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ABSTRACT 
 

 

 

 

 Wing in Ground Effect is a relatively new concept in transportation 

technology. It is more efficient than conventional aircraft and quicker compared to 

conventional marine vehicles. However WIG is still not widely use as a public 

transportation. One of the criteria to be fulfilled is stability. Longitudinal stability of 

WIG craft is still of concern to the designer and the solutions are being investigated. 

Instability of a small WIG craft occurs when aerodynamic-hydrodynamic phase 

changes into pure aerodynamic phase during the take-off. In this research, 

investigations were conducted to determine the longitudinal static and dynamic 

stability effect of  Trimaran WIG craft during takeoff and to verify the factors 

affecting its stability. Two parameters considered are aerodynamic and 

hydrodynamic characteristics. The investigation resorts to vortex lattice method and 

examines the effects of flat ground and end plate on the performance of aerodynamic 

characteristic of the WIG craft. Planing hull has been chosen for the hull shape of the 

WIG craft due to higher speed takeoff. The hydrodynamics of prismatic planing 

surfaces, presented by Savitsky, is used to calculate the hydrodynamic characteristic. 

Numerical result is compared to the experimental results and against published data. 

The Static Stability Margin (SSM) for longitudinal static stability of Trimaran WIG 

model has been investigated and using the classical aircraft motion modification and 

calculating the aerodynamic, hydrostatic and hydrodynamic forces, the complete 

equation of motion that uses a small perturbation assumption for WIG during take-

off has been derived and solved. Finally, dynamic stability for Trimaran WIG during 

take-off has been investigated and analyzed using Routh-Hurwitz Stability Criterion 

and Control Anticipation Parameter (CAP). 
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ABSTRAK 
 

 

 

 

Kenderaan ‘Wing in Ground’ (WIG) merupakan konsep yang berbanding 

baru dalam teknologi pengangkutan. Ia lebih cekap dari pesawat konvensional dan 

lebih pantas berbanding kendaraan air konvensional. Walau bagaimana, WIG masih 

tidak boleh digunapakai sebagai kenderaan pengangkutan awam. Salah satu kriteria 

yang perlu dipenuhi adalah kestabilan. Kestabilan melintang kenderaan WIG masih 

menjadi perhatian para pereka dan penyelesaianya sedang dikaji. Masalah kestabilan 

kenderaan WIG yang kecil berlaku semasa pertukaran fasa aerodinamik-

hidrodinamik kepada fasa aerodinamik sepenuhnya ketika berlepas. Di dalam 

penyelidikan ini, penyiasatan telah dijalankan untuk menentukan pengaruh kestabilan 

melintang statik dan dinamik model kenderaan trimaran WIG semasa berlepas dan 

mengesahkan faktor yang mempengaruhinya. Dua parameter yang dipertimbangkan 

ialah ciri aerodinamik dan ciri hidrodinamik. Kajian telah memilih kaedah kisi 

‘vortex lattice’ dan memilih kesan tanah rata dengan hujung plat kepada prestasi ciri 

aerodinamik dan ciri hidrodinamik kenderaan WIG. ‘Planing hull’ telah dipilih 

sebagai bentuk badan kenderaan trimaran WIG disebabkan perlunya kelajuan yang 

tinggi untuk ia berlepas. Ciri Hidrodinamik permukaan prismatic untuk ‘planing 

hull’ yang dibentangkan oleh Savitsky telah digunakan untuk mengira ciri-ciri 

hidrodinamik. Keputusan analisis berangka dibandingkan dengan keputusan uji kaji 

dan data yang telah diterbitkan. Margin Kestabilan Statik (SSM) untuk kestabilan 

statik membujur model kenderaan trimaran WIG telah dikaji. Dan dengan 

menggunakan modifikasi pergerakan asas pesawat udara dengan mengira 

aerodinamik, hidrostatik dan daya hidrodinamik, persamaan lengkap pergerakan 

yang menggunakan andaian perturbasi kecil, telah diterbitkan dan diselesaikan untuk 

kenderaan WIG semasa ia berlepas. Akhirnya,kestabilan dinamik Trimaran WIG 

semasa berlepas telah dikaji dan telah dianalisis menggunakan Kriteria Stabiliti 

Routh-Hurwitz dan Faktor Kawalan Antisipasi (CAP). 
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CHAPTER 1  

INTRODUCTION 

1.1 Background and problem statement 

Moving marine vehicles at high speed has been one of the biggest challenges 

faced by naval architects and hydrodynamic researcher over the years especially after 

the invention of aircraft, much thought have been given to find different methods that 

can move ships quickly, Wing In Ground Effect (WIG) Craft is the most successful 

one in terms of gaining high speed. The phenomenon of ground effect was observed 

by many researchers since early in the birth of aviation. The advantages of using a 

high speed craft in ground condition are commonly acknowledged by reduce drag 

and increase lift. Wieselsberger [0], Reid [0] and Carter [0], hypothetically and 

experimentally was analyzed the influence of the ground on aerodynamics wings. 

Analysis of experimental drag of wing with endplate shown effect endplate in 

aerodynamic characteristic has investigated by Hemke [0]. Absolutely, ground 

clearances and endplate ratio have influence in static stability margin (SSM). Kumar 

[0,0], Irodov [0], Zhukov [0], and Staufenbiel [0,0], Chun, and Chang [0], all of them 

tell about the problem of longitudinal stability in ground condition, where position 

aerodynamic centre in pitch (ACP) and position aerodynamic in height (ACH) was 

influenced from the scenery of the longitudinal stability every comparative position. 

Plentiful studies have been conducted analyzing the influence of the ground effect on 

wing performance. However, few largely disregarded. Rozhdestvensky [0] presents a 
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summation of research investigating the influence of wing profile and platform on 

the positioning of the two aerodynamic centers.  

All problems above tell us about longitudinal static stability and longitudinal 

dynamic stability during cruise which means that only aerodynamic affects the 

stability. However, the stability problem that often occurs on the small WIG craft is 

when WIG’s phase change from hydrodynamic-aerodynamic phase into pure 

aerodynamic phase during take-off. Collu et al [0] has been tried to solve advance 

mathematical framework for the longitudinal stability of a high-speed craft with 

planing hull and aerodynamic surfaces. Eventually, a complete kinematics model is 

been developed. Their observation illustrates a mathematical method for 

performance Aerodynamically Alleviated Marine Vehicle (AAMV) in dynamic 

condition. That vehicle was designed to take advantage of combination aerodynamic 

forces and hydrodynamic force in high speed craft to get fuel efficiency and to reach 

further and with a greater payload. 

There are similarities between an AAMV with a WIG, when the WIG in 

phase "aero-hydro" during take-off. Not only the aerodynamic force that worked 

when she takeoff, but both of aerodynamic force and hydrodynamic force that 

worked at that moment. In this research, observations were performed to determine 

aerodynamic characteristic of NACA 6409 dihedral rectangular wing (50-50) of 

aspect ratio 1-1.5 with taper 0.8. The observation were conducted using vortex lattice 

method and investigating the influence of “flat ground” and endplate on enforcement 

of a trimaran WIG for relative ground clearances of 0.01 < h/c < 0.2, with ratio 

endplate 0.015< he/c <0.1 on angles of attack between 0 and 8°.  Planing hull has 

been chosen for the Wig as high speed is necessary to takeoff .In 1964; a 

comprehensive paper that summarized previous experimental studies on the 

hydrodynamics of prismatic planing surfaces was presented by Savitsky. He 

presented a method for application of these results for the design of moving ships. 

Besides, many laboratories and research centers have conducted hydrodynamic 
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studies on several fundamental planing hull phenomena. All numerical result will be 

validated with experimental results or other published work.  

After that, the old concept Static Stability Margin (SSM) was modified by 

adding hydrodynamic factor. Thus, SSM during takeoff will be presented with the 

new configuration with three criteria, first, “ the position Aerodynamic centre in 

Pitch (ACP) should be located downstream of the position Aerodynamic Centre in 

Height (ACH) ”, second, “the position of center of gravity (COG) of the craft should 

be located upstream of the aerodynamic center of pitch (ACP)” and third, “the 

position Aerodynamic Centre in Height (ACH) should be located upstream of 

Hydrodynamic center in Pitch (HCP)”. The classical aircraft motion has been 

modified by calculating the aerodynamic force, hydrostatic and hydrodynamic 

forces, using a small perturbation assumption the full equations of motion WIG 

during takeoff are derived and solved. 

1.2 Purpose and objective of the study 

The major aim of this investigate is to overpass this problem by investigating 

a new configuration equation of motion WIG by calculating the equal importance of 

aerodynamic and hydrodynamic forces in small-disturbance composition. The 

arithmetical model of this framework was developed to investigate the longitudinal 

static stability and longitudinal dynamic stability of a trimaran WIG during take-off. 
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1.3 Scope of this study 

i. To estimate aerodynamic characteristic trimaran WIG using vortex lattice 
method with criteria; NACA 6409 dihedral rectangular wing, aspect ratio 
1.25, taper 0.8.  

ii. To investigate influence of “flat ground” and “endplate” on the 
performance of a trimaran WIG for several ground clearances, with ratio 
endplate 0.06 on angles of attack between 0 and 8°. 

iii. To calculate hydrodynamic characteristic of prismatic planing surfaces 
using Savitsky method. 

iv. To validated the numerical results by experiment or publish work or 
commercial software. 

v. To arrange Static Stability Margin (SSM) criteria on WIG trimaran for 
investigate longitudinal static stability WIG trimaran during takeoff. 

vi. To arrange configuration equation of motion by calculating the equal 
importance of aerodynamic and hydrodynamic forces in small-
disturbance composition for investigate longitudinal dynamic stability 
WIG trimaran during takeoff. 

1.4 Significance of the study 

The significance of this study is to investigate longitudinal static stability and 

dynamic stability of a trimaran WIG model during take-off. Where we should be to 

calculate aerodynamics characteristic and hydrodynamics characteristic using 

numerical equation and compare these calculation with experimental data or 

commercial software. 
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1.5 Thesis outline 

This thesis is managed into seven chapters. There are: 

The first chapter provides about the background and problem statement of the 

study, purpose and objective of the study, scope of the study, significant of the study. 

Finally, thesis managing is presented. 

The second chapter tells about literature review; history of vehicles on ground 

condition, aerodynamic characteristic of vehicles on ground condition, 

hydrodynamic of ground effect vehicles, longitudinal static stability of ground effect 

vehicles, and dynamic stability of ground effect vehicles. 

Chapter three provides the research methodology of longitudinal stability and 

dynamic motion WIG trimaran during takeoff, where the stages of research are initial 

design model, computational calculation, experimental work, comparison and 

analysis of computational results with experiments or other published researchers, 

longitudinal static and dynamic stability. 

Chapter four propose mathematical modeling of aerodynamic characteristic 

wing in ground effect using vortex lattice methods, effect ground effect on lift 

coefficient, effect endplate on lift coefficient, hydrodynamic wing in ground effect 

using Savitsky methods, analysis static stability ground effect with new configuration 

static stability margin, and last on this chapter try propose new configuration 

equation motion of a trimaran wing in ground effect during take-off for analysis 

Routh-Hurwitz criteria and Criteria for public transportation(CPT). 
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Chapter five provides procedure experiment in wind tunnel test at Low Speed 

Tunnel (LST) UTM and free running test. 

Chapter six provides comparison results of computational calculation and 

experimental, also analytical results 

Chapter seven presents the conclusion and suggestion which can be used for 

further research. 
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