HARNESSING ENERGY FROM MICRO VIBRATION USING SMART MATERIALS

AMEIRUL AZRAIE BIN MUSTADZA

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JANUARY 2012

To my beloved wife, **Fara Fatihah** who believes in me even though I find it difficult to do so myself, my adorable daughter **Puteh 'Arissa**, who gives me strength to complete this thesis and my parents, **Mustadza** and **Noorfah** who always believe in me and guide me in all my pursuits.

ACKNOWLEDGEMENT

First and foremost, the author would like to thank Allah, the Most Beneficent and the Most Merciful for His blessings throughout the process of completing this project.

The author would like to express his deepest appreciation to his project supervisor, Assoc. Prof. Dr. Intan Zaurah Binti Mat Darus for all the advice, guidance, support and encouragement throughout this project and in the preparation of this thesis.

The author would like to extend his appreciation to his beloved wife Fara Fatihah Binti Ibrahim, father Mustadza Bin Md. Yusop, mother Noorfah Binti Senusi and his family for their support and encouragement which has indeed inspired the author to complete this project.

Lastly, the author would like to thank all his colleagues who have contributed in one way or another, directly or indirectly in the process of carrying out this project.

ABSTRACT

Energy harnessing for the purpose of powering low power electronic devices has received much attention in the last few years. By harnessing ambient energy from the environment it will eliminate the need for batteries and supplying the portable electronic devices such as cell phones, laptops and MP3 players with infinite amount of energy. The ambient energy that can be harnessed to generate electricity comes from a wide range of sources but vibration energy shows a promising amount of power generation. In this study, conversion of mechanical vibration into electricity using piezoelectric vibration-to-electricity converter is undertaken with a focus to quantify the amount of power that can be generated and identify electronic devices that can fully utilize this power. The study is divided into two main parts which are simulation from the forced vibration data and laboratory experiment on vibrating mechanical equipments such as turbine and centrifugal pump. The simulation result shows that as the acceleration magnitude increases, the average direct voltage also increases from 4.5 mV to 8.1 mV and the average power output that could be harnessed also increases from 22.5 μ W to 40.5 μ W. Similarly, the experimental result shows that for the turbine, as the speed of the turbine increases from 1150 rpm to 1450 rpm, the average power produced increases from 1.63 µW to 2.02 µW. Also, for the centrifugal pump, as the speed increases from 1700 rpm to 1900 rpm, the average power produced increases from 3.02 μ W to 3.06 μ W. The experimental results also revealed that within 30 minutes, 1.84 µW of energy could be harnessed from the vibration of the turbine at speed of 1450 rpm while $3.06 \,\mu W$ of energy could be harnessed from the vibration of the centrifugal pump at speed of 1900 rpm. This power output is sufficient for low-powered wireless sensor networks in silent mode which can be used in variety of applications as indicated in the previous literatures.

ABSTRAK

Penggemblengan tenaga bagi tujuan membekalkan kuasa kepada peranti elektronik kuasa rendah telah mendapat perhatian sejak beberapa tahun kebelakangan Dengan memanfaatkan tenaga ambien dari persekitaran, ia akan dapat ini. mengurangkan kebergantungan kepada bateri dan membekalkan alat-alat elektronik mudah alih seperti telefon bimbit, komputer riba dan pemain MP3 dengan jumlah tenaga yang tidak terbatas. Tenaga ambien yang boleh dimanfaatkan untuk menjana tenaga elektrik datang dari pelbagai sumber tetapi tenaga getaran menunjukkan potensi jumlah penjanaan kuasa. Dalam kajian ini, penukaran getaran mekanikal kepada tenaga elektrik yang menggunakan piezoelektrik penukar getaran-kepadaelektrik dilaksanakan dengan fokus untuk mengira jumlah kuasa yang boleh dijana dan mengenal pasti peranti elektronik yang boleh menggunakan kuasa ini sepenuhnya. Kajian ini terbahagi kepada dua bahagian utama iaitu simulasi dari data getaran paksa dan eksperimen makmal ke atas peralatan mekanikal yang bergetar seperti turbin dan pam empar. Keputusan simulasi menunjukkan bahawa dengan kenaikan magnitud pecutan, voltan langsung purata juga meningkat daripada 4.5 mV kepada 8.1 mV dan kuasa purata yang boleh dimanfaatkan juga meningkat daripada 22.5 µW kepada 40.5 µW. Begitu juga, hasil eksperimen menunjukkan bahawa untuk turbin, apabila kelajuan turbin meningkat dari 1150 rpm ke 1450 rpm, kuasa purata yang dihasilkan meningkat dari 1.63 μ W ke 2.02 μ W. Di samping itu, untuk pam empar, apabila kelajuan meningkat dari 1700 rpm ke 1900 rpm, kuasa purata yang dihasilkan meningkat dari 3.02 µW ke 3.06 µW. Keputusan eksperimen juga mendedahkan bahawa dalam tempoh 30 minit, 1.84 µW tenaga boleh dimanfaatkan dari getaran turbin pada kelajuan 1450 rpm manakala 3.06 µW tenaga boleh dimanfaatkan dari getaran pam empar pada kelajuan 1900 rpm. Kuasa ini adalah mencukupi untuk rangkaian sensor tanpa wayar berkuasa rendah dalam mod senyap yang boleh digunakan dalam pelbagai aplikasi seperti yang dinyatakan dalam penulisan kajian terdahulu.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	xiv
	LIST OF ABBREVIATIONS	xvi
	LIST OF APPENDICES	xvii
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Problem Statement	3
	1.3 Objectives	4
	1.4 Scopes	4
	1.5 Research Methodology	4
	1.6 Project Activities	7
2	LITERATURE REVIEW	9
	2.1 Energy Sources	9
	2.1.1 Human Body	10
	2.1.2 Solar	11
	2.1.3 Temperature Gradient	11

	2.1.4	Air Flow	11
	2.1.5	Acoustic Noise	13
	2.1.6	Vibration	13
	2.1.7	Summary of Viable Power Source	14
2.2	Source	es of Vibration	14
2.3	Metho	ods of Converting Vibration into Electricity	15
	2.3.1	Electromagnetic (Inductive) Conversion	15
	2.3.2	Electrostatic (Capacitive) Conversion	19
	2.3.3	Piezoelectric Conversion	21
	2.3.4	Comparison of Energy Density	24
	2.3.5	Summary of Conversion Mechanisms	25
2.4	Piezoe	electricity	26
2.5	Vibrat	tion Energy Harnessing using Piezoelectric	
	Mater	ials	27
2.6	Energ	y Storage Devices	30
2.7	Summ	nary	31
MET	THODO	LOGY	33
3.1	Simul	ation Setup	33
	3.1.1	Piezoelectric Sensing Element	33
	3.1.2	Harnessing Circuit	34
3.2	Data A	Acquisition System (DAQ)	37
	3.2.1	Flow of Information in DAQ	38
3.3	Test E	Equipment	40
	3.3.1	Vibrating Mechanical Equipments	40
	3.3.2	Piezoelectric Sensor P-876.A12 DuraAct	41
	3.3.3	NI Compact-data Acquisition Unit	42
		3.3.6.1 NI-9234 Module	42
	3.3.4	Processor and LabVIEW	43
	3.3.5	Harnessing Circuit	44
3.4	Energ	y Storage Selection	45
3.5	Exper	imental Setup	46
	3.5.1	Experimental Procedure	46

3

4	RESU	SULTS AND DISCUSSION		48
	4.1	Simul	ation Result	48
	4.2	Exper	imental Result	53
		4.2.1	Turbine	53
			4.2.1.1 Accumulated Energy	55
		4.2.2	Centrifugal Pump	55
			4.2.2.1 Accumulated Energy	57
	4.3	Overa	ll Analysis	57
_	~~	~		-
5	CON	CLUSI	ON AND RECOMMENDATIONS	59
	5.1	Concl	usion	59
	5.2	Recor	nmendations	60
REFERENCE	ES			61
Appendices A	- B			65 - 66

ix

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Comparison of potential energy sources with a fixed	
	level of power generation and a fixed amount of energy	
	storage	2
2.1	Acceleration (m/s^2) magnitude and frequency of	
	fundamental vibration mode for various sources	
	(Roundy et al., 2003)	14
2.2	Summary of maximum energy densities for three types	
	of conversion mechanisms (Roundy and Wright, 2004)	24
2.3	Comparison summary of three conversion mechanisms	25
2.4	Comparison of piezoelectric materials (Gonzalez et al.,	
	2002)	27
4.1	Summary of simulation results	53
4.2	Summary of actual experiment results	58

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Methodology of the study	6
1.2	Gantt chart for Master Project 1	7
1.3	Gantt chart for Master Project 2	8
2.1	Two approaches to unobtrusive 31-mode piezoelectric	
	energy harnessing in shoes: a PVDF stave under the	
	ball of the foot and a PZT dimorph under the heel	
	(Shenck and Paradiso, 2001)	10
2.2	Schematic and pictures of the fabricated electric	
	energy generator. (a) Schematic showing the	
	arrangement of the bimorph transducers. (b)	
	Photograph of the fabricated prototype. (c) Loading of	
	the bimorphs using rectangular hooks (Chen et al.,	
	2006)	12
2.3	Schematic of overall AEH (Horowitz et al., 2006)	13
2.4	Schematic diagram of linear inertial generator	
	(Williams and Yates, 1996)	17
2.5	Schematic cross-section of micromachined generator	
	(Williams <i>et al.</i> , 2001)	18
2.6	Electromagnetic conversion device (Amirtharajah and	
	Chandrakasan, 1998)	18
2.7	In-plane overlap (Roundy et al., 2003)	20
2.8	In-plane gap closing (Roundy et al., 2003)	20
2.9	Out-of-plane gap closing (Roundy et al., 2003)	20
2.10	Illustration of 33 mode and 31 mode operation for	
	piezoelectric material (Roundy et al., 2003)	22
2.11	Equivalent circuit for a piezoelectric generator	

	(Roundy et al., 2003)	23
2.12	Concept of vibration energy harnessing using	
	piezoelectric materials	27
2.13	Experimental setup showing a Quick Pack QP40N	
	attached to the shaker and dimensions of beam when	
	one end is clamped (Sodano et al., 2004)	28
2.14	Size and layout of the PZT plate (Sodano et al., 2005)	29
2.15	Size and layout of the MFC plate (Sodano et al., 2005)	29
2.16	Size and layout of the Quick Pack actuator (Sodano et	
	al., 2005)	29
3.1	Block diagram for piezoelectric accelerometer	34
3.2	Sensing element of piezoelectric accelerometer	
	developed using Matlab SIMULINK	34
3.3	Non-adaptive harnessing circuit (Mingjie and Wei-	
	Hsin, 2005)	35
3.4	Non-adaptive harnessing circuit developed using	
	Matlab SIMULINK	36
3.5	Block diagram of data acquisition system	37
3.6	Experimental setup layout	39
3.7	Turbine	40
3.8	Centrifugal pump	41
3.9	Piezoelectric sensor P-876.A12 DuraAct	41
3.10	NI compact-data acquisition unit	42
3.11	NI-9234 module	43
3.12	Processor with LabVIEW software	44
3.13	Harnessing circuit	45
3.14	Capacitor	45
3.15	Experimental setup	46
4.1	Acceleration versus time at different amplitude of	
	(a) 0.05 V_{pp} , (b) 0.10 V_{pp} and (c) 0.15 V_{pp}	50
4.2	Voltage versus time at different amplitude of	
	(a) 0.05 V_{pp} , (b) 0.10 V_{pp} and (c) 0.15 V_{pp}	52

4.3	Voltage versus time for the turbine at speed of	
	1150 rpm	53
4.4	Current versus time for the turbine at speed of	
	1150 rpm	54
4.5	Voltage versus time for the turbine at speed of	
	1450 rpm	54
4.6	Current versus time for the turbine at speed of	
	1450 rpm	54
4.7	The amount of voltage accumulated and stored in the	
	capacitor for the turbine at speed of 1450 rpm	55
4.8	Voltage versus time for the centrifugal pump at speed	
	of 1700 rpm	56
4.9	Current versus time for the centrifugal pump at speed	
	of 1700 rpm	56
4.10	Voltage versus time for the centrifugal pump at speed	
	of 1900 rpm	56
4.11	Current versus time for the centrifugal pump at speed	
	of 1900 rpm	56
4.12	The amount of voltage accumulated and stored in the	
	capacitor for the centrifugal pump speed at 1900 rpm	57

LIST OF SYMBOLS

°C	-	Celsius
Φ_B	-	Magnetic flux
Ω	-	Ohm
δ	-	Mechanical strain
Е	-	Induced emf; Dielectric constant
ε	-	Dielectric constant of free space, Permittivity of free space
μ_0	-	Permeability of free space
σ	-	Mechanical stress
σ_y	-	Yield stress
А	-	Ampere
а	-	Acceleration
В	-	Magnetic field
С	-	Capacitance
С	-	Elastic constant
D	-	Electrical displacement (charge density)
d	-	Gap or distance between plates; Piezoelectric strain coefficient
dB	-	Decibel
Ε	-	Electric field
f	-	Frequency
Hz	-	Hertz
I, i	-	Current
k	-	Coupling coefficient; Piezoelectric constant
l	-	Length of one coil $(2\pi r)$; Length of plate
m	-	Meter
Ν	-	Number of turns in coil
Q	-	Charge on capacitor
R	-	Resistance

rpm	-	Revolution per minute
s, sec	-	Second
t	-	Thickness
V, Volt	-	Voltage
V_p	-	Voltage peak
V_{pp}	-	Voltage peak-to-peak
W	-	Watt
W	-	Width of plate
Y	-	Modulus of elasticity (Young's Modulus)
у	-	Distance coil moves through magnetic field

LIST OF ABBREVIATIONS

A/D	-	Analog to Digital
AC	-	Alternate Current
AI	-	Analog Input
AO	-	Analog Output
AEH	-	Acoustic Energy Harvester
BaTiO ₃	-	Barium Tinate
D/A	-	Digital to Analog
DAQ	-	Data Acquisition System
DC	-	Direct Current
DIO	-	Digital I/O
fpm	-	feet per minute
HVAC	-	Heating, Ventilation and Air Conditioning
I/O	-	Input to Output
IEPE	-	Integrated Electronic Piezoelectric
MFC	-	Macro-Fiber Composite
NI	-	National Instrumentation
PI	-	Physik Instrumente
PVDF	-	Polyvinylidene Fluoride
PZT	-	Lead Zirconate Tinate
PZT-5A	-	Hard Lead Zirconate Tinate
QP	-	Quick Pack
RFID	-	Radio Frequency Identification

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Properties of piezoelectric patch actuator type	
	DuraAct P-876.A12 (Physik Instrumente (PI)	
	GmbH & Co. KG, 2008)	64
В	Technical data of piezoelectric patch actuator	
	type DuraAct (Physik Instrumente (PI) GmbH	
	& Co. KG, 2008)	65

CHAPTER 1

INTRODUCTION

1.1 Introduction

Over the last 20 years, the continuous development of technology has significantly reduced the size and increased the function of electronic devices and in parallel decreased their power consumption (Gonzalez *et al.*, 2002). Nowadays hand held and portable electronic devices such as cell phones, laptops and MP3 players provide users with comprehensive functions which include communication, computing and audio functions. Batteries are commonly used to power the electronic devices. However, due to its limited capacity, batteries could possibly supply power only for short lifetime of about one to three years and its significant size and weight has caused problem to the present hand held and portable devices. This problem has then led to the rising demand for self-powered electronic devices because the usage of current battery technology to power electronic devices has become impractical.

The advancement of current technology has helped to fulfill the demand for self-powered electronics devices by harnessing ambient energy from the environment, thus eliminating the need for batteries and supplying these electronic devices with infinite amount of energy. The ambient energy that can be harnessed to generate electricity is coming from a wide range of sources such as human body (Shenck and Paradiso, 2001; Starner, 1996) and temperature gradient (Stordeur and Stark, 1997).

Another form of energy sources that has received attention from researchers for energy harnessing is vibration (Chiu and Tseng, 2008; Glynne-Jones *et al.*, 2004; Lefeuvre *et al.*, 2006; Roundy and Wright, 2004; Roundy *et al.*, 2002; Roundy *et al.*, 2003; Williams *et al.*, 2001; Williams and Yates, 1996; Yen and Lang, 2006) which can be observed in buildings, factories, vehicles, industrial machineries and household appliances. Typically, vibration energy can be converted into electric energy by three methods, namely electromagnetic (inductive) (Glynne-Jones *et al.*, 2004; Williams *et al.*, 2001; Williams and Yates, 1996), electrostatic (capacitive) (Chiu and Tseng, 2008; Roundy *et al.*, 2002; Yen and Lang, 2006) and piezoelectric conversion (Lefeuvre *et al.*, 2006; Roundy and Wright, 2004; Roundy *et al.*, 2003). Table 1.1 shows a comparison of potential energy sources with a fixed level of power generation and a fixed amount of energy storage where all power density values are normalized to the size of 1 cm³ based on the size of typical wireless sensor nodes (Rabaey *et al.*, 2002).

	Power Density	Power Density
Sources	$(\mu W/cm^3)$	$(\mu W/cm^3)$
	1 year lifetime	10 year lifetime
Solar (outdoors)	15,000 – direct sun	15,000 – direct sun
	150 – cloudy day	150 – cloudy day
Solar (indoors)	6 – office desk	6 – office desk
Shoe inserts	330	330
Temperature gradient	15 at 10°C gradient	15 at 10°C gradient
Vibration (electromagnetic conversion)	100	100
Vibration (electrostatic conversion)	50	50
Vibration (piezoelectric conversion)	200	200
Batteries (non-rechargeable lithium)	45	3.5
Batteries (rechargeable lithium)	7	0
Hydrocarbon fuel (micro heat engine)	333	33
Fuel cells	280	28

Table 1.1: Comparison of potential energy sources with a fixed level of power generation and a fixed amount of energy storage

The driving force to harness ambient energy from the environment is mostly due to the development of wireless sensor and actuator networks where particular research has been conducted for a project named PicoRadios (Rabaey *et al.*, 2002). This project aims to develop a small and flexible wireless platform for ubiquitous wireless data acquisition that minimizes power dissipation. The important specifications for the power system developed by PicoRadios project researchers are the total size and average power dissipation of an individual node. The size of a node must not be larger than 1 cm³ and the target average power dissipation of a completed node is 100 μ W.

The previous research also showed a promising amount of power density about 50 to 200 μ W/cm³ that can be harnessed from vibration energy as illustrates in Table 1.1. Therefore, the measure of acceptability of an energy harnessing solution will be its ability to provide 100 μ W of power in less than 1cm³. However, this does not mean that solutions which do not meet this criterion are not worthy of further exploration but simply that they will not meet the needs of the PicoRadios project. Thus, the primary criterion to evaluate power sources in this research is power per volume with a target of at least 100 μ W/cm³.

1.2 Problem Statement

Batteries are type of energy storage devices that commonly used to power hand held and portable electronic devices as well as implanted biomedical systems. However, due to its limited capacity, batteries could possibly supply power only for short lifetime of about one to three years and its significant size and weight has caused problem to the present hand held and portable devices as well as implanted biomedical systems. While researchers continuously developed the technology to increase the energy of storage devices, the solutions are still going to have finite lifetime. This problem has led to the rising demand for self-powered devices and systems which can be solved by harnessing energy from a wide range of sources using a few technique that have been proven can supply infinite amount of power. In this study, conversion of mechanical vibration into electricity using piezoelectric material is undertaken with a focus to quantify the amount of power that can be generated and identify electronic devices that can fully utilize this power.

1.3 Objectives

The objective of this project is:

1. To design, simulate and develop an instrumentation system to harness energy from micro vibration using smart materials.

1.4 Scopes

The scopes of this project are:

- 1. To conduct a research on the sources of vibration, methodologies and devices of harnessing energy and its applications.
- 2. To design and simulate the instrumentation system to harness energy from vibration and to propose a methodology to store the energy.
- 3. To develop and fabricate the instrumentation system to harness energy from vibration using piezoelectric, rectifier and energy storage.
- 4. To verify and validate thus developed instrumentation system with an actual source of vibration from vibrating mechanical equipments.

1.5 Research Methodology

The methodologies involved in this study are shown in Figure 1.1. The project starts by collecting reading materials such as books, journals and technical papers specifically on sources of vibration, methods of converting ambient vibration energy into electrical energy, types of piezoelectric material, piezoelectric energy harnessing circuit and types of energy storage.

Research has been done continuously throughout this study to get a better understanding on the concept of harnessing energy from ambient vibration using piezoelectric material. Besides, consultation sessions with the project supervisor and few colleagues who are doing similar research were also held periodically to discuss any arising issues and problems encountered pertaining to this study.

Based on the research conducted, piezoelectric energy harnessing circuit selection process was made in order to get the suitable circuit followed by the selection of a few types of energy storage devices to be used in this study. The study on piezoelectric energy harnessing has been divided into two main parts which are (1) simulation of the vibration environment and (2) laboratory experiment on vibrating mechanical equipments. Both simulation and laboratory experiment will undergo the same process such as piezoelectric vibration to electricity conversion, rectification and energy storage.

The simulation in Matlab SIMULINK has been done using vibration data acquired from experimental study by previous researcher in order to determine the possible amount of power density output that can be produced for the specific acceleration input. With the promising amount of power density output produced during simulation, the laboratory experiment on vibrating mechanical equipments was conducted for the purpose of quantifying the amount of power that can be generated by vibrating mechanical equipments and identifying electronic devices that can fully utilize this power.

Figure 1.1: Methodology of the study

1.6 Project Activities

NO.	ACTIVITIES	WEEKS															
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Selection of project title																
2	Collecting reading materials																
3	Literature review of previous research																
4	Understanding the concept of piezoelectric energy harnessing from vibration																
5	Familiarization with Matlab SIMULINK																
6	Simulation of vibration environment using data acquired by previous researcher																
7	Simulation of energy harnessing																
8	Analysis of the results from the simulation of energy harnessing																
9	Report writing																
10	Preparation for seminar presentation																
11	Seminar 1																

Figure 1.2: Gantt chart for Master Project 1

NO.	ACTIVITIES	WEEKS															
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Literature review																
3	Experimental setup:																
	Integration and development of																
	data acquisition and																
	instrumentation system																
4	Experiment on vibrating																
	mechanical equipments (turbine																
	and centrifugal pump)																
6	Analysis of the experimental																
	results																
7	Report writing																
10	Preparation for seminar																
	presentation and submission of																
	draft thesis																
11	Seminar 2																
12	Submission of the thesis																

Figure 1.3: Gantt chart for Master Project 2

REFERENCES

- Adhikari, S., Friswell, M. I. and Inman, D. J. (2009). Piezoelectric Energy Harvesting from Broadband Random Vibrations. *Smart Materials and Structures*, 18(11), 1-7.
- Amirtharajah, R. and Chandrakasan, A. P. (1998). Self-Powered Signal Processing using Vibration-Based Power Generation. *IEEE Journal of Solid-State Circuits*, 33(5), 687-695.
- Chen, C., Islam, R. A. and Priya, S. (2006). Electric Energy Generator. *IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control*, 53(3), 656-661.
- Chiu, Y. and Tseng, V. F. G. (2008). A Capacitive Vibration-to-Electricity Energy Converter with Integrated Mechanical Switches. *Journal of Micromechanics* and Microengineering, 18(10), 1-8.
- Federspiel, C. C. and Chen, J. (2003). Air-Powered Sensor. Proceedings of the 2003 IEEE Sensors 22-25.
- Glynne-Jones, P., Tudor, M. J., Beeby, S. P. and White, N. M. (2004). An Electromagnetic, Vibration-Powered Generator for Intelligent Sensor Systems. Sensors and Actuators A: Physical, 110(1-3), 344-349.
- Gonzalez, J. L., Rubio, A. and Moll, F. (2002). Human Powered Piezoelectric
 Batteries to Supply Power to Wearable Electronic Devices. *International Journal of the Society of Materials Engineering for Resources*, 10(1), 34-40.
- Hashim, M. H. (2010). Development of Energy Harvesting Device using Piezoelectric Material. Master Thesis, Universiti Teknologi Malaysia, Skudai.
- Horowitz, S. B., Sheplak, M., Cattafesta III, L. N. and Nishida, T. (2006). A MEMS Acoustic Energy Harvester. *Journal of Micromechanics and Microengineering*, 16(9), S174-S181.

Lefeuvre, E., Badel, A., Richard, C., Petit, L. and Guyomar, D. (2006). A Comparison between Several Vibration-Powered Piezoelectric Generators for Standalone Systems. *Sensors and Actuators A: Physical*, 126(2), 405-416.

- Meninger, S., Mur-Miranda, J. O., Amirtharajah, R., Chandrakasan, A. and Lang, J.
 H. (2001). Vibration-to-Electric Energy Conversion. *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, 9(1), 64-76.
- Mingjie, G. and Wei-Hsin, L. (2005). Comparative Analysis of Piezoelectric Power Harvesting Circuits for Rechargeable Batteries. Proceedings of the 2005 *IEEE International Conference on Information Acquisition*. 27 June-3 July 2005. Hong Kong and Macau, China, 243-246.
- Mohd Yatim, H. (2011). *Harnessing Energy from Micro-Vibration*. Degree Thesis, Universiti Teknologi Malaysia, Skudai.
- Ottman, G. K., Hofmann, H. F., Bhatt, A. C. and Lesieutre, G. A. (2002). Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply. *IEEE Transactions on Power Electronics*, 17(5), 669-676.
- Ottman, G. K., Hofmann, H. F. and Lesieutre, G. A. (2003). Optimized Piezoelectric Energy Harvesting Circuit using Step-Down Converter in Discontinuous Conduction Mode. *IEEE Transactions on Power Electronics*, 18(2), 696-703.
- Physik Instrumente (PI) GmbH & Co. KG. *P*-876 DuraAct[™] Piezoelectric Patch Transducers. Karlsruhe/Palmbach (Germany): Datasheets. 2008.
- Rabaey, J. M., Ammer, J., Karalar, T., Li, S., Otis, B., Sheets, M., et al. (2002).
 PicoRadios for Wireless Sensor Networks: The Next Challenge in Ultra-Low
 Power Design. Proceeding of the 2002 IEEE International Solid-State
 Circuits Conference.
- Ramadass, Y. and Chandrakasan, A. (2010). An Efficient Piezoelectric Energy Harvesting Interface Circuit using a Bias-Flip Rectifier and Shared Inductor. *IEEE Journal of Solid-State Circuits*, 45(1), 189-204.
- Roundy, S. and Wright, P. (2004). A Piezoelectric Vibration Based Generator for Wireless Electronics. *Smart Materials and Structures*, 13(5), 1131-1142.
- Roundy, S., Wright, P. and Pister, K. (2002). Micro-Electrostatic Vibration-to-Electricity Converters. Proceedings of the 2002 *IMECE* New Orleans, Louisiana, 1-10.

- Roundy, S., Wright, P. and Rabaey, J. M. (2003). A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes. *Computer Communications*, 26(11), 1131-1144.
- Shenck, N. S. and Paradiso, J. A. (2001). Energy Scavenging with Shoe-Mounted Piezoelectrics. *Micro, IEEE* 21(3), 30-42.
- Sodano, H. A., Inman, D. J. and Park, G. (2005). Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries. *Journal of Intelligent Material Systems and Structures*, 16(10), 799-807.
- Sodano, H. A., Magliula, E. A., Park, G. and Inman, D. J. (2002). Electric Power Generation using Piezoelectric Materials. Proceedings of the 2002 13th International Conference on Adaptive Structures and Technologies Potsdam/Berlin, Germany, 153-161.
- Sodano, H. A., Park, G. and Inman, D. J. (2004). Estimation of Electric Charge Output for Piezoelectric Energy Harvesting. *Strain*, 40(2), 49-58.
- Starner, T. (1996). Human Powered Wearable Computing. *IBM Systems Journal* 35(3.4), 618-629.
- Sterken, T., Fiorini, P., Altena, G., Van Hoof, C. and Puers, R. (2007). Harvesting Energy from Vibrations by a Micromachined Electret Generator. Proceedings of the 2007 Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International. 10-14 June 2007. 129-132.
- Sterken, T., Fiorini, P., Baert, K., Borghs, G. and Puers, R. (2004). Novel Design and Fabrication of a MEMS Electrostatic Vibration Scavenger. Paper presented at the *The Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications - PowerMEMS 2004*, Kyoto, Japan.
- Stordeur, M. and Stark, I. (1997). Low Power Thermoelectric Generator Self-Sufficient Energy Supply for Micro Systems. Proceedings of the 1997 16th International Conference on Thermoelectrics Dresden, Germany 575-577.
- Ward, J. K. and Behrens, S. (2008). Adaptive Learning Algorithms for Vibration Energy Harvesting. Smart Materials and Structures, 17(3), 1-9.
- Williams, C. B., Shearwood, C., Harradine, M. A., Mellor, P. H., Birch, T. S. and Yates, R. B. (2001). Development of an Electromagnetic Micro-Generator. Proceedings of the 2001 *IEE - Circuits, Devices and Systems*, 337-342.

- Williams, C. B. and Yates, R. B. (1996). Analysis of a Micro-Electric Generator for Microsystems. Sensors and Actuators A: Physical, 52(1-3), 8-11.
- Yen, B. C. and Lang, J. H. (2006). A Variable-Capacitance Vibration-to-Electric Energy Harvester. *IEEE Transactions on Circuits and Systems I: Regular Papers*, 53(2), 288-295.