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ABSTRACT 

 

 

 

 

The Eddy dissipation model is one of the popular turbulent combustion 

models owing to its reasonable computational cost and accuracy. The purpose of this 

study is to implement the eddy dissipation model in OpenFOAM which is an open 

source code. It was implemented in many commercial CFD codes but it is the first 

time to be implemented in OpenFOAM. The model was implemented in new solver; 

EdmFoam. This new combustion solver was linked to radiation models library in 

OpenFOAM. EdmFoam solver was tested in modeling two different types of flames; 

jet flame and swirling flame. Each case was performed with and without radiative 

heat transfer modeling. The results were extensively compared against experimental 

measurements for temperature, mixture fraction and flame length. The predicted 

values showed that the model was implemented successfully. The results have a 

reasonable agreement with the experimental results. The results prove that a strong 

relation between the eddy dissipation model and the turbulence model behavior 

exists. The numerical predictions showed the importance of radiation modeling for 

the combustion cases.    .      
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ABSTRAK 

 

 

 

 

Model peresapan Eddy ialah salah satu model pembakaran gelora 

paling popular kerana ketepatannya dengan kos yang munasabah. Tujuan 

kajian ini ialah untuk melaksanakan model peresapan pusar menggunakan 

OpenFOAM yang menggunakan kod sumber terbuka. Kajian serupa ini 

telah banyak dilaksanakan menggunakan kod CFD komersial yang lain. 

Namun, ini adalah usaha pertama menggunakan kod OpenFOAM untuk 

kajian ini. Model ini telah dilaksanakan di penyelesai baru; EdmFoam. 

Penyelesai pembakaran baru ini telah dirangkaikan dengan perpustakaan 

model radiasi di OpenFOAM. Penyelesai EdmFoam telah d iuji pada dua 

jenis model api, api jet dan api berpusar. Setiap kes dilakukan dengan dan 

tanpa pemodelan pemindahan haba sinaran. Keputusan  yang diperolehi 

dibandingkan secara meluas dengan keputusan pengukuran suhu, pecahan 

campuran dan panjang nyalaan. Nilai yang diramalkan menunjukkan 

bahawa model yang berjaya dilaksanakan dengan jayanya. Keputusan 

menunjukkan juga hubungan yang munasabah dengan keputusan uji kaji. 

Keputusan membuktikan bahawa hubungan yang kuat antara model 

pelesapan pusar dan tingkah laku model gelora wujud. Ramalan-ramalan 

berangka menunjukkan kepentingan pemodelan radiasi bagi kes -kes 

pembakaran. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

Although the origin of fire making is a mystery, it played a huge role in the 

progress of our civilization development. The fire was used directly for heating, 

cooking and as defense weapon against the wild animals. It was just a matter of time 

that the idea of controlling the fire appeared. Combustion is the controlled version of 

the fire. Controlling the fire means how to start or stop a fire and how to control 

precisely the temperature. Combustion can be considered as an efficient controlled 

fire.  

 

 

Combustion of the fossil fuels is the main source of energy on earth. The 

magic of transferring chemical energy to thermal energy leaded the industrial 

revelation. At that time engineers and scientists did not know a lot about the 

combustion process. The chemical reaction was known and how to control it. That 

was enough for engineers to develop their machines. They started to use any 

available fuel on earth. That makes engineers fully aware about designing 

combustors for different applications. They developed the internal combustion 

engines, gas turbines and boilers. By the time and the rise of the fuel prices, the idea 
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of how makes the combustion more efficient to save more fuel has been appeared. 

That leads scientists to try to understand more about the physical phenomena of 

combustion. Today not only the high prices of fuel that pushes humanity to search 

for more efficient ways of fuel combustion but also the harmful effect of combustion 

emissions on the planet. Although the tremendous research in green energy, still the 

direct way to save the planet is reducing the emissions by more efficient combustion. 

 

 

Towards more understanding of the combustion in various applications, 

another complex physical phenomenon which is coupled to the combustion in almost 

all the industrial applications had been appeared, it is turbulence. Turbulent 

combustion combines two branches of physics; the chemical reaction and turbulence. 

Those branches are far away from being fully understood. They still have many 

unanswered questions even the basic ones. Turbulence is one of the unsolved 

problems in the classical physics. There is no such theory to describe the whole 

turbulence phenomena.  

 

 

 The general view is that turbulence causes the formation of eddies of many 

different scales. Most of the kinetic energy of the turbulent motion is contained in the 

large scale structures which is extracted from the main flow. The energy transfers 

from the turbulence large scale eddies to smaller scale eddies. This process creates 

smaller and smaller eddies which produces a hierarchy of eddies. Eventually this 

process creates eddies that are small enough that molecular diffusion becomes 

important and viscous dissipation of energy finally takes place. The scale at which 

this happens is the Kolmogorov length scale [1]. It is clear from the above 

description for turbulence energy cascade that the small eddies are universal for any 

turbulent flow, in contrast to the large eddies which are highly depending on mean 

flow and case geometry. Here appears the complexity of turbulence that it is not 

universal in our point of view, so there are no such general theory to describe the 

turbulence. 
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Combustion process requires a molecular mixing between the fuel and 

oxidizer. In turbulent combustion the mixing processes depends on the turbulent 

mixing which takes place at macro scale level. The chemical reaction could be 

assumed to be single step reaction which takes place at certain level or multi- step 

reaction with many time scales. Turbulence has many macro scales and combustion 

has many micro scales expect for very slow chemistry, what the relation between 

them. Turbulence enhances the mixing through the eddy break up process which 

enhances the combustion [2, 3]. The combustion releases heat which increases the 

instability and turbulence. Although these effects are observed experimentally many 

times, it is unclear how these effects could be modeled. Navier-stokes equations 

describe the macro scale properties only, which is the main challenge in turbulent 

combustion modeling. 

   

               

Computational fluid dynamics uses the flow governing equations which are 

continuity equation, momentum equations, energy equation and the equation of state. 

They govern any Newtonian fluid flow field; whether laminar or turbulent and steady 

or unsteady. In turbulent flow cases, there are three options to solve the equations. 

First one is the Direct Numerical Simulations (DNS) which calculate all the 

turbulence scales but it requires a very fine grid and very small time step which is 

computationally highly expensive and limited to simple cases only. The second 

option is using Reynolds Averaged Navier-Stokes models (RAS) such as the 

standard K-epsilon model. RAS models are extensively used in many engineering 

fields due to it reasonable computational cost and satisfactory results. The third 

option is Large eddy simulation (LES) which solves complete Navier-stokes 

equations for the large eddies and models the small eddies. It is more expensive than 

RAS models but less than DNS. In this work, only RAS models are used due to the 

available computational resources and the model implementation.  

 

 

Concerning combustion modeling, more equations are required to describe 

the concentration and reaction rate of each specie in order to close the transport 

equations. More source terms are added to the energy equation to take into account 

the heat release due to combustion.  
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Generally speaking combustion models are classifieds based on two 

parameters; the flame type and chemistry speed [2-5]. There are models especially 

formulated for each flame type; premixed, non-premixed or partially-premixed and 

there are models that can be used for different types of flames with minor or major 

modifications. Regarding the chemistry speed models, these are classified to finite 

rate chemistry models and fast chemistry models. Finite rate chemistry models solve 

the detailed reaction chemical kinetics which is computationally expensive. In 

contrast to the fast rate chemistry model which assumes one or two step reaction 

assuming that the reaction rate is very fast with respect to turbulence time scale. The 

assumption of fast chemistry is valid in practical combustion cases where 

combustion is very fast [6, 7]. The current study focuses on the eddy dissipation 

model which is a fast chemistry model assuming single step reaction for non-

premixed flames [8-10]. It is also suitable for premixed flames modeling with minor 

modifications.  The eddy dissipation model is one of the most popular combustion 

models in the engineering field and it is also a valuable research tool. A detailed 

description about the model and it applications will be discussed in the next chapter. 

    

   

There are many commercial CFD codes around the world. These codes have 

many common features. They are suitable to be used in many scientific fields and 

developed by highly expert teams. Commercial CFD codes are tested by many users 

in different cases. They are user friendly. That is the bright side of the story. On the 

other hand they are very expensive, very hard to develop –almost impossible in many 

cases- and they are black boxes. The users are not allowed to check how the models 

are really implemented in the code. The only source of knowledge is the user guide 

which does not give the whole truth. Therefore there are in house codes in many 

research centers which are devolved based on their needs. These codes are private 

and classified in many cases. Even if these codes are shared, it will be hard to either 

develop or understand the code. Simply they are lacking the user guides and support. 

They are not designed to be reused by different users. The above pros and cons of 

commercial and in house customized codes motivated the idea of open CFD source 

codes such as OpenFOAM. 
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OpenFOAM (Open Field Operation and Manipulation) has attracted much 

attention recently because it is an open source code designed for continuum 

mechanics applications specially CFD applications. It is a C++ toolbox based on 

object oriented programming. That makes OpenFOAM sustainable in terms of reuse 

and development by many users all around the world, in contrast to the single block 

programming codes which are very hard to develop or even understand. OpenFOAM 

is released under the GPL (General Public License). OpenFOAM gives a flexible 

framework which combines all the required tools for solving any CFD problem. This 

framework consists of enormous groups of libraries for different mathematical, 

numerical and physical models. Linking the mathematical/numerical tools with the 

physical models in a main C++ function produces different solvers and utilities. 

OpenFOAM, undoubtedly, opens new horizons for CFD community for efficient 

models to be devolved, allowing the industrial sectors to be updated with all new 

models without any delay for waiting the new models to be implemented in the 

commercial CFD codes. 

 

 

 

 

1.2 Problem Statement 

    

      

Motivated by the importance of the eddy dissipation model as an engineering 

tool and the capabilities of OpenFOAM, it was decided to implement the eddy 

dissipation model in OpenFOAM. Until the present moment, an eddy dissipation 

model implementation in OpenFOAM has not been reported in open literature. This 

work reveals the implementation of the eddy dissipation model in OpenFOAM. The 

newly developed OpenFOAM solver (EdmFoam) is linked to radiation modeling 

library to be capable of modeling radiative heat transfer during the combustion 

process.    
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1.3 Objective 

 

 

The objective of this study is to implement the Eddy dissipation model in 

OpenFOAM to make new combustion solver called EdmFoam. Then the results will 

be verified against experimental data from the literature. Also new EdmFoam solver 

should be capable of modeling radiative heat transfer due to its importance in 

combustion modeling. 

 

 

 

 

1.4 Scope of Research: 

 

 

1 Investigating the current available combustion models in OpenFOAM. 

2 Selecting one of the available combustion solvers in OpenFOAM as a starting 

point for developing the new solver. 

3 Defining the required developments for the selected solver to reach the study 

objectives.  

4 Programing the eddy dissipation model in the new EdmFoam solver. 

5 Linking the new solver with radiation models library in OpenFOAM and apply 

and required modifications. 

6 Comparing the EdmFoam solver results (radiation modeling on/off) against 

available experimental data for jet and swirling non-premixed flames. 
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1.5 Structure of Thesis 

 

 

This thesis contains seven chapters including the present one. The second 

chapter provides theoretical background of the turbulent combustion modeling. The 

third chapter is a general overview of available combustion solvers in OpenFOAM. It 

is also include a full description of rhoReactingFoam model which is the starting 

model of the new solver EdmFoam. The fourth chapter descries in details the new 

solver EdmFoam. The fifth chapter and sixth chapter present numerical simulations 

for jet and swirling non-premixed flames respectively. Finally, the eighth chapter 

summarizes the findings of this research and recommendations for future work. 
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