
122 Advances in Microelectronics

7

DESIGN FOR TESTABILITY II: FROM

HIGH LEVEL PERSPECTIVE

Chia Yee Ooi

Norlina Paraman

7.1 CONTEXT

The advantage of a top-down design flow, specifying design a

high abstraction level with less implementation specific details, is

that design exploration, where design alternatives easily can be

explored, is eased. Besides, there is another important advantage:

the task of introducing a design for testability (DFT) method is

eased too. This is because the model at high abstraction level

includes fewer details and therefore the handling of design and test

become easier.

7.2 INTRODUCTION

DFT is important to reduce the complexity of the test generation

for a circuit (Fujiwara, 1985; Abramovici, Breuer, and

Friedman, 1990). Various DFT methods have been proposed to

augment a given circuit to become more easily testable. The

most commonly used DFT method is scan technique (full or

partial) (Cheng and Agrawal, 1990; Gupta and Breuer, 1990;

Chickermane and Reddy, 1990) and built-in self test (BIST)

(Chiu and Papachristou, 1991). However the hardware of full

scan technique is large because all flip-flops are augmented and

chained together into a scan path. Due to the area overhead,

partial scan technique has been proposed in which only a subset

of the flip-flops is included in the scan path. It can save area

 Design For Testability II: From High Level Perspective 123

overhead but maintaining a high fault coverage. BIST is a

technique of designing additional hardware features into

integrated circuits to allow them to perform self testing. Since

the need for external automated test equipment (ATE) will be

reduced, speed timing will be increased and lower cost of

testing.

Scan technique and BIST have been proposed at gate level and

high level. However, conventional scan techniques at gate-level

which have long test application time due to scan in and scan out

process. Therefore by applying DFT method at high-level for

example which is at register transfer level (RTL), the number of

primitive elements to be dealt in the circuit is reduced (Ghosh and

Fujita, 2001). Thus the test generation time is also reduced. At

RTL, various DFT methods that have been proposed are integrated

automatic test pattern generation (ATPG) and DFT insertion

technique using BIST (Carletta and Papachristou, 1995; Ghosh,

Jha, and Bhawmik, 1998), scan design (Hsu and Patel, 1998;

Huang, et al., 2001; Wada, et al., 2000) and test multiplexers (Dey

and Potkonjak, 1994; Ohtake, et al., 2000). DFT at high level can

be applied in the early design phase to improve the effectiveness

of high-level ATPG. Moreover high level design can be described

using an assignment decision diagrams (ADD) (Chaiyakul and

Gajski, 1992). ADD is used in high level testing because it is easy

for representing the RTL descriptions into its ADD model. Then

the DFT method will be introduced to ADD.

In this chapter, we introduce a special class of ADD called thru-

testable ADD. The new class of ADD is introduced at RTL which

is at high-level based on the previous work that has been done in

(Ooi and Fujiwara, 2006). Thru-testable ADD is a class of ADD

which is easily testable. We also introduce a DFT method to

augment a given ADD with thru functions so that the ADD

becomes thru-testable.

124 Advances in Microelectronics

7.3 R-GRAPH

In the previous chapter, R-graph is used to model a gate-level

circuit. We also derived an R-graph which can model a high level

design. R-graph is defined as an ADD representation by using read

nodes as input and write nodes as output. The R-graph includes

ADD properties of thru function, thru tree and input dependency.

Based on these properties, the class of thru-testable ADD is

defined.

Definition 1. Let X, Y and Z be a set of variables respectively in

ADD where X ∩ Z = ∅ and Y ∩ Z = ∅ . A thru function tX


 Y is

a logic, equality, relational and arithmetic operations such that

i. the operations connectives of the function consist of ∧

(AND), ∨ (OR) and ¬ (NOT), < (LESS THAN), >

(MORE THAN) and = (EQUAL);

ii. the operation variables Z of the function and X consist of

read nodes while Y consists of write nodes;

iii. the signals at X transfer to Y if Z has an assignment that

makes the thru function „true‟ or active (tX


 Y = 1).

Note that X and Y may have the same variables that make the thru

function transfers the signal from one variable to the same

variable. This thru function is called self thru function. In other

words, thru function is a logic that transfers the same signals from

the input to the output if the thru function is active. The bit width

of the input and output are equal.

Example 1. Figure 7.1 shows two examples of thru functions.

Two thru functions are independent if they cannot be active at the

same time. Figure 7.1(a) shows that thru functions tA


B and tC


B

are dependent. Dependent thru functions transfer signal at the

same time and activated by same variable. In this case, signals

from A and C are transferred to B at the same time when a1 is true.

Figure 7.1(b) shows that thru functions, tA


B and tC


B are

 Design For Testability II: From High Level Perspective 125

Figure 7.1 Thru functions.

independent. This means data transfer from A to B cannot happen

at the same time when data transfer from C to B. The former takes

place when a1 is true.

To facilitate the implementation of our DFT method, we introduce

a graph representation called R-graph which contains the

information of connectivity, thru function of an ADD.

Definition 2. An R-graph of an ADD is a directed graph G = (V,

A, w, t) that has the following properties.

i. V ∈ V is a read node or write node. If a read node and a

write node correspond to the same variable, they are

represented by the same vertex;

ii. (vi, vj) ∈ A denotes an arc if there exists a path from the read

node vi to the write node vj;

iii. w:V → Z
+
 (the set of positive integers) defines the size of

read or write node corresponding to a vertex in V;

iv. t:A → T ∪ {0, 1} (T is a set of thru functions) where t(u, v) =

0 if there is no thru function for (u, v) ∈ A and t(u, v) is a

thru function that transfers signals from the read node u to

the write node v. If t(u, v) = 1 (also called identity thru

function), the signal values are transferred from u to v

C

a1

a2

a1

A C A J I

B B

(a) (b)

126 Advances in Microelectronics

directly. Note that identity thru function is always active.

7.4 THRU TESTABILITY

Thru-testable ADD is a class of ADD which is easily testable. Its

read nodes are easily observable and its write nodes are easily

controllable. The class of thru-testable ADD is defined in the

following text.

Using R-graph representation, we visualize a certain set of thru

functions as a thru tree, which is defined as follow.

Definition 3. A thru tree is a sub graph of the R-graph such that

i. it is a directed rooted tree;

ii. there is only one sink (root), which has no outgoing arcs;

iii. the sources are vertices that correspond to primary inputs

without incoming arcs;

iv. each arc is labeled with a thru function.

Example 2. Figure 7.2 shows a thru trees of the R-graph. Each arc

is labeled with a thru function. The sources are represented by

vertices that correspond to primary inputs without incoming arcs.

Definition 4. If Vti is a set of vertices that activate a thru function

ti in a thru tree Tj, Tj is said to be dependent on Vti. Furthermore, if

Vti includes a vertex in a thru tree Tk, Tj is said to be dependent on

Tk.

Definition 5. Let G be the R-graph of ADD S, and let B be a set of

thru trees in G. Let (u,v) be a set of all paths starting at u and

ending at v. Two distinct paths p1,p2∈(u,v) have input dependency

if the following conditions are satisfied.

i. the first arc of one of the paths is different from the first

arc of another path;

 Design For Testability II: From High Level Perspective 127

Figure 7.2 Thru trees of R-graph.

ii. the first arc of at least one of the paths is labeled with a

thru function in a thru tree in B;

iii. each path contains at most one cycle;

iv. p1 and p2 have the same length.

Input dependency can be resolved by self thru functions. Using the

newly defined concepts of thru tree and thru function, we can

identify whether an ADD of an R-graph is thru-testable or not.

Definition 6. An ADD is called to be thru-testable if the R-graph

of the ADD contains a set of disjoint thru trees such that the

following conditions are satisfied.

i. The thru trees cover all the vertices of a feedback vertex

set.

ii. For any thru tree Ti, Ti is not dependent on itself.

iii. For any pair Ti, Tj of the thru trees, if Ti (resp. Tj) is

dependent on Tj(resp. Ti), Tj(resp. Ti) is not dependent on

Ti (resp. Tj).

iv. For each pair of reconvergent paths p1 and p2, p1 and p2

does not have input dependency.

A

D

C

B

E

Y

t1=(J<K)

t2=(J<K)

t3=(L=1)

t4=(L=1)

t5=E’.F

t6=D’.FG

128 Advances in Microelectronics

The thru tree that does not depend on any vertex in any thru tree to

become active is called independent thru tree.

Example 3. Figure 7.3(b) shows the R-graph of the ADD S1. Thru

functions t3=C is activated by C. S1 is a thru-testable circuit

because there are three thru trees, namely T1, T2 and T3 (shown in

Figure 7.3(c)) that contain C,B and A which are the vertices in the

feedback vertex set (FVS). Moreover, each variable that activate

the thru functions in each thru tree is not a vertex in the thru tree.

T2 is dependent on T1 because thru function t3 in T2 is activated

vertex by C in T1. But thru functions in T1 do not depend on any

vertex in T2. There is also no input dependency in S1. Note that

node C forms a self loop. Other loops are combination of nodes

C, A and D and combination of nodes B, G and F.

7.5 EXTRACT THRU FUNCTIONS FROM A GIVEN

ADD

Definition 7. Let A be a read node and B be a write node. A

connects to data input of an assignment decision node (ADN) and

B connects from the output of the ADN. If data transfer is allowed

from path A to B then A is called on-path input.

Definition 8. Let A and B be read nodes and C be a write node. A

and B connect to data input of the ADN and C connects from the

output of the ADN. If data transfer is allowed from path A to C

then B is called off-path input.

Thru functions are extracted from a given ADD and included in R-

graph. The procedure consists of the following steps.

Step 1: Identify a set of ADD paths where each path contains one

or more of the following

 1.1 any input of addition node

1.2 the first input of subtractions node

1.3 any input of multiplication node

 Design For Testability II: From High Level Perspective 129

I1

C

O2

1T

=

B

M

A

I2 A JB

D

t1

t3

NC
D

O1

t4 t2

PF Q

G

H

F

N G

t6

t5

t7
t8

!
+

!

*

+

!

< +
t6

t8

(a)

(b) (c)

Figure 7.3 R-graph of thru-testable ADD S1. (a) ADD S1. (b) R-

graph of ADD S1. (c) Thru trees (T1, T2 and T3) for

ADD S1.

1.4 the first input of division node

1.5 any data input of ADN.

Step 2: Compute the symbolic operations for each line in

assignment value part and assignment condition part in

terms of variable of read nodes. This is to obtain

operational expression for each line. After the symbolic

I1

A

I2

B

D

C

t1=D’.(T=1)

t3=C

t2=J

t4=D’.(P<Q)’

O2

O1

M

T

N

P

J

F G

t5=(T!=1)

N
H

Q

t6=F’.M

t7=(P<Q)

t8=C’

I1 C
t1 t2

O2

I2 A O1

t3 t4

(a) T1

(b) T2

I2 B O1

t6 t7

(c) T3

130 Advances in Microelectronics

operation of addition in Figure 7.4(a), the operational

expression for line a is (L+M).

Step 3: For each operation node (resp. ADN) on each ADD path,

identify the logic, equality, relational and arithmetic

operations or any combination of the operations that allows

the data transfer from the input (resp. data input) of the

operation node (resp.ADN) to its output.

3.1 For addition node and subtraction node, the

conditions are inversion of the operational

expression of the off-path input. For example, in

Figure 7.4(a), in addition node in data of L is

transferred to line a when the off-path input M is 0.

(M‟). In subtraction node, data of line a is

transferred to line b when the off-path input N is 0

(N‟).

3.2 For multiplication node and division node, the

conditions are the operational expression of the off-

path input. In multiplication node in Figure 7.4(a),

data of read node N is transferred to line c when the

off-path input F is 1 (F).

3.3 For ADN, the condition is the operational

expression of the condition input that corresponds

to the on-path input. For example in Figure 7.4(a),

data of line b is transferred to write node N when H

is 1.

Step 4: Given a path from a read node to a write node, obtain the

thru function by ANDing all the conditions that allow data transfer

along the path. In Figure 7.4(a), thru function tL


N = M‟.N‟.H.

 Design For Testability II: From High Level Perspective 131

K

L

L M

N

P N

Z

FJM N H 1SN

a

b c

*=
-

+
=

<> !

(a)

J L N Z

K M P

N H

S

M

t=(M=N) t=M’.N’.H

F

t=(M<N)

t=(M>N)

t=L’.N’.H

t=(L+M)’.H

t=(S=1)

t=F.(S!=1)

t=N.(S!=1)

(b)

Figure 7.4 Thru functions extraction for ADD S2. (a) ADD S2. (b)

R-graph for ADD S2.

7.6 DESIGN FOR TESTABILITY METHOD

Definition 9. Let A be an input vertex and B be an output vertex.

Let C be a vertex which activates a thru function tA


B, C is called

an activator. If the ADD of the R-graph is not thru-testable, we

can augment the R-graph using our DFT method by adding

minimum number of edges with thru functions into the R-graph.

Therefore, the R-graph becomes thru testable. Steps for DFT

method are taken as follows:

Step 1 Using depth first search, traverse from an input vertex to

132 Advances in Microelectronics

the output vertex without considering whether the outgoing

arc has a thru function or not. If the vertex is visited for

second time, then the vertex is included in the feedback

vertex set (FVS).

Step 2 For each vertex, choose the outgoing arc that has a thru

function to continue the traversing. Otherwise the

traversing is stopped.

Step 3 Group each thru function (TF) in the R-graph into set

called TF1, TF2, TF3 and onwards as follows

3.1 Initially include the first thru function into TF1.

3.2 For any i, include the current thru function into TFi if

the following conditions i&iii or conditions ii&iii are

satisfied

i. its input (resp. output) of the current thru

function is same with the output (resp. input) of

any thru function in TFi.

ii. its output of the current thru function is same

with the output of any thru function in TFi and

the activators of the two thru functions are the

same.

iii. its activator is different from any input or

output of the thru functions in TFi.

3.3 Create a new TFj (j≠i) if necessary.

Step 4 Check whether all the vertices in feedback vertex set

(FVS) are covered by the generated thru function set. If

not, group those vertices into FVS‟.

Step 5 For each vertex of FVS‟, add a new thru function so that

the output (resp. input) of the new thru function is the

vertex of FVS‟ and input (resp. output) of the new thru

function is one of the vertex of any existing thru function

sets such that the output (resp. input) is not an activator for

 Design For Testability II: From High Level Perspective 133

any thru function in the set.

Step 6 Repeat step 5 until all vertices in FVS‟ are covered by the

generated thru function set. If FVS‟ is not empty, link the

vertices with thru function such that a new thru function is

formed.

Step 7 Check whether each thru function set has a primary input

and primary output vertex or not. Otherwise, one primary

input vertex (resp. primary output vertex) in the R-graph is

included into the set. If R-graph does not have one, a new

vertex is added into the set.

Step8 Add a new thru function so that the input (resp. output of

the new thru function is the added new input (resp. output)

vertex and the output (resp. input) of the new thru function

is one of the vertices of any existing thru function sets.

Example 6. Figure 7.5 shows the thru functions that are

introduced to make ADD S3 thru-testable. Vertices C, D and H

are included in the feedback vertex set (FVS). 3 set of thru

function (TF), i.e. TF1 = {tA


C, tB


C}, TF2 = {tC


D, tD


E} and TF3

= {tB


G} have been generated. A new output vertex O2 and a new

thru function tnew1 are added into R-graph of set TF1. Set of TF2

has also two new thru functions tnew2 and tnew3 which are connected

to vertex M and new output vertex O3. TF3 are added

with new thru functions tnew4 and tnew5. Vertex H is included in set

of FVS‟ because vertex H is not included in any generated thru

function set. It is connected with vertex G and new output O4 with

new thru functions.

7.7 CASE STUDIES

ITC‟99 benchmarks circuits described at RTL are used for the

experiments. Design Compiler is used to obtain a gate level netlist

134 Advances in Microelectronics

B

C

E

O1

AM N 1SC

D

Q D

H

L T

G

K G X

mod

H1 Y

J

P

mod

J1V UJ

E

1R F

=

!

=

! !

=
+ =

mod mod

(a)

B C D E

G H J

M
Q

O1

A

t1=(M=N) t2=(D’.Q)

R

t3=(C’.Q)

t5=(R!=1)

t1=(M=N)

K L

t6=K

N

S

X

t4=(L!=1)
t7=(M!=N)

T Y P

F

(b)

B C O2
tnew1

A t1=(M=N)

t1=(M=N)

C D E

t2=D’.Q t5=R
M O3

tnew2 tnew3

B G H

tnew4

O4

tnew6t6=K

(c)

Figure 7.5 Thru functions that make S3 thru testable. (a) ADD

S3. (b) R-graph of ADD S3. (c) Set of thru function

sets (TF1, TF2 and TF3).

circuit and Tetramax is used to generate test patterns for the

circuits. We will show the comparison of our DFT method with

 Design For Testability II: From High Level Perspective 135

original circuits and conventional full scan technique circuits in

terms of fault efficiency, area overhead, test generation time and

test application time. We expect our proposed DFT method will

obtain complete fault efficiency. We expect the area overhead of

the circuit with our DFT will be higher than that of the original

circuit but same with the full scan circuit. Less test generation

time is expected in circuit with our DFT compared to the original

circuit and full scan circuit. For test application time, it is less than

the full scan circuit but not so more than the original circuit.

7.8 CHAPTER SUMMARY

In conclusion, the new class of ADD called thru-testable ADD has

been introduced. The DFT method has also been introduced to

augment a given ADD with minimum thru function so that the

ADD becomes thru-testable. We expect our proposed DFT

method will achieve complete fault efficiency, lower area

overhead, less test generation time and less test application time.

For future work, we are going to describe the test generation

model for thru-testable ADD.

REFERENCES

Abramovici, M., M. A. Breuer and A. D. Friedman. (1990). Digital

Systems Testing and Testable Design. IEEE Press.

Carletta, J. E. and C. Papachristou. (1995). Testability analysis and

insertion of RTL circuits based on pseudorandom BIST.

Proc. Int. Conf. Computer Design. :162-167.

Chaiyakul, V. and D. D. Gajski. (1992). Assignment decision

diagram for high level synthesis. Technical Report. :5-50.

Cheng, K. T. and V. D. Agrawal. (1990). A partial scan method for

sequential circuits with feedback. IEEE Trans. Computer.

39:544-548.

Ooi, C. Y. and H. Fujiwara. (2006). A new class of sequential

circuits with acyclic test generation complexity. 24th IEEE

136 Advances in Microelectronics

International Conference on Computer Design. : 25-431.

Chickermane, V. and S. M. Reddy. (1990). An optimization based

approach to the partial scan design problem. Pro

International Test Conference. :377-386.

Chiu, S. S. K. and C. Papachristou. (1991). A Built-In-Self-Testing

approach for minimizing hardware overhead. Pro

International Test Conference. :282-285.

Dey, S. and M. Potkonjak. (1994). Nonscan design-for-testability

of RT-level data paths. Proc. Int. Conf. Computer-Aided

Design. :645.

Fujiwara, H. (1985). Logic Testing and Design for Testability. MIT

Press.

Ghosh, I., N. K. Jha and S. Bhawmik. (1998). A BIST scheme for

RTL controller/data paths based on symbolic testability

analysis. Proc. Design Automation Conf. :554-559.

Ghosh, I. and M. Fujita. (2001). Automatic test pattern generation

for functional register-transfer level circuits using

assignment decision diagrams. IEEE Trans. Computer-

Aided Design. 20(3):402-415.

Gupta, R. and M. A. Breuer. (1990). The BALLAST methodology

for structured partial scan design. IEEE Trans. Computer.

39(4):538-544.

Hsu, F. F. and J. H. Patel. (1998). High level variable selection for

partial scan implementation. Proc. Int. Conf. Computer-

Aided Design. :79-84.

Huang, Y. et al. (2001). On RTL scan design. International Test

Conference. :728-737.

Ohtake, S., H. Wada, T. Masuzawa and Hideo Fujiwara. (2000). A

non-scan DFT method at register-transfer level to achieve

complete fault efficiency. Proc. of Asia and South Pacific

Design Automation 2000. :599-604.

Wada, H., T. Masuzawa, K. K. Saluja and H. Fujiwara. (2000).

Design for strong testability of RTL data paths to provide

complete fault efficiency. Proc. 13th International Conf. on

VLSI Design. :300-305.

