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ABSTRACT 

 

 

 Conversion of heavy feedstock into lighter products in a hydrocracking 

process has a strong influence on the profitability of petroleum refining. To facilitate 

initiatives toward improving the process efficiency, a good process model is 

required. This thesis discusses the development and application of lump modeling 

strategies in a pilot plant and industrial scale hydrocracking processes. For the pilot 

plant, two different four-lump models are considered, i.e., combined bed and dual 

bed models. Unlike the simpler combined bed model, the dual bed model includes 

hydrogen consumption and hydrotreating reactions, and the reactor is subdivided into 

two different layers so that the effect of hydrotreating reactions can be integrated. To 

extend the application to a commercial refinery, a full-lump model is configured to 

predict the product yields of a commercial hydrocracking unit known as Isomax. 

Using bed temperatures, flow rate of fresh vacuum gas oil (VGO), recycle rate and 

catalyst life as process variables, the model is proven capable of predicting the yield 

of all products. The model also provides improvement to previous works by 

considering liquefied petroleum gas (LPG), light gases, fresh VGO and recycle feed 

as separate lumps. This model is then used in optimizing the reactor operation where 

the bed temperature, flow rate of fresh VGO and combined feed ratio are adjusted to 

increase the plant profitability whilst maintaining all process limitations and 

operating constraints. To extend the model for dynamic applications, a modified 

space-time conservation element and solution element method (CE-SE) is 

introduced. The results obtained from simulation of the pilot plant based on four-

lump model using CE-SE method are comparable to those obtained using finite 

difference method, thus providing opportunities for further works involving dynamic 

behavior of the process. Although the study is focussed on hydrocracking, this thesis 

has proved the practicality of using lumped modeling technique to address model 

development requirement for complex industrial processes.   
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ABSTRAK 

  
 
 Penukaran bahan mentah berat kepada produk yang lebih ringan dalam proses 

pemecahan-hidro mempunyai pengaruh yang kuat ke atas keuntungan proses 

penapisan petroleum. Untuk memudahkan inisiatif ke arah meningkatkan kecekapan 

proses, satu model yang baik diperlukan. Tesis ini membincangkan pembangunan 

dan aplikasi strategi permodelan tergumpal dalam proses pemecahan-hidro berskala 

loji pandu dan industri. Untuk proses berskala loji pandu,  dua model empat-gumpal 

dipertimbangkan, iaitu model lapisan-tergabung dan model dwi-lapisan. Berbeza 

dengan model lapisan-tergabung yang lebih mudah,  model dwi-lapisan mengambil-

kira penggunaan hidrogen dan tindakbalas hidrorawat, dan reaktor dibahagikan 

kepada dua bahagian yang berbeza supaya kesan daripada tindakbalas hidrorawat 

boleh disepadukan. Bagi membolehkan penggunaan untuk penapisan komersil, 

model gumpal-penuh telah dibentuk untuk meramalkan hasil produk unit 

pemecahan-hidro yang dipanggil Isomax. Dengan menggunakan suhu lapisan, kadar 

aliran minyak gas vakum (VGO) segar, kadar kitar semula dan hayat pemangkin 

sebagai input kepada model, peramalan yang baik untuk semua produk telah 

diperolehi. Model ini juga menyediakan penambahbaikan kepada kerja-kerja 

sebelumnya dengan mempertimbangkan VGO, LPG, gas ringan, suapan segar dan 

kitar semula sebagai gumpalan berasingan. Seterusnya, ia digunakan dalam 

mengoptimumkan operasi reaktor di mana suhu lapisan, kadar alir VGO segar dan 

nisbah suapan tergabung diselaraskan untuk meningkatkan keuntungan loji dengan 

mengambilkira semua batasan proses dan kekangan operasi. Untuk menambah 

penggunaan  model gumpalan kepada aplikasi dinamik, teknik permodelan ruang-

masa elemen keabadian elemen penyelesaian (CE-SE)  diperkenalkan. Keputusan 

yang diperolehi dari simulasi loji pandu berasaskan empat-gumpal adalah setanding 

dengan apa yang diperolehi dengan menggunakan kaedah beza terhingga, sekaligus 

membuka peluang kepada kajian lanjut yang melibatkan tingkah laku dinamik. 

Walaupun kajian ini memfokus kepada proses pemecahan-hidro, tesis ini telah 

membuktikan kesesuaian penggunaan teknik permodelan tergumpal bagi memenuhi 

keperluan permodelan bagi proses-proses yang kompleks di industri. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 
 

The needs for processing heavy feedstock into high value products are 

exacerbated by the increasing demand of light oil fractions and decreasing reserves 

of light crude oils. This steady growth in fuel demands can only be fulfilled by the 

inclusion of heavier feedstock into refinery operations (Hsu and Robinson, 2006), 

which can be converted to lighter ones using thermal and/or catalytic processing in 

the absence or presence of hydrogen pressure (Gary and Handwerk, 2001). This has 

been responded by the introduction of several process licenses for industrial use. 

Considering economic aspects, hydrocracking is seen as a suitable option as it 

improves the quality and quantity of the refined petroleum products simultaneously 

(Balasubramanian and Pushpavanam, 2008), especially if optimum design and 

operations are realized. The versatility and flexibility of the process makes it 

economically attractive to convert different types of feedstocks into various products 

including gas, LPG, naphtha, kerosene and diesel, leading to its widespread 

applications. 

 
 
To enhance the efficiency of the hydrocracking process, the kinetics of the 

reactions involved must be fully defined so that the process behavior can be 

predicted. This can only be achieved if both the kinetic model and its corresponding 

parameters are correctly estimated. Having accurate models, the reactor operations 
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can be configured so that desirable product yield distribution was obtained in the 

most economical manner.  

 
 
Ideally, the kinetic model should take into account all elementary reactions, 

which include all the different components in the feedstock (Balasubramanian and 

Pushpavanam, 2008). However, the complexity of hydrocracking feed makes it 

extremely difficult to characterize and describe its kinetic at a molecular level 

(Ancheyta et al., 1999). This has given rise to the use of simplified approach by 

combining several similar components into groups called lumps. Using “black-box” 

concept, the input-output relationships among the lumps are configured to form a 

network of reactions that define the process. These models can then be extended for 

variety of tasks to facilitate the hydrocracking process including (Valavarasu et al., 

2005): 

 

1) Design tool 

2) Automation and optimizing control 

3)  Finding the optimum operation 

4)  Catalyst deactivation 

 

In hydrocracking research, two major lumping methods have been used, i.e., 

continuous and discrete lumping approaches. In the first method, the reactive mixture 

is considered to form a continuum mixture with respect to its properties such as 

boiling point, molecular weight, carbon number or chemical species (Basak et al., 

2004; Elizalde et al., 2009; Elizade and Ancheyta, 2011); but, in the discrete lumping 

approach, the reaction network is reduced to the limited number of reactions among 

the lumped components. The lumps, based on compound types present in feedstock 

and products (e.g., lumps of diesel, kerosene, gasoline, etc.), are often defined by 

boiling point ranges. This approach is attractive for kinetic modeling of complex 

mixtures because of its simplicity (Ancheyta et al., 2005).   
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1.2 Problem Statement 

 
 

Optimal operating conditions are required in an industrial process operation 

to ensure profitability. This is nevertheless hampered by the fact that the plant is 

subjected to various uncertainties such as variability in feedstock, changing 

environmental condition and upsets in the process itself. To effectively handle these 

difficulties, the process behavior must be understood and predictable using some 

form of process models. Using these models product yields are estimated and 

sensitivity analyses can be carried out so that the effect of operating parameters like 

reactor temperature, pressure and space velocity on product yields can be sensed. 

The model can also be extended for the use in optimization, control, design of new 

plants and selection of appropriate hydrocracking catalysts.  

 
 
A number of works have been presented in the literatures, but a full lump 

model for an industrial hydrocracking plant that predicts and optimizes the yield of 

all products has not been reported. Furthermore, if the steady state model can be 

extended to a dynamic form, it can be used in dynamic optimization and control. 

Additionally the prediction of the dynamic behavior of the reactor during start up or 

shut down can be facilitated. It is essential that the chemical engineer have a better 

understanding from the dynamic relationship among process and operating variables. 

In this instance, little knowledge is a dangerous matter for the process operation 

(Wozny and Jeromin, 1994). These serve as motivations for this work. 
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1.3 Research Objectives 

 
 
 The main objectives of this research are as follows: 

 

i. Developing a kinetic based steady state model for a pilot scale vacuum gas oil 

(VGO) hydrocracking unit by using the discrete-lumping approach. 

 

ii. Developing a practical steady state model and simulator for a commercial VGO 

hydrocracking unit.  

 

iii. Applying discrete-lumping approach in the constrained optimization of a 

commercial VGO hydrocracking plant. 

 

iv. Developing a new dynamic model for a pilot scale VGO hydrocracking reactor 

by applying the “conservation element-solution element” or “CE-SE” method.   

 
 
 
 

1.4 Scope of Study 

 
 

 The scope of this work consists of the following actions: 

 

I. Gathering the experimental data from a pilot scale VGO hydrocracking plant  

 

II. Developing a steady state lumped kinetic-based model for the pilot scale 

plant and comparing the effect of hydrogen consumption on the accuracy of 

the yield prediction.  

 

III. Gathering the industrial data from a commercial VGO hydrocracking plant.  

 

IV. Developing a commercial full lump kinetic-based model including of catalyst 

deactivation to simulate the yield of all precious products such as diesel and 

gasoline.  
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V. Optimizing the operating parameters of an industrial VGO hydrocracking 

plant to maximize the profit of the process. 

 

VI. Developing a dynamic model for the pilot scale plant using the lumping 

approach. To simulate and verify the dynamic behavior of the pilot plant. 

 
 
Figure 1.1 illustrates the flow of this research for covering all the mentioned 

scopes of study. 
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Figure 1.1 Flowchart of the research design 

 

 

 

 

 

MODELING OF VACUUM GAS OIL HYDROCRACKING PROCESS 
 BY USING LUMPING APPROACH 

Literature Review 
 

i) Studying hydrocracking and hydrotreating process 
ii) Studying  modeling and optimizing approaches in literature 

Data Gathering 
 

i) Pilot scale experiments to develop an improved lumped model 
ii) Gathering actual data from refineries to develop practical lumped models  

Pilot scale model 
 

i) 4-lump combined-bed model 
ii) 4-lump dual-bed model  

Commercial scale model 
 

8-lump practical model (full lump 
model) including catalyst 
deactivation 

Dynamic model 
 

i) Developing 4-lump dynamic 
model  

ii) Solving the dynamic model 
using conventional approach 

iii) Solving the dynamic model 
using CE-SE approach 
 

Process Optimization 
 

i) Adding cost elements to the 8-
lump practical model 
 

ii) Profit maximization of the 
commercial plant by using the 
practical model 
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1.5 Significance of the study  

 
 
The work proved the applicability of lump modeling approach in representing 

industrial hydrocracking effectively. Two model configurations for the pilot scale 

plant have been investigated and their applications in process analysis and 

optimization have been conducted. A simple and practical optimization strategy has 

been put forward which can serve as a useful guide in plant operation. The model has 

also been extended to include dynamic capability using a powerful, but less common, 

CE-SE method. This allows further investigations that require dynamic process 

information such as process control, dynamic optimization, alarm analysis and other 

control-safety related studies.  

 
 

In short, this work has brought forward the following contributions:  

 

i. Introducing discrete lumping models for a pilot scale hydrocracking plant. 

The main advantage of that over those previously reported in the literatures is 

consideration of the hydrogen consumption in kinetic equations and overall 

mass balance. This model can predict the yield of hydrocracking products and 

hydrogen consumption reasonably well.  

 

ii. Introducing an applicable approach to simulate the product yields of 

commercial hydrocracking units during their cyclic operation.  

 

iii. Investigating selective modeling of the catalyst life by using the commercial 

data.  

 

iv. Introducing a simple and applicable approach to access the maximum profit 

in a commercial hydrocracking unit and/or the similar refinery processes.  

 

v. Incorporating a discrete-lumped kinetic approach to simulate the dynamic 

behavior of hydrocracking plants with accurate and robust results. 
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vi. Developing CE-SE solving approach to be used for simulating the dynamic 

behavior of a VGO hydrocracking reactor. Its accuracy is studied against the 

conventional solving method.  

 
 
 
 

1.6 Layout of the Thesis 

 
 

This thesis is divided into 7 chapters. Following this introductory chapter, 

literature review is presented in chapter 2. Then in chapter 3, the research 

methodology and the required data to develop pilot and industrial scale lumping 

models have been presented.  

 
 
In chapter 4, after discussing on the results of the pilot scale experiments, it is 

explained how by using lumping approach, 4-lump models are developed for the 

pilot scale plant. Two different steady state strategies (combined-bed and dual-bed) 

have been developed and compared together in this chapter.  

 
 
Chapter 5 is allocated to develop an applicable discrete lumping model for 

being used to predict the product yields of an industrial plant. At first the gathered 

data from the understudy commercial plant is presented. Then, a full lump industrial 

model is developed, and finally it is used to optimize the profit of the commercial 

hydrocracking plant by manipulating the significant process variables.  

 
 
Then in chapter 6, due to the importance of the dynamic model to control the 

performance of hydrocracking process, the steady state results of chapter 4 are 

applied to develop a dynamic lumped model. It is shown that this model is capable of 

simulating the response of the pilot scale model to the process disturbances. To solve 

the developed dynamic model, modern of art conservation element-solution element 

(CE-SE) method is used and its accuracy is compared against a conventional solving 

approach.  
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