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ABSTRACT  

 

 

 

 

Azotobacter vinelandii is a free-living N-fixing bacterium capable of 

converting atmospheric nitrogen into ammonia, a nitrogen source easily assimilated 

by plants. Although numerous researches have been done on the genetics and 

metabolism of A. vinelandii, little information on cell mass production for 

biofertilizer applications is available. Therefore, the objective of this research is to 

develop an industrial culture medium and a cultivation strategy for the mass 

production of A. vinelandii in a semi-industrial scale. Based on previous works, 

several media formulations were tested for their cell growth potential. The best 

medium yielded a cell mass of only 3.94 g L-1 in shake flask cultures and was 

optimized using both a classical and statistical approach, achieving a maximum cell 

mass of 7.71 g L-1 and 8.82 g L-1, respectively. The cell yield on glucose of the 

classically optimized medium was approximately 35.5% higher than the statistically 

optimized medium and was thus used in subsequent bioreactor experiments. Batch 

cultivations in 16-L stirred tank bioreactors with and without pH control yielded cell 

mass concentrations of 7.52 g L-1 and 15.86 g L-1 respectively. A series of fed-batch 

cultivations was carried out to determine the factors limiting cell growth. A 

combination of a constant feeding strategy coupled with pH and dissolved oxygen 

control with additional pure oxygen sparging was found to yield the highest cell mass 

concentration of 40.65 g L-1 in 16-L bioreactor cultivations. The cultivation in a 150-

L stirred tank bioreactor revealed that oxygen is one of the most critical factors 

affecting cell mass production of the highly aerobic A. vinelandii. The decreased 

oxygen transfer rate limited cell growth but increased alginate production. The 

maximum cell mass obtained in a fed-batch culture of Azotobacter vinelandii in a 

150-L stirred tank bioreactor was 28.35 g L-1 while the maximum alginate 

concentration was 18.60 g L-1. 
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ABSTRAK  

 

 

 

 

Azotobacter vinelandii merupakan sejenis bakteria pengikat-N yang boleh 

menukarkan nitrogen di atmosfera kepada ammonia yang boleh diserap oleh tumbuh-

tumbuhan.Walaupun banyak kajian telah dijalankan ke atas genetik dan metabolisme 

bakteria ini, namun maklumat tentang strategi pengkulturan ketumpatan sel tinggi 

untuk pengaplikasian bio-baja masih kekurangan. Oleh itu, objektif utama kajian ini 

adalah untuk menghasilkan mediakultur dan strategi yang sesuai untuk pengkulturan 

ketumpatan sel tinggi A. vinelandii. Berdasarkan kajian yang lepas, beberapa 

mediakultur telah dipilih untuk diuji kesesuaiannya untuk pengkulturan A. vinelandii. 

Media terbaik memberi ketumpatan sel sebanyak 3.94 g L-1 dalam pengkulturan di 

dalam kelalang kon. Pengoptimuman komposisi media dijalankan atas media ini 

menggunakan kaedah klasik dan statistik.Ketumpatan sel yang diperoleh dari media 

optimum klasik dan statistik setiap satunya adalah 7.71 g L-1 dan 8.82 g L-1. Media 

optimum klasik yang menunjukkan hasil sel yang lebih tinggi (35.5%) dipilih untuk 

pengkulturan seterusnya dalam bioreaktor 16-L. Pengkulturan berkelompok di dalam 

bioreaktor 16-L dengan dan tanpa kawalan pH masing-masing menghasilkan 7.52 g 

L-1 dan 15.86 g L-1 sel. Satu siri pengkulturan suap kelompok dijalankan untuk 

menentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi 

pengkulturan suap kelompok dengan aliran nutrien malar, kawalan pH dan oksigen 

dengan aliran gas oksigen tulen menghasilkan ketumpatan sel tertinggi, 40.65 g L-1 

dalam bioreaktor 16-L. Pengkulturan A. vinelandii dalam bioreaktor 150-L 

menghasilkan ketumpatan sel sebanyak 28.35 g L-1 dan alginate adalah 18.60 g L-1. 

Ini menunjukkan bahawa oksigen merupakan salah satu faktor utama yang 

mempengaruhi pertumbuhan sel di mana penurunan kadar pemindahan oksigen 

meningkatkan penghasilan alginat berbanding dengan penghasilan sel.
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1. Background 

 

 

Food security is one of the most important global issues affecting the world today.  

In 2007, the Food and Agriculture Organization of the United Nations, (FAO) 

estimated that the number of chronically hungry people in the world rise by 75 

million to reach a total of 923 million. Current food insecurity will be further 

aggravated by the increasing world population. The FAO estimates that the global 

population will reach approximately 8 billion in 2025 and around 9 billion in 2050 

before stabilizing at slightly more than 10 billion after 2100. Even before the world 

population stabilizes, world food production must increase by more than 75 percent 

to feed the entire world population by 2025 (FAO). Since little new land is suitable 

for crop production, the output per unit area must increase to meet increasing food 

demand (Mosier et al., 2004; Bumb and Baanante, 1996). 
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Efforts to increase the productivity of crops have seen a tremendous increase in 

fertilizer usage over the years. FAO estimates the world fertilizer consumption to 

grow annually at about 1.7 percent from 2007/2008 to 2011/12. This growth is 

equivalent to an increment of about 15 million tonnes and is expected to reach a total 

demand of 180 million tonnes by 2030. Although chemical fertilizers are able to 

supply crops with the necessary nutrients for greater yield and productivity, their 

excessive use may lead to numerous health hazards and detrimental effects to the 

environment. For instance, the excessive use of nitrogen, N fertilizers may lead 

various implications such as nitrate leaching which could result in the pollution of 

water systems (Fisher and Newton, 2002), emission of greenhouse gases such as 

nitrogen oxides (NO, N2O) and volatilization of ammonia (Roy et al., 2006; Mosier 

et al., 2004; Hernandez, 2002). 

 

 

Since nitrogen is one of the most vital minerals required by plants, a viable 

alternative is to supply this element through biological nitrogen fixation, BNF. BNF 

is a natural process whereby diazotrophs such as Acetobacter, Azoarcus, 

Azotobacter, Azospirillum, Cyanobacteria, Glucoacetobacter, Pseudomonas and 

Rhizobium reduce stable molecular nitrogen from the atmosphere to ammonia which 

can then be readily available to plants (Newton, 2007; Roy et al, 2006). 

 

 

�� + 6�� + 6�� → 2��� 

 

 

Azotobacters are also known to produce a wide range of growth promoting nutrients 

to plants apart from fixing nitrogen. This not only supplies the necessary nutrients to 

plants but also helps rejuvenate the soil (Roy et al., 2006). Hence, microbial 

inoculants or biofertilizers containing diazotrophs like Azotobacter vinelandii are 

seen as viable replacements for detrimental mineral nitrogen fertilizers. 
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1.2. Problem Statement 

 

 

Although there is much data on Azotobacter vinelandii, most researches are either 

focused on the genetics and metabolism of the bacteria or alginate production. There 

is however still little information regarding high cell density cultivation strategies for 

Azotobacter vinelandii. On the contrary, most cultivation media are designed to favor 

the production of alginate over biomass.  Therefore, there is a need to develop an 

industrial medium and high cell density cultivation strategy to maximize cell mass 

production while minimizing alginate formation. Conditions for optimal alginate 

production are known to limit cell growth. 

 

 

 

 

1.3. Objective 

 

 

The main objective of the present work is to develop an industrial medium and 

cultivation strategy to maximize the biomass production by Azotobacter vinelandii 

NRRL B-14641 with minimal alginate production. 

 

 

 

 

1.4. Scope 

 

 

a) Media optimization for high cell mass production of Azotobacter vinelandii 

using classical approach. 

b) Media optimization for high cell mass production of Azotobacter vinelandii 

using statistical approach. 

c) Comparison between classical media optimization approach and statistical 

media optimization approach. 
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d) Batch cultivation of Azotobacter vinelandii in a 16-L pilot scale stirred tank 

bioreactor for high cell mass production. 

e) Fed-batch cultivation of Azotobacter vinelandii in a 16-L pilot scale stirred 

tank bioreactor for high cell mass production. 

f) Scaling-up of cultivation process for Azotobacter vinelandii to a 150-L pilot 

scale stirred tank bioreactor for high cell mass production. 
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