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ABSTRACT 

 Recently, the usage of smart grid has increased and there is a need for more 

efficient and comprehensive distribution system analysis tools to make proper 

operation and control system decisions. These requirements have given a motivation 

for researchers to apply innovative technologies in power system computation and 

modelling. This thesis presents a parallel unbalanced power flow algorithm including 

Distributed Generation (DG) models. DG models that have been considered are 

cogeneration, Photovoltaic (PV), and Wind Turbine Generator (WTG). The Radial 

Distribution Analysis Package (RDAP) program is used to validate the algorithm, 

and the performance for large-scale system is further examinedby comparing with 

OpenDSS software. One of the test system is a combination of a mesh network and 

radial feeder system that has many typical characteristics of unbalanced active 

systems.  IEEE 8500node test system is used to test the performance of the algorithm 

for large unbalanced multi-phase distribution system problem. The variation of wind 

speed for WTG, solar radiation, and temperature for PV have been simulated. 

Simulation results show that the proposed DG model can be used to analyse DG 

impacts in unbalanced meshed and radial distribution system. The results show that 

the computation time of the proposed algorithm is faster than forward/backward 

sweep and hybrid methods. The computation time result for the 8500 test case less 

than 1 second showed that the proposed program is applicable to handle large-scale 

problems. The parallel implementation of the proposed algorithm for the 

combination system has improved the speedup to 2.33 times faster over the 

forward/backward method and have produced a computational speedup in all other 

cases. 
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ABSTRAK 

 Pada masa ini, penggunaan grid pintar telah meningkat dan memerlukan alat 

analisis sistem pengagihan yang lebih cekap dan menyeluruh bagi membuat 

keputusan operasi dan kawalan sistem yang sepatutnya. Keperluan ini telah memberi 

motivasi kepada para penyelidik untuk mengaplikasikan teknologi inovatif dalam 

pengiraan dan pemodelan pengkomputeran sistem kuasa. Tesis ini memperkenalkan 

algoritma ketidakseimbangan pengaliran kuasa selari termasuk model penjanaan 

agihan (DG). Model DG yang diambil kira adalah penjanaan bersama, fotovoltan 

(PV) dan penjana turbin angin (WTG). Program analisis pengagihan jejari (RDAP) 

digunakan bagi mengesahkan algoritma, dan untuk prestasi sistem berukuran besar, 

ianya diuji lebih lanjut dengan menggunakan perisian OpenDSS. Salah satu sistem 

ujian adalah gabungan rangkaian jaringan dan sistem pengagih jejari yang 

mempunyai banyak ciri-ciri tipikal sistem aktif yang tidak seimbang. Sistem ujian 

IEEE 8500 nod digunakan untuk menguji prestasi algoritma bagi masalah berbilang 

fasa tidak seimbang yang berukuran besar. Perubahan kelajuan angin untuk WTG, 

radiasi solar dan suhu untuk PV telah disimulasikan. Keputusan simulasi 

menunjukkan bahawa model DG yang dicadangkan boleh digunakan untuk 

menganalisis kesan DG dalam sistem jaringan yang tidak seimbang dan juga 

pengagihan jejari. Keputusan menunjukkan bahawa algoritma yang dicadangkan 

adalah lebih pantas daripada kaedah ke hadapan/ke belakang dan kaedah hibrid. 

Keputusan masa pengiraan untuk kes ujian 8500 kurang daripada 1 saat 

menunjukkan bahawa program yang dicadangkan boleh digunakan untuk menangani 

masalah berskala besar. Pelaksanaan selari bagi algoritma yang telah dicadangkan 

untuk sistem gabungan telah meningkatkan kecepatan 2.33 kali lebih laju berbanding 

kaedah ke hadapan/ke belakang dan boleh mempercepatkan pengiraan komputer 

bagi semua kes yang lain. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Power-flow analysis is the heart of most system planning activities and 

design for future expansion as well as in determining the best operation of existing 

power systems. Power flow analysis has begun to be explored since the introduction 

of digital computers. Most challenges in power flow algorithms have been met 

successfully. However, as power system engineering and computation technology 

develop, new issues cropped up that need new approach and direction. Therefore, 

algorithm and technological applications need to be enhanced and there will always 

be new developments and new areas for researchers to explore. 

In the coming years there will be greater growth in distributed generation 

(DG) and what has been described as smart grid. A DG is an electric power source 

connected to utility networks at the distribution level typically ranging from 10 kW 

up to tens of MW capacity. The integration of DG in the distribution networks can 

provide a variety of benefits, including improved reliability and reduced 

transmission and distribution losses [1].  

The increasingly significant number of installation of many DGs has 

changed distribution systems from a passive system to an active network [2], known 

as an active distribution system (ADS).  Some of the DGs, such as photovoltaic 
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modules, are single phase components, which increase the unbalance in the ADS. 

Distribution networks may have many multi-phase line sections with balanced and 

unbalanced load connected in star or delta. Therefore, the unbalanced power flow is 

required when solving active distribution networks, including DG models. 

 

The conventional power-flow analysis methods, that are widely used for 

large power transmission systems are based on the system positive-sequence 

representation. These methods do not take into account the following ADS 

characteristics: 

1. The presence of single-phase laterals, single and two-phase loads, centre-tapped 

transformer loads and unbalanced three-phase loads [3], [4]. 

2. The presence of non-dispatchable DG units such as wind and photovoltaic units 

[5], [6]. 

3. Many photovoltaic modules are connected as a single phase component [7], 

which increases the unbalanced conditions in the ADS. 

4. The large-scale problem associated to meshed and radial transmission and 

distribution system analysis. 

In order to analyse unbalanced systems, a full three-phase network 

representation needs to be employed. The unbalanced power flow solution has been 

used for general network topologies with DG units based on forward/backward 

method  [8-9] and sequence component method [10]. The program in [10] has been  

developed in MATLAB environment and tested using two study systems, i.e. small 

and medium size ADS. However, the models and programming techniques can be 

enhanced in order to improve the robustness, accuracy and speedup the analysis for 

large-scale problem. In this research, the basic sequence-decoupled power-flow 

method [11] is extended to solve large-scale unbalanced active distribution network 

problem.  

The three-phase power flow based on the symmetrical components has some 

advantages such as fast execution time and low memory requirements. The 

forward/backward method [8] cannot deal with a highly meshed system such as the 
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IEEE 118 and 300 buses test systems. On the other hand, the hybrid method [10-11] 

which solves the three-phase system using symmetrical component and forward-

backward sweep approach in handling laterals will lose its computational advantage 

when dealing with large number of multi-laterals  system such as in the IEEE 8500 

distribution feeder test system [4]. The weakness of the power-flow methods in [10-

11] can be overcome by using dummy lines and dummy nodes approach in [12].  

Based on this method, unbalanced three-phase power flow will be solved faster than 

the previous methods. 

The fossil fuels such as coal, oil and natural gas are non-renewable, limited 

in supply and one day will be depleted. The price of this energy increase year by 

year related to its decreasing availability. With the increase in the price of traditional 

petrochemical fuels for generating energy, the employment of renewable resource 

generation as alternative energy becomes more practical, feasible and realizable. 

Therefore, distributed generation (DG) using renewable-energy sources will increase 

in the coming years. 

 

Distributed generation using renewable-energy sources, such as  wind, solar 

photovoltaic and hydro power has received considerable attention in recent research 

interest. Wind turbine generation (WTG) and photovoltaic (PV) are the world's 

fastest growing electricity generation technology. Global wind power capacity 

reached 94,100 megawatts by the end of 2007 [13]. Grid-connected photovoltaic 

generation has been increasing by an average of more than 20 percent each year 

since 2002 [14]. At the end of 2009, the cumulative global PV installations exceeded 

21,000 MW [15].  

The specific DG technologies have different electrical characteristics, which 

affect in the power system analysis. The electric power supply by photovoltaic is 

dependent on sunlight radiation and ambient temperature. Meanwhile, the active 

power generated by wind turbine generation depends on wind speed. Therefore, 

weather related DG units have to be modelled in order to get an accurate analysis 

result. The weather related DG will be modelled more comprehensively than that 

has been considered earlier [10]. By using the proposed model and algorithm the 
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impacts of DG can be analyzed accurately and optimum technical design can be 

determined.  

Power flow analysis involves computer hardware and software. Over the last 

few decades, computing technology continues to advance rapidly. The performance 

of microprocessors improved at the rate of 52% per year from 1986 to 2002 [16]. 

Today, its performance is improved by the addition of processors in the same 

machine. The so called multi-core systems are now quite common. Multi-processor 

machines are now becoming a standard while the speed of single processor has 

almost stabilized or is increasing slowly compared to its development in the past. 

Therefore, in the present trend of computing technology, performance improvements 

can now be increasingly achieved with the ability to run a program on multiple 

processors in parallel. In other words, the multi-core approach improves 

performance only when software can perform multiple activities in the same period 

of time.  

The applications have to go parallel to profit from this development. 

Unfortunately, it is still very challenging to write algorithms that really take 

advantage of multiple processors. Most applications presently use a single core 

processor. They see no speed improvements when run on a multi-core machine, 

since it is executed serially which, in fact, means that it is really running as if it is in 

a single core machine mode. Therefore, the algorithm needs to be changed in order 

to take advantage of new developments in computing technology. 

In this research, the sequence full decoupled three-phase power flow was 

used. The existence of two-phase and single-phase line segments which is difficult 

to be modelled in sequence components [10-11] can be solved by using the dummy 

lines and dummy node approach in [12]. The method will convert the two-phase and 

single-phase line segments into virtual three-phase lines and hence eliminate the 

need to use forward/backward method to handle multi-phase laterals. Based on this 

method, the structure will be fully decomposed, which makes it amenable to be 

implemented in parallel computing.  
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Previous implementations of parallel processing in power flow calculation 

were done using interconnected processors [17] and personal computer (PC) cluster 

connected via Ethernet communication link [18]. These parallel systems are costly 

and the computation time also depends on speed of communication media used 

among processors. The high cost of the hardware has made the advantages of faster 

parallel solution not worthwhile and practical. Another alternative to reduce cost and 

communication time is by using multi-core processors in single computer known as 

PC based parallel system. In the very near future all new computers will be parallel 

computers. This also means that the hardware cost is the same, whether a standard 

basic PC is used as a serial processing system or a parallel processing system.  

The multi-core processor speedup performance is dependent on the 

algorithms and software. The problem should be decomposed into tasks in parallel 

programming algorithm. These tasks can be worked on independently of the others 

and run under the multiple processors system. The problem that cannot be 

decomposed into independent tasks will use a parallel loop. Both parallel techniques 

are used in the algorithm development to speedup the three-phase flow calculation. 

This new computation technology can solve power system computation efficiently.  

The object components based programming that combines object oriented 

programming and component based development have been used in this research. 

By using object components, updating or adding new algorithm can be done to any 

specific component without affecting or escalating the modification to other 

components inside the software [19]. The DG models have been developed using the 

state-of-the art of object component based approach, so the models can be integrated 

with existing object component software previously developed in [11]. 

The new development in distribution system analysis tools needs to test the 

robustness of their algorithm using IEEE 8500-node test feeder provided by IEEE 

PES distribution system analysis subcommittee [4]. The characteristics of the test 

system have included almost all practical distribution system features, including CT 

transformer load. The developer has to deal with this load model and support large-

scale mesh and radial system [20]. 
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1.2. Thesis Objective, Scope and Contribution 

1.2.1. Thesis Objectives 

The main focus of this research is to develop a parallel three-phase power 

flow algorithm, including DG models for large-scale balanced/unbalanced mesh and 

radial system. The followings are the specific objectives of the research: 

1) To develop an efficient sequence full decoupled three-phase power flow 

algorithm and apply parallel processing. 

2) To model the distributed generations based on object component. The 

models will be developed including co-generation, wind turbine and 

photovoltaic in steady state analysis. 

3) To solve unbalanced active distribution system with mesh network and radial 

feeders and analyse the impact of DGs. 

1.2.2. Scope of Work 

In order to achieve the above mentioned objectives, the followings are the 

scopes that governed the research activities: 

1) The DGs to be developed are cogeneration, wind turbine and photovoltaic 

generation based on steady state models. 

2) The parallel technique to be used is multi-core processors in single computer 

as known as PC based parallel system. The application was developed using 

visual C++ programming under Visual Studio 2008 with OpenMP and Intel 
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C++ Compiler to support parallel processing.  

3) The proposed method was validated with radial distribution analysis package 

(RDAP) program and the performance for large-scale system was further 

examined by comparison with EPRI OpenDSS software. 

4) The technical impacts analyzed include voltage violation, network losses and 

power flow via simulation studies. 

1.2.3. Thesis Contributions 

This research will contribute in developing efficient parallel three-phase 

power flow algorithm for large active distribution system. 

The main contributions of this thesis are listed as follows: 

1) Novel parallel algorithm for sequence decoupled three-phase power flow 

analysis (Multi-core PC based parallel programming). 

2) Development of DG models as new class library including cogeneration, 

wind turbine and photovoltaic as weather related DG models and CT 

transformer load model. 

3) Applicable for large-scale power system network with faster computation. 
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1.3.  Thesis Outline  

This thesis is organised into seven chapters. The contents are outlined as 

follows: 

 

Chapter 2 of this thesis presents the previous work by researchers on three-

phase power flow development, especially on the algorithm of the solution, 

application of parallel computing, distributed generation modelling, and DG impact 

analysis. The important findings from past works were used as guidelines in this 

research. 

 

Chapter 3 discusses the methodology used to extend the power system model 

with the presence of a variety of DG models. The DG models that have been 

developed include cogeneration, three-phase and single phase PV and 

synchronous/asynchronous generation based WTG. These models made the 

algorithm capable in solving ADS networks. In addition, the impacts of DGs 

penetration on system performance are also discussed in this chapter. 

Chapter 4 discusses the methodology used in this study to develop the 

parallel algorithm for unbalanced three-phase power flow. The multi-core and 

multithread parallel programming were utilized in the algorithm development. 

 

Chapter 5 discusses the application on the large-scale mesh and radial 

unbalanced active distribution system. The test systems development using the data 

available in public domain is presented in this chapter. The test systems are the 

combination of a mesh network and radial feeder that have many typical 

characteristics of unbalanced active systems. Another test system is the IEEE 8500-

node test feeder, which is used to test the performance of the algorithm for large 

unbalanced multi-phase distribution system problem. The CT transformers load was 

solved using voltage drop analysis in the three-phase interactive scheme. 

 

Chapter 6 presents comprehensive results for the parallel unbalanced three-

phase power-flow analysis including distributed generation models.  



9 
 

 

Finally, chapter 7 concludes the overall study and provides recommendation 

for future works related to parallel three-phase power flow algorithm and DG 

models presented in this thesis. 
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