taylor expansions. Moreover, the stochastic Taylor expansion as

expounded in the literature currently is derived to develop the approximation

method up to 1.0 order of convergence. In order to achieve high order of

convergence, it is necessary to derive stochastic Taylor expansion of high order.

The convergence proof of numerical methods of SDDEs when the drift and

diffusion functions are Taylor expansion has been generalized in this research.

Currently, there is no derivative–free method to approximate the strong solution

of SDDEs and this research is aimed to develop SRK4 of order 1.5. By the end of

this research, it is hoped that the newly developed SRK methods of SDDEs will

benefit the mathematicians and scientists by providing the derivative–free tool for
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solving SDDEs in various fields. It can also be shown in this research, the SRK

methods are easy to implement compare to the approximation methods obtained

from the truncating stochastic Taylor expansion. In this way the computation

of high–order partial derivatives can be avoided. Moreover, the generalization of

convergence proof when the drift and diffusion functions are Taylor expansion is

hoped can facilitate mathematicians to explore this area more widely.

1.6 Thesis Organization

A brief description of the chapters contained in the thesis is now presented.

Chapter 1: This chapter provides an introduction to the whole thesis. It

introduces the concept of stochastic differential equations and stochastic delay

differential equations. It also presents some numerical methods used to simulate

the mathematical models of SDEs and SDDEs.

Chapter 2: Contains the review of literature for numerical methods in SDEs,

DDEs and SDDEs.

Chapter 3: This chapter contains various theories and results from probability

theory as well as stochastic calculus that are required in later chapters.

Chapter 4: In this chapter, the stochastic Taylor expansion for autonomous

SDDEs with a constant time lag is derived. The derivation of three numerical

schemes up to order 1.5 are presented and the convergence proof stated our

fundamental result. Numerical examples are performed to assure the validity

of the numerical methods.

Chapter 5: This chapter consists of our main result. A new class of SRK for

solving SDDEs is formulated. The local truncation error and stability analysis

for SRK are presented. Numerical algorithm is developed to perform a numerical
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example so that the efficiency of the newly develop numerical schemes of SRK4

can be assured.

Chapter 6: It is well–known that many of the natural systems in biology have the

property of an after–effects and subject to the stochasticity. Thus, this chapter

discusses the possibility of modeling a real phenomenon in batch fermentation via

SDDEs. With no doubt that the exact solutions of these models are hard to be

found, hence the newly developed SRK4 is used to simulate the approximation

solutions of SDDEs.
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