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ABSTRACT 

 

 

 

 

Proton-electrolyte membrane (PEM) fuel cell systems offer a potential power 

source for utility and mobile applications. One of the most promising alternatives for 

large power requirements is to obtain the hydrogen from a liquid hydrocarbon fuel. A 

diesel fuel is an attractive option as feeds to fuel processor. Unfortunately, diesel fuel 

reforming is complicated and requires much higher temperatures. With the help of 

Aspen HYSYS 2004.1 the steady state model has been develop to optimize the 

performance, analyze the fuel processor and total system performance In this case study, 

the PEM fuel cell system consists of the fuel processing and clean-up section, PEM fuel 

cell section and auxiliary units. While the fuel processing and clean-up section consists 

of Autothermal Reformer, High-temperature Shift, Medium-temperature Shift, Low-

temperature Shift, and Preferential Oxidation. The purpose of this study is to identify the 

influence of various operating parameters such as A/F and S/F ratio on the system 

performance that is also related to its dynamic behaviours. From the steady state model 

optimization using Aspen HYSYS 2004.1, an optimized reaction composition, in terms 

of hydrogen production and carbon monoxide concentration, corresponds to A/F ratio of 

45 and S/F ratio of 25. Under this condition, n-hexadecane conversion of 100%, H2 yield 

of 19.8% on wet basis and carbon monoxide concentration of 25.428ppm can be 

achieved. The fuel processor efficiency is about 52.85% under these optimized 

conditions.  

 

 

 



 iv

 

 

 

 

 

ABSTRAK 

 

 

 

 

Sistem elektrolit polimer sel bahan api menawarkan sumber kuasa yang sangat 

berpotensi untuk kegunaan dan aplikasi pengangkutan. Salah satu alternatif untuk 

permintaan kuasa yang besar ialah untuk memperolehi hidrogen dari bahan api 

hidrokarbon. Diesel ialah pilihan yang menarik sebagai pembekal kepada bahan api 

yang diproses. Tetapi, penghasilan minyak diesel terlalu kompleks dan memerlukan 

suhu yang sangat tinggi. Aspen HYSYS 2004.1 telah digunakan untuk membina model 

yang berkeadaan tetap, bagi menganalisa kecekapan pemproses bahan api dan 

keseluruhan sistem. Tujuan kajian ini adalah untuk mengenalpasti pengaruh bagi nilai-

nilai berlainan operasi parameter terhadap pencapaian sistem yang juga berkait rapat 

dengan sifat-sifat dinamiknya. Di dalam kajian ini, sistem sel bahan api PEM terdiri 

daripada bahagian pemproses bahan api dan bahagian pembersihan, bahagian sel bahan 

api PEM dan unit-unit tambahan. Manakala, bahagian pemproses bahan api dan 

pembersihan pula terdiri daripada Autothermal Reformer, High-temperature Shift, 

Medium-temperature Shift, Low-temperature Shift dan Preferential Oxidation.. Daripada 

kajian yang telah dijalankan dengan menggunakan Aspen HYSYS 2004.1, nisbah A/F 

dan S/F adalah 45 dan 25 dimana penghasilan hidrogen dan kepekatan karbon 

monoksida adalah optimum. Di bawah keadaan ini, penukaran n-heksadekana adalah 

100%, penghasilan hidrogen sebanyak 42% dan kepekatan karbon monoksida adalah 

25.428 ppm. Di samping itu, kecekapan pemproses bahan api adalah 52.85% dalam 

keadaan optimum ini.  
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

 New drive systems with fuel cells and the energy carriers required could play 

a major part in improving the overall social environment. This is especially the case 

of improved conventional energy carriers and drive systems should reach to its limit 

then the new systems proposed offer a new quality of traffic in society. The 

worldwide demand for energy is growing more and more. The European “World 

Energy Technology and Climate Policy Outlook” (WETO) predict an average 

growth rate of 1.8% per year for the period 2000-2030 for primary energy 

worldwide. To ensure a competitive economic environment, energy system must 

meet the following societal needs at affordable prices: 

 

i. Mitigate the effects of climate change; 

ii. Reduce toxic pollutants; 

iii. Plan for diminishing reserve of oil. 
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Measures should therefore be introduced which promote: 

 

i. More efficient use of energy; 

ii. Energy supply from a growing proportion of carbon-free sources; 

iii. Transition technologies to reach the hydrogen quality 

 

 The on-board hydrogen production represents a valid alternative about safety, 

the stocked fuel is liquid and, moreover it can be supplied by the actual 

infrastructure. In this perspective, on-board hydrogen production has gained large 

important for fuel cell application, as vehicles power traction or auxiliary power units 

(APU) and it represents a good transition way to reach the aim of the hydrogen 

economy in mobile application ( Cutillo et al., 2006). 

 

 Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential 

power sources for utility and mobile applications. Practical fuel cell systems use fuel 

processors for the production of hydrogen-rich gas. Diesel, as a liquid fuel is an 

attractive option as feed to a fuel processor. Diesel would be significantly less start-

up cost of fueling vehicles than methanol. Diesel also has a much higher potential 

energy density than methanol (Amphlett, et al., 1998). 

 

 

 

 

1.2 Problem Statement 

 

 

 This study is to develop the steady state model for simulation of hydrogen 

production using diesel as an input. The simulation of this model is demonstrated 

using Aspen HYSYS 2004.1. The amount of H2 produced determines the efficiency 

of the fuel processor; the greater this amount, the higher is the fuel processor 

efficiencies. Thus, this study is planned to cover the following area: 
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1. What are the optimum Air-to-Fuel (A/F) and Steam-to-Fuel (S/F) 

molar ratios to get the high hydrogen production with CO 

concentration less than 10ppm?   

 

2. What are the optimum A/F and S/F molar ratios to get the low inlet 

temperature of PEM fuel cell (70-80◦C) with CO concentration less 

than10ppm?   

 

 

 

 

1.3 Objective and Scope of Study 

 

 

 The objective of this study is to find the optimum of A/F and S/F molar ratios 

of hydrogen production for fuel cell applications from diesel via autothermal 

reforming. In order to achieve that objective, several scopes have been drawn: 

 

1) Development of the base case simulation 

The base case simulation had been developed using the combined reforming of n-

hexadecane that involves a complex set of chemical reactions. From these parallel 

reactions, we got the stoichiometry of the n-hexadecane ATR and calculate the input 

and output molar flow of reformate.      

 

2) Validation of the base case model 

At this stage, the output from the simulation is compared with the results that from 

the base case simulation.     

 

3) ATR optimization 

The variations of operating parameters such as A/F molar ratios and temperatures are 

used to investigate the influence to the hydrogen production and autothermal 

reformer efficiencies.   
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4) Heat integration 

The heat integration process is very important in order to obtain the most economical 

reformer because the utilities cost can be reduced.   

 

5) CO clean up 

Whereas high temperature fuel cells (MCFC and SOFC) are capable of converting 

methane, CO and alcohols, etc. in the anode chamber by internal reforming, the 

PAFC and PEM cells do not tolerate excessive amounts of CO. The PEMFC does not 

tolerate more than in the order of 50ppm CO; the lower the CO concentration, the 

higher the efficiency of the cell.    

 

5.1) WGS 

The water gas shift reaction is an inorganic chemical reaction in which water and 

carbon monoxide react to form carbon dioxide and hydrogen (water splitting). This 

reaction will reduce the amount of CO besides of producing hydrogen. 

 

5.2) PROX 

The preferential oxidation is a parallel reaction in which CO and oxygen react to 

form carbon dioxide while hydrogen and oxygen react to form water.  

 

6) Plant wide optimization 

 

6.1) WGS 

The variations of S/F molar ratios used to investigate the influence of these 

parameters to hydrogen production, temperature and CO concentration. 

 

6.2) PROX 

The variations of air that is injected to PROX will be using to investigate the 

influence to the hydrogen production, temperature entering the fuel cell and CO 

concentration.   
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1.4 Thesis Organizations 

 

 

  The important of this study is to identify potential design issues and obtain 

preliminary estimate of the expected system efficiency. So, the simulation of a diesel 

autothermal reforming had been constructed in order to identify the autothermal 

reforming operating conditions and their effect on the overall system performance or 

efficiency. Therefore, the objective of this study is to simulate and optimize a diesel 

autothermal reformer for fuel cell applications using Aspen HYSYS 2004.1. The 

remainder of this paper is organized as follows, Chapter II describes the literature 

review of this study and the methodology of this research was described at Chapter 

III. Chapter IV and Chapter V discussed about steady state simulation of hydrogen 

production and results and discussion. Lastly, the conclusion and recommendations 

for future works are drawn in Chapter VI. 
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