Chen and Rahman/Geoinformation Science Journal, Vol. 3, No. 1, pp. 66-73

The Mathematics of 3D Buffering for Simple
Geospatial Primitives

Chen Tet Khuan and Alias Abdul Rahman

Institute for Geospatial Science and Technology

Department of Geoinformatics
Faculty of Geoinformation Science and Engineering
Universiti Teknologi Malaysia
81310 UTM Skudai, Johor,
Malaysia

{kenchen, aliasj@fksg.utm.my

Abstract

This paper describes an effort towards realizing 3D buffering operations for 3D GIS. The buffering is based

on spatial data primitives of points, lines, and polygons.

All the analytical solutions for the buffering is

discussed in detail and form a major discussion of this paper. The mathematics, the geometry, and the al-
gorithms involved will be presented. We have tested the approach by using photogrammetrically captured
data sets and a commercial GIS package for visualization purpose. Finally, we present the outlook of the 3D

-analytical solutions for 3D GIS

Key words: 3D buffering, geo-spatial primitives, and 3D GIS

1. Introduction

Nowadays, 2D GISs are common and tasks involved
in any GIS applications are quite straightforward
and can be solved in a very efficient manner (see
Abdul-Rahman et al, 2001). 2D spatial problem,
such as buffering, overlay and network analysis
are well-studied. However, adding an additional
dimension to 2D GIS makes a big difference in most
of its implementation. Zlatanova 2000 stated that the
design, utilization and maintenance of a new 3D GIS
comprised a wide spectrum of questions concerning,
a 3D conceptual model, data collection, spatial
analysis, presentation and the newly-common
utility, internet access. Although the advances in
computer graphics have benefit to the 3D display
and visualization, some critical aspects of 3D GIS, i.e.
3D spatial model (see Zlatanova, 2000), together with
the semantics information is hardly well defined.

Although the available software in the market such

as ArcView 3D Analyst provides 3D display and
visualization, it still lack real 3D spatial operation.
Kim etal (1998) has mentioned the 3D spatial
operation such as 3D buffering, but that kind of
spatial operation is still in the experimental level.
This paper attempts to generate 3D buffering of
3D primitives of spatial objects. The primitives
are point, lines, surface or polygon, and solid. The
output of the 3D buffering is in ArcView 3D Analyst
format. However, other aspect of 3D operations
such as topology and databasing are out of the scope
of this paper.

The paper is organized in the following order: section
2 presents the mathematics of 3D buffering (point,
line, and polygon) and forms a major discussion of
this paper. We present some results in section 3 and
finally conclusion in section 4.

Geoinformation Science Journal, Vol. 3, No. 1 67

2. The3D Buffering

In GIS, buffering is an operation to generate a
proximity information of a spatial object, e.g.
phenomenon along linear features, polygon features,
etc. The mathematics or the method for the 2D
buffering is quite straight forward, but not the 3D
version of the problem. This section describes our
3D buffering in detail (i.e. how to construct them
geometrically) based on the geospatial primitives.

21 Point Buffering

For the point buffering, we consider a point as the
origin of the model, see Fig. 1. The result of the point
buffering is a sphere and it is inline with the ESRI's
whitepaper (July, 1998), that is the implementation
of the PolygonZ to create a solid buffering object.
Therefore, joining all related polygon surfaces creates
a sphere. Again Fig. 1 shows the construction of
circles for 3D point buffering, whereas Fig. 2 shows
the method to create a sphere.

Polar
Circle
Origin
Figure 1: Sphere from a point.
Polar
‘/
——

XYool

Figure 2: Method to create sphere

Each sphere has 11 rings, see Fig. 3.

Polar

¥

3 rings
mnterval

5 rings
interval

Origin

Figure 3: Structure of a sphere

Smaller circles

Figure 4: Calculate the Zk

The mathematics of the point buffering follows is as
follows:

I P [?]x(k)\z

5 = BX COS(Bi)

Vi = X sén(@,)

Upper ring :

Zp = r+((§]xk}
J

68 Geoinformation Science Journal, Vol. 3, No. 1

Since a line is a combination of the nodes (points)

Lower ring: and the line itself, therefore, output of the 3D line
buffering would be the combination of spheres and
- cylinder. The 3D line buffering approach is shown

z, = r- ([—5-] X A’] in Fig. 6.

where r is the buffer length from origin; k is the
number of ring from 1 to 5 for both upper and lower
ring;iis the angle from 00 to 3600; rk is the buffering
length corresponding to the upper and lower ring k;
xi, yi, zk are the coordinates for ring k.

For the polar point,

Xp = X0
yp = Yo

Upper polar point:
zp(upper) = zo + T

Lower polar point:
zp(lower) = zo -1

where xo, vo, zo are the coordinates for the origin;
xp. yp. zp(upper)/zp(lower) are the processed
coordinates for each ring.

After creating all the circles and the polar points, all
points from a circle need to be joined to the successive
circle in order to become a surface for a sphere. The
final result of the sphere is Fig. 5.

Figure 6: Method to creafe line buffer

The mathematics of the line buffering is as follows:

Ail
6 = Tan-1 (—l);
Ax
8% = Tan-1 (—;‘i),
Ax
8 = Tan-1 (A:);
Ay

where © T 0 s 0 ., are the rotated angle for XY,
XZ, and YZ plane respectively.

Figure 5: Point buffering output
After calculating the angle () for each plane, it uses
for rotating the circle. Firstly, we rotate the plane

2.2 Line Buffering circle toward the x-axis.

Geoinformation Science Journal, Vol. 3, No. 1

Xg, = rx cos()
Ygy) = rXx sin(i }x cos @ -
Zgy, = X sin(i)x<sin®,)

where z, | Vz, , Xy) arerotated coordinates for
YZ plane.

Later on, the rotated circle will again rotate for the
y-axis. Before we get through this step, the latitude
and longitude of the points from the circle need to
be calculated.

B =9 {'Cfszf}
LongB = B + (0,,)
LatB = cos-1 (Yi /1)

Xigy, =FX COS(LO}'IgB)X Sin(LatB)
Vg, =FX cos(LatB)

Zegy, = FX sin(LongB }xsin(LatB)

where B is the angle for each X,,z;; LongB is the

longitude of x,,z;; LatB is the latitude of b 0

Zigy, Vi, » X, are the coordinates after the
rotation of the y-axis.

Finally, it is followed by the rotation of the z-axis.

A = e{xf’yi}
LongA = A + (8 ,,)
LatA = cos! (Z /r)

Xx), =% cos(Longd)« sin(ZatA)
Vg y, =X sin(Longd Y« sin(l.a4)

Zpy, =FX cos(LatA)

Where A is the angle for each x,,y,; LongA is
thelongitudeof x;, y, ;LatAisthelatitudeof X, , V’;

Zixy, Yix) X, - are the coordinates after the
rotatioh of the y-axis.

After creating the rotated circle, a cylinder is created

69

by joining the two succesive circles. Later on, the
point buffer needs to be connected with the cylinder
and become a complete 3D line buffering. However,
we need to remove the unnecessary internal sphere’s
surface.

Z
}' (.I. @
Figure 7: Delete internal segment

&

S

,i

External segment

=

o
'

Unnecessary internal segment of sphere

Figure 8: Side view of line buffering

[§————— Internal segment ——¥|

O —
/B]

Sphere 1 Sphere 2

Figure 9: Method to delete the internal segment

Suppose that there are two points, forming a line.
After joining the two spheres and a cylinder (see
Fig. 8), internal segments need to be deleted in order
to avoid “redundancy” for the medium of 3D line
buffering. For any data at sphere 1, distance C is used
to define internal segment, see Fig. 9. From the center
of sphere 2 to any data at sphere 1, any distance that
less than C at sphere 1 are considered as internal and
will be removed from sphere 1. This process will be
repeated in order to remove the internal segment
at sphere 2. As a result, the final product of 3D line
buffering is shown in Fig. 10.

70

Figure 10: Final result of 3D line buffering
2.3 Polygon Buffering

A polygon is the combination of points, and lines.
There are three kinds of geometrical primitives
within a single polygon. To generate a 3D polygon
buffer, we need to identify all the primitives, which
are points, lines, and the polygon surface. As in
the foregoing discussion, point-buffering output is
a combination sphere, whereas the line-buffering
output is the combination of spheres and cylinders.
To have the polygon-buffering, we need to generate
another additional buffering surface from the
polygon itself. The buffering surfaces consist of an
upper surface and a lower surface as shown in Fig.
11
Buffering surface

polvgon

Figure 11: Buffering surface

Bothofthebufferingsurfacesshould be perpendicular
to the polygon. Therefore vector-cross product is
used to calculate the upper and lower surface of the
polygon.

Vector A

Geoinformation Science Journal, Vol. 3, No. 1

Figure 12: Vector for polygon P

D
. : E
C R
A
Y Triangle P

Figure 13: Upper polygon buffer CDE

For example, 3 points form a triangle P (see Fig 12).
To calculate upper or lower surface of P, vector-cross
product is used to calculate the points (say C,D, and
E) that perpendicular to the surface of triangle P (see
Fig 13). Some of the mathematics are illustrated
below.

nl, n2, and n3 are the parameters for vector AB,

whereas the Nx, Ny, and Nz are calculated to
generate a constant vector unit for either upper or
lower points of buffering surface.

04 x OB -

U”l’ [”2‘]

7,

3

Y., Z,
i - Y, Z
oh ob
Z(?Cl X(JCI
f’lz =
'”3[=
AB -

AR - [”ll {’E I”Jl]
AB
AR

X, =x, +JN}_’><r

y. =y, + 'Nj,.x r

z, =z, +JN:I>< r

Geoinformation Science Journal, Vol. 3, No. 1

where are the processed coordinates for the surface
polygon buffer. r defines as the buffering distant
from the center of polygon to the upper or lower

polygon.

For the rest of the points, the same equations
are implemented to calculate the point D and C.
However, for the lower polygon buffer, there is
a minor change in the equation. (A x B) is always
perpendicular to both A and B, with the orientation
determined by the right-hand rule. Therefore,

(OAXOB) = - (OA xOB)

After the upper and lower polygons buffer are
defined, the line (cylinders) and point (sphere)
buffering objects need to be combined. However,
the internal segment between line buffer and the
polygon buffer still remain unchanged. The same
approach is used for removing them.

View from above

Ly

Figure 14: Structure of 3D polygon buffer.

Since the internal segment of sphere was removed,
there is no any other intersection between the sphere
and the box. To remove all the internal segment of
line buffer, we just need to focus on the intersection
~ between the box (polygon buffer) and cylinder (line
buffer). First, we need to concentrate on the cylinder
and the point O, which is the point opposite to the
cylinder.

4—— Clinder

O

Figure 15: Orthogonal view.

71

Either the third point that creates a polygon is Q,
P, or even Q from the Fig. 15, the representation
remains the same as in Fig. 16.

External
segment
Internal

segnient

Figure 16: Removing the internal segment.

The cylinder is divided into two segments, which
are the internal and external part.

Figure 17: Calculate distance between OA, OB, OC

We need to calculate the distance of OA, and OC.
Both are the same because the surface of the circle is
perpendicular to the line AC, and point A and Coare
the upper and lower points of the circle. Therefore,
there is a condition that needs to be fulfilled in order
to remove the internal segment of the cylinder. That
is the distance of either OA or OC is the benchmark
of that condition. If any distance from the circle to
point O is less than OA or OC, then it should be the
internal part of the cylinder and need to be removed.
Finally, Fig. 18 shows the result.

Upper polvgon buffer

v

Main
S
= polveon

/ f

Processed cvlinder Lower polvegon buffer

Figure 18: View from above

~|
(3]

Geoinformation Science Journal, Vol. 3, No. 1

3. Experiments and Discussion (Leica-Helava). Our 3D buffering module / software

works with ArcView. The input is in ASCII format
In this project, we use the C++ language to create and the result is in the shapefile (*.shp). Fig.19, Fig.
a software module called 3D Buffering Tools and 20, Fig. 21, Fig.22, and Fig. 23 show the snap shots of
test it with the real dataset (UTM campus). The data the interface and output.
was captured using digital photogrammetric system

ool

the MENU - 3D Buffering T

30 Poirit Buffering 3D Line Buffering 30 Polygon Buffering

| Close &L]

Figure 19: 3D Buffering Tool’s menu interface

At PR 1
262 T 1T o i

my

—ed

Figure 20: (a) Point, (b) Line & (c) Polygon buffering

Geoinformation Science Journal, Vol. 3, No.1 73

Figuré 23; Polygon buffering output

4, Conclusion

The mathematics for creating the 3D buffering tool
of geospatial primitives such as point, line, and
polygon for 3D GIS have been presented.

We have tested the methods with the real datasets,
The software module works separately from the
ArcView GIS software package, however, further
research needs to be looked into especially in the
aspect of topology and the associated 3D analytical
operations.

Acknowledgement

The authors of this paper would like to thank Lee
KenYoong, Rusman Rusyadi, Surya Afnarius, and
Chu Kai Chuan for their valuable help, and Zulkepli
Majid for the datasets.

References

Abdelguerfi M., Wynne C., Cooper E., Roy L., (1998).
Representation of 3-D Elevation In Terrain Databases
Using Hierarchical Triangulated Irregular Networks:
A Comparative Analysis. International Journal of
Geographic Information Science, Vol. 12(8), pp. 853-
873.

Abdul-Rahman, A., Zlatanova, S., Pilouk, M., (2000).
3D GIS Development: Status and Prospects, In:
Seminar of Geoinformation 2001, 12-13 Nov, Penang,
Malaysia.

ESRI Shapefile Technical Description, (1998).
http:/ /www .esri.com/ library /whitepapers/pdfs/
shapefile.pdf

Kim, K.H,, Lee K., Lee H.G., and Ha Y.L., (1998).
“Virtual 3D GIS’s Functionalities Using Java/VRML
Environment”. http:// www.sbg.ac.at/geo/eogeo/
authors/kim/kim.html

Zlatanova,S., (2000). 3D GISFor Urban Development.
ITC, PhD. Thesis, The Netherlands, 222 p.

