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7.1 CONTEXT 

The advantage of a top-down design flow, specifying design a 

high abstraction level with less implementation specific details, is 

that design exploration, where design alternatives easily can be 

explored, is eased. Besides, there is another important advantage: 

the task of introducing a design for testability (DFT) method is 

eased too. This is because the model at high abstraction level 

includes fewer details and therefore the handling of design and test 

become easier. 

 

7.2 INTRODUCTION 

DFT is important to reduce the complexity of the test generation 

for a circuit (Fujiwara, 1985; Abramovici, Breuer, and 

Friedman, 1990). Various DFT methods have been proposed to 

augment a given circuit to become more easily testable.  The 

most commonly used DFT method is scan technique (full or 

partial) (Cheng and Agrawal, 1990; Gupta and Breuer, 1990; 

Chickermane and Reddy, 1990) and built-in self test (BIST) 

(Chiu and Papachristou, 1991). However the hardware of full 

scan technique is large because all flip-flops are augmented and 

chained together into a scan path.  Due to the area overhead, 

partial scan technique has been proposed in which only a subset 

of the flip-flops is included in the scan path. It can save area 
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overhead but maintaining a high fault coverage. BIST is a 

technique of designing additional hardware features into 

integrated circuits to allow them to perform self testing.  Since 

the need for external automated test equipment (ATE) will be 

reduced, speed timing will be increased and lower cost of 

testing. 

 

Scan technique and BIST have been proposed at gate level and 

high level. However, conventional scan techniques at gate-level 

which have long test application time due to scan in and scan out 

process. Therefore by applying DFT method at high-level for 

example which is at register transfer level (RTL), the number of 

primitive elements to be dealt in the circuit is reduced (Ghosh and 

Fujita, 2001).  Thus the test generation time is also reduced.  At 

RTL, various DFT methods that have been proposed are integrated 

automatic test pattern generation (ATPG) and DFT insertion 

technique using BIST (Carletta and Papachristou, 1995; Ghosh, 

Jha, and Bhawmik, 1998), scan design (Hsu and Patel, 1998; 

Huang, et al., 2001; Wada, et al., 2000) and test multiplexers (Dey 

and Potkonjak, 1994; Ohtake, et al., 2000).  DFT at high level can 

be applied in the early design phase to improve the effectiveness 

of high-level ATPG.  Moreover high level design can be described 

using an assignment decision diagrams (ADD) (Chaiyakul and 

Gajski, 1992). ADD is used in high level testing because it is easy 

for representing the RTL descriptions into its ADD model. Then 

the DFT method will be introduced to ADD. 

 

In this chapter, we introduce a special class of ADD called thru-

testable ADD. The new class of ADD is introduced at RTL which 

is at high-level based on the previous work that has been done in 

(Ooi and Fujiwara, 2006). Thru-testable ADD is a class of ADD 

which is easily testable. We also introduce a DFT method to 

augment a given ADD with thru functions so that the ADD 

becomes thru-testable. 
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7.3 R-GRAPH  

In the previous chapter, R-graph is used to model a gate-level 

circuit. We also derived an R-graph which can model a high level 

design. R-graph is defined as an ADD representation by using read 

nodes as input and write nodes as output. The R-graph includes 

ADD properties of thru function, thru tree and input dependency. 

Based on these properties, the class of thru-testable ADD is 

defined. 

Definition 1. Let X, Y and Z be a set of variables respectively in 

ADD where X ∩ Z = ∅  and Y ∩ Z = ∅ . A thru function tX 


 Y is 

a logic, equality, relational and arithmetic operations such that 

 

i. the operations connectives of the function consist of ∧ 

(AND), ∨ (OR) and ¬ (NOT), < (LESS THAN), > 

(MORE THAN) and = (EQUAL); 

ii. the operation variables Z of the function and X consist of 

read nodes while Y consists of write nodes; 

iii. the signals at X transfer to Y if Z has an assignment that 

makes the thru function „true‟ or active (tX 


 Y = 1). 

 

Note that X and Y may have the same variables that make the thru 

function transfers the signal from one variable to the same 

variable. This thru function is called self thru function. In other 

words, thru function is a logic that transfers the same signals from 

the input to the output if the thru function is active. The bit width 

of the input and output are equal. 

 

Example 1. Figure 7.1 shows two examples of thru functions. 

Two thru functions are independent if they cannot be active at the 

same time.  Figure 7.1(a) shows that thru functions tA


B and tC


B 

are dependent.  Dependent thru functions transfer signal at the 

same time and activated by same variable.  In this case, signals 

from A and C are transferred to B at the same time when a1 is true.  

Figure 7.1(b) shows that thru functions, tA


B and tC


B are 
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Figure 7.1 Thru functions. 

 

independent. This means data transfer from A to B cannot happen 

at the same time when data transfer from C to B. The former takes 

place when a1 is true. 

 

To facilitate the implementation of our DFT method, we introduce 

a graph representation called R-graph which contains the 

information of connectivity, thru function of an ADD. 

 

Definition 2. An R-graph of an ADD is a directed graph G = (V, 

A, w, t) that has the following properties. 

 

i. V ∈ V is a read node or write node. If a read node and a 

write node correspond to the same variable, they are 

represented by the same vertex; 

ii. (vi, vj) ∈ A denotes an arc if there exists a path from the read 

node vi  to the write node vj; 

iii. w:V → Z
+
 (the set of positive integers) defines the size of 

read or write node corresponding to a vertex in V; 

iv. t:A → T ∪ {0, 1} (T is a set of thru functions) where t(u, v) = 

0 if there is no thru function for (u, v) ∈ A and t(u, v) is a 

thru function that transfers signals from the read node u to 

the write node v. If t(u, v) = 1 (also called identity thru 

function), the signal values are transferred from u to v 

C 

a1 

a2 

a1 

A C A J I 

B B 

(a) (b) 
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directly. Note that identity thru function is always active. 

 

7.4 THRU TESTABILITY 

Thru-testable ADD is a class of ADD which is easily testable.  Its 

read nodes are easily observable and its write nodes are easily 

controllable. The class of thru-testable ADD is defined in the 

following text. 

Using R-graph representation, we visualize a certain set of thru 

functions as a thru tree, which is defined as follow. 

 

Definition 3. A thru tree is a sub graph of the R-graph such that 

i. it is a directed rooted tree; 

ii. there is only one sink (root), which has no outgoing arcs; 

iii. the sources are vertices that correspond to primary inputs 

without incoming arcs; 

iv. each arc is labeled with a thru function. 

 

Example 2. Figure 7.2 shows a thru trees of the R-graph. Each arc 

is labeled with a thru function. The sources are represented by 

vertices that correspond to primary inputs without incoming arcs. 

 

Definition 4. If Vti is a set of vertices that activate a thru function 

ti in a thru tree Tj, Tj is said to be dependent on Vti. Furthermore, if 

Vti includes a vertex in a thru tree Tk, Tj is said to be dependent on 

Tk. 

 

Definition 5. Let G be the R-graph of ADD S, and let B be a set of 

thru trees in G. Let (u,v) be a set of all paths starting at u and 

ending at v. Two distinct paths p1,p2∈(u,v) have input dependency 

if the following conditions are satisfied. 

 

i. the first arc of one of the paths is different from the first 

arc of another path; 
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Figure 7.2 Thru trees of R-graph. 

 

ii. the first arc of at least one of the paths is labeled with a 

thru function in a thru tree in B; 

iii. each path contains at most one cycle; 

iv. p1 and p2 have the same length. 

 

Input dependency can be resolved by self thru functions. Using the 

newly defined concepts of thru tree and thru function, we can 

identify whether an ADD of an R-graph is thru-testable or not. 

 

Definition 6. An ADD is called to be thru-testable if the R-graph 

of the ADD contains a set of disjoint thru trees such that the 

following conditions are satisfied. 

 

i. The thru trees cover all the vertices of a feedback vertex 

set. 

ii. For any thru tree Ti, Ti is not dependent on itself. 

iii. For any pair Ti, Tj of the thru trees, if Ti (resp. Tj) is 

dependent on Tj(resp. Ti), Tj(resp. Ti) is not dependent on 

Ti (resp. Tj). 

iv.  For each pair of reconvergent paths p1 and p2, p1 and p2 

does not have input dependency. 
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The thru tree that does not depend on any vertex in any thru tree to 

become active is called independent thru tree. 

 

Example 3. Figure 7.3(b) shows the R-graph of the ADD S1. Thru 

functions t3=C is activated by C. S1 is a thru-testable circuit 

because there are three thru trees, namely T1, T2 and T3 (shown in 

Figure 7.3(c)) that contain C,B and A which are the vertices in the 

feedback vertex set (FVS).  Moreover, each variable that activate 

the thru functions in each thru tree is not a vertex in the thru tree.  

T2 is dependent on T1 because thru function t3 in T2 is activated 

vertex by C in T1.  But thru functions in T1 do not depend on any 

vertex in T2. There is also no input dependency in S1. Note that 

node C forms a self loop.  Other loops are combination of nodes 

C, A and D and combination of nodes B, G and F. 

 

7.5 EXTRACT THRU FUNCTIONS FROM A GIVEN 

ADD  

Definition 7.  Let A be a read node and B be a write node. A 

connects to data input of an assignment decision node (ADN) and 

B connects from the output of the ADN. If data transfer is allowed 

from path A to B then A is called on-path input. 

 

Definition 8. Let A and B be read nodes and C be a write node. A 

and B connect to data input of the ADN and C connects from the 

output of the ADN.  If data transfer is allowed from path A to C 

then B is called off-path input. 

 

Thru functions are extracted from a given ADD and included in R-

graph.  The procedure consists of the following steps. 

 

Step 1: Identify a set of ADD paths where each path contains one 

or more of the following 

 1.1 any input of addition node 

1.2 the first input of subtractions node 

1.3 any input of multiplication node 
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Figure 7.3 R-graph of thru-testable ADD S1. (a) ADD S1. (b) R-

graph of ADD S1. (c) Thru trees (T1, T2 and T3) for 

ADD S1. 

 

1.4 the first input of division node 

1.5 any data input of ADN. 

 

Step 2: Compute the symbolic operations for each line in 

assignment value part and assignment condition part in 

terms of variable of read nodes.  This is to obtain 

operational expression for each line. After the symbolic 
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operation of addition in Figure 7.4(a), the operational 

expression for line a is (L+M). 

 

Step 3: For each operation node (resp. ADN) on each ADD path, 

identify the logic, equality, relational and arithmetic 

operations or any combination of the operations that allows 

the data transfer from the input (resp. data input) of the 

operation node (resp.ADN) to its output. 

3.1 For addition node and subtraction node, the 

conditions are inversion of the operational 

expression of the off-path input. For example, in 

Figure 7.4(a), in addition node in data of L is 

transferred to line a when the off-path input M is 0.  

(M‟). In subtraction node, data of line a is 

transferred to line b when the off-path input N is 0 

(N‟). 

3.2 For multiplication node and division node, the 

conditions are the operational expression of the off-

path input.  In multiplication node in Figure 7.4(a), 

data of read node N is transferred to line c when the 

off-path input F is 1 (F). 

3.3 For ADN, the condition is the operational 

expression of the condition input that corresponds 

to the on-path input.  For example in Figure 7.4(a), 

data of line b is transferred to write node N when H 

is 1. 

 

Step 4: Given a path from a read node to a write node, obtain the 

thru function by ANDing all the conditions that allow data transfer 

along the path.  In Figure 7.4(a), thru function tL


N = M‟.N‟.H. 
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Figure 7.4 Thru functions extraction for ADD S2. (a) ADD S2. (b) 

R-graph for ADD S2. 

 

 

7.6 DESIGN FOR TESTABILITY METHOD 

Definition 9. Let A be an input vertex and B be an output vertex. 

Let C be a vertex which activates a thru function tA


B, C is called 

an activator. If the ADD of the R-graph is not thru-testable, we 

can augment the R-graph using our DFT method by adding 

minimum number of edges with thru functions into the R-graph. 

Therefore, the R-graph becomes thru testable.  Steps for DFT 

method are taken as follows: 

 

Step 1 Using depth first search, traverse from an input vertex to 
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the output vertex without considering whether the outgoing 

arc has a thru function or not.  If the vertex is visited for 

second time, then the vertex is included in the feedback 

vertex set (FVS). 

 

Step 2 For each vertex, choose the outgoing arc that has a thru 

function to continue the traversing. Otherwise the 

traversing is stopped.   

 

Step 3 Group each thru function (TF) in the R-graph into set 

called TF1, TF2, TF3 and onwards as follows 

3.1 Initially include the first thru function into TF1. 

3.2 For any i, include the current thru function into TFi if 

the following conditions i&iii or conditions ii&iii are 

satisfied 

i. its input (resp. output) of the current thru 

function is same with the output (resp. input) of 

any thru function in TFi. 

ii. its output of the current thru function is same 

with the output of any thru function in TFi and 

the activators of the two thru functions are the 

same. 

iii. its activator is different from any input or 

output of the thru functions in TFi. 

3.3 Create a new TFj (j≠i) if necessary. 

 

Step 4 Check whether all the vertices in feedback vertex set 

(FVS) are covered by the generated thru function set.  If 

not, group those vertices into FVS‟. 

 

Step 5 For each vertex of FVS‟, add a new thru function so that 

the output (resp. input) of the new thru function is the 

vertex of FVS‟ and input (resp. output) of the new thru 

function is one of the vertex of any existing thru function 

sets such that the output (resp. input) is not an activator for 
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any thru function in the set. 

 

Step 6 Repeat step 5 until all vertices in FVS‟ are covered by the 

generated thru function set. If FVS‟ is not empty, link the 

vertices with thru function such that a new thru function is 

formed. 

 

Step 7 Check whether each thru function set has a primary input 

and primary output vertex or not.  Otherwise, one primary 

input vertex (resp. primary output vertex) in the R-graph is 

included into the set.  If R-graph does not have one, a new 

vertex is added into the set.  

 

Step8  Add a new thru function so that the input (resp. output of 

the new thru function is the added new input (resp. output) 

vertex and the output (resp. input) of the new thru function 

is one of the vertices of any existing thru function sets. 

 

Example 6.  Figure 7.5 shows the thru functions that are 

introduced to make ADD S3 thru-testable.  Vertices C, D and H 

are included in the feedback vertex set (FVS). 3 set of thru 

function (TF), i.e.   TF1 = {tA


C, tB


C}, TF2 = {tC


D, tD


E} and TF3 

= {tB


G} have been generated.  A new output vertex O2 and a new 

thru function tnew1 are added into R-graph of set TF1. Set of TF2 

has also two new thru functions tnew2 and tnew3 which are connected 

to vertex M and new output vertex O3. TF3 are added  

with new thru functions tnew4 and tnew5. Vertex H is included in set 

of FVS‟ because vertex H is not included in any generated thru 

function set. It is connected with vertex G and new output O4 with 

new thru functions. 

 

7.7 CASE STUDIES 

ITC‟99 benchmarks circuits described at RTL are used for the 

experiments. Design Compiler is used to obtain a gate level netlist 
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Figure 7.5 Thru functions that make S3 thru testable. (a) ADD 

S3. (b) R-graph of ADD S3. (c) Set of thru function 

sets (TF1, TF2 and TF3). 

 

circuit and Tetramax is used to generate test patterns for the 

circuits. We will show the comparison of our DFT method with 
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original circuits and conventional full scan technique circuits in 

terms of fault efficiency, area overhead, test generation time and 

test application time.  We expect our proposed DFT method will 

obtain complete fault efficiency.  We expect the area overhead of 

the circuit with our DFT will be higher than that of the original 

circuit but same with the full scan circuit.  Less test generation 

time is expected in circuit with our DFT compared to the original 

circuit and full scan circuit. For test application time, it is less than 

the full scan circuit but not so more than the original circuit. 

 

7.8 CHAPTER SUMMARY 

In conclusion, the new class of ADD called thru-testable ADD has 

been introduced. The DFT method has also been introduced to 

augment a given ADD with minimum thru function so that the 

ADD becomes thru-testable. We expect our proposed DFT 

method will achieve complete fault efficiency, lower area 

overhead, less test generation time and less test application time.  

For future work, we are going to describe the test generation 

model for thru-testable ADD. 
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