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5.1 INTRODUCTION 

The trend today is to apply embedded systems based on System-

on-Chip (SoC) in the design of electronic systems. Such SoC 

solutions typically consist of embedded processor(s), embedded 

memories, hardware accelerators (or IP cores), high-speed 

communication interfaces and reconfigurable logic. Consequently, 

the development of these electronic systems has become 

increasingly complex, as they impose more severe demands (such 

as lower cost, higher performance, product quality, security, and 

time-to-market). In addition, as Moore‟s Law drives further the 

capabilities of digital hardware, there is a demand for greater 

number of functionalities to be conceived in a more constrained 

design space (Camposano, 1997). 

 

One of the key challenges of the SoC design is the partitioning of 

system functionality across the HW/SW dichotomy. A 

functionality once relegated to software is now, for enhanced 

performance, implemented in hardware, while hardware 

components must integrate with higher-level software APIs. In 

current CAD methodology, a priori definition of the partition is 
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made, thus creating separate hardware and software specifications. 

Changes to the HW/SW partitioning necessitate extensive redesign 

which usually ends up with sub-optimal designs. Furthermore, with 

the introduction of embedded processors in FPGAs, digital 

designers are exposed to a new field of CAD, which involves the 

concurrent development of both hardware and software (program 

executed on the embedded processor). 

 

Another critical drawback of the current CAD methodology is that 

it is RTL-centric which, due the increase in circuit complexity, 

suffers from long simulation time, which is gradually becoming 

unacceptable. It is clear that speed of simulating a complete system 

is a critical factor when designing a complex digital system such as 

an SoC. This verification issue is further exacerbated when the 

amount of test vectors needed for verification rises by a factor of 

100 every six years, which is 10 times the increase of the number 

of gates on a chip as stated by Moore‟s law (Camposano, 1997). In 

addition, the complete verification and validation of the system 

functionality is often not possible until a fully working prototype 

has been built. This is especially true for a design in a highly 

distributed and heterogeneous environment, such as a networked 

embedded system (Klingauf and Gunzel, 2005). 

 

Clearly, in order to reduce development time and cost, computer-

aided design (CAD) tools must now include features that facilitate 

design-space and architecture exploration, and promote design at a 

higher level of abstraction. Among the solutions to the above-

mentioned design issues, being actively pursued today is to capture 

the design at the Electronic System Level (ESL) of abstraction, and 

applying the standard design language of SystemC (Bocchio et al., 

2005; SystemC Homepage). This approach will require a 

hardware-software (HW/SW) co-design and co-simulation 

framework that facilitates design-space exploration and provide 
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high simulation speed. References (Fummi et al., 2007; Benign et 

al., 2003; Yuyama et al., 2004) have proposed co-simulation 

methodologies based on SystemC with an Instruction Set Simulator 

(ISS) as a model of the processor in a common source file. In 

(Sayinta et al., 2003), a SystemC abstract model of the system was 

used as a golden reference model for enabling a vertical reuse of 

testbenches during the whole design process. Work on SystemC-

VHDL co-simulation has been reported in (Bombana and Bruschi, 

2003; Maciel et al., 2007), in which discussions were provided on 

the advantages of the technique to validate new models and reuse 

previous designs. References (Hodjat et al., 2005; Sakiyama et al., 

2006; Gezel2 Homepage; Schaumont and Verbauwhede, 2006) 

proposed GEZEL co-design platform, and illustrated its application 

in the design of an elliptic curve cryptographic coprocessor. Much 

research is ongoing on this subject of ESL, but however, most 

current SoC design platform still suffers from limited architecture 

exploration, lacks distributed, real-time support and standard 

design language and IP reuse facilities. 

 

In this chapter, we present a SystemC-based ESL HW/SW co-

design methodology used in the design of SoC-based embedded 

systems. This methodology aims to provide the ability to quickly 

develop and evaluate complex SoC and embedded system designs. 

The associated co-simulation platform is implemented entirely in 

SystemC language, except for the Instruction Set Simulator (ISS), 

which is wrapped under SystemC. This methodology and the 

design platform enable early system functionality verification, as 

well as new algorithm exploration before the final implementation 

prototype is available. It can be used to validate the behaviour for 

both the hardware and the software modules of the embedded SoC, 

as well as the interaction between them with timed/cycle-accuracy. 

By having an early simulation model, it permits the evaluation of 

the complete system at an early stage of the design flow. This can 
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avoid extensive redesigning, which can contribute to significantly 

long design time and incur high design cost, and furthermore, the 

result usually ends up with sub-optimal designs. Besides, the 

framework also aims to facilitate architecture exploration that 

assists the system designer in finding the best HW/SW dichotomy. 

Another key advantage is the speed of simulation at the system 

level is significantly faster than RTL simulation of the whole 

system. It is also independent of any vendor specific tools. 

 

Section 1.2 of this chapter describes the proposed SystemC-based 

ESL co-design methodology. Section 1.3 briefly describes the 

proposed co-design/co-simulation platform. Section 1.4 presents 

the design of an Elliptic Curve Crypto (ECC) SoC as a case study 

to illustrate the design flow, and the design refinement steps 

applied are described in Section 1.5. Results and conclusions are 

provided in Sections 1.6 and 1.7 respectively. 

 

5.2 PROPOSED SYSTEMC-BASED ESL HW/SW CO-

DESIGN METHODOLOGY 

Figure 1.1 shows the architecture of the proposed SystemC-based 

ESL HW/SW co-design methodology, which consists of four 

design abstraction levels, namely: (a) specifications level - UML 

modelling, (b) system level (functional) - SystemC modelling, (c) 

system level (architectural) - modelling in SystemC and C/C++, 

and (d) RTL - modelling in HDL and C/C++.  In the proposed 

methodology, SystemC is mainly used as system modelling 

language and simulation kernel at the system levels of abstraction. 

It is an extension of C++ class library, which provides both 

modelling and simulation kernels based on discrete event 

structures.  It can be used to effectively create cycle-accurate 

models of software algorithms, hardware architectures, interfaces, 

and system-level designs (SystemC Homepage). One of the key 

strengths of SystemC is that it allows modelling at different levels 

of abstraction, supports the refinement of high level models down 
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Figure 1.1 HW/SW co-design environment. 

 

to low levels abstraction and even combining them into a single 

model (Grotker et al., 2002; Gerlach and Rosenstiel, 2000). 

SystemC also can model both hardware and software modules in 

the same source file. A SystemC model is an executable 

specification of a system, which means a C++ program that 

exhibits the same behaviour as the system when executed. 

 

With reference to the diagram of the proposed HW/SW co-design 

methodology depicted in Figure 1.1, we now describe the design 

flow from specification model to the final implementation model 
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targeted for prototyping in an FPGA development board. The 

design flow begins with the modelling of the specifications using 

UML. The light-weight UML 2.0 can be used to model almost any 

type of application, running on any combination of hardware, 

operating systems, programming languages, and networks (UML 

Homepage). In this work, the UML class diagram is used to 

describe the static architecture, while the UML sequence and state 

diagrams are used to describe the dynamic behaviour of the system 

to be designed. Essentially, the UML specification model serves as 

a “schematic” design entry or paper specification model for the 

SystemC executable model. 

 

From the UML specification model, we obtain a system level 

functional model. This is a SystemC untimed functional model 

(UTF) of the system architecture, and it is the golden reference 

model to verify the system functionality and algorithm in the 

following design abstraction level. It bridges the algorithmic world 

(possibly validated in Matlab) to the lower levels in the design 

hierarchy. 

 

At the next design level, the system level architectural model is 

obtained, where partitioning is made for hardware (HW) and 

software (SW). Timed functional models (TF) of the HW and SW 

are designed in parallel, with the HW functional models being 

described behaviourally in SystemC, while the SW and hardware 

device driver firmware (FW) blocks are written in C and executed 

in an Instruction Set Simulator (ISS), which is wrapped under a 

SystemC bus wrapper. Depending on the modelling accuracy 

required, when needed, cycle-accurate (CA) of TF can be created 

for performance-critical modules. Co-simulation of the SystemC 

HW and SystemC-ISS SW can now be performed to verify the 

functionality of the whole system.  

 

This co-simulation can be used to check the interoperability of a 
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single designed module (HW or SW) with the rest of the system 

without having the whole system being first implemented. Also, 

the co-simulation can provide hardware profiling which assists the 

system designer to find the best HW/SW partitioning such that a 

balance between area constraints and targeted system performance 

(area-speed design tradeoffs) can be achieved. 

 

Once the system architecture and HW/SW partitioning has been 

chosen, the system-level design above is refined further to RTL 

model for implementation. At this implementation level, all models 

of the computation and communication detail are taken into 

consideration. The main advantage of this methodology is that, by 

having an early simulation model of the complete system, system 

verification can be made well before the final implementation of 

the design is available; unlike in the traditional RTL methodology, 

system validation can only be performed when a fully functional 

prototype has been built. HW/SW integration can be explored at 

high level of design abstraction, and design errors can be 

discovered in early design cycle to shorten the product time-to-

market. 

 

5.3 SYSTEMC-BASED HW/SW CO-SIMULATION 

PLATFORM 

Co-simulation design environments, currently under research, can 

be categorized as: (1) homogeneous, (2) semi-homogeneous, and 

(3) heterogeneous types (Fummi et al., 2007). The work in 

(Ptolemy Homepage; Berkeley, 1999; Slomka et al. 2000) 

pioneered the homogeneous co-simulation environment, in which a 

single engine is used for the simulation of both HW and SW 

components. Good simulation performance can be obtained with 

this method. However, the technique is just adequate in the very 

first stage of the development, before the HW/SW partitioning. It is 

because the HW and SW design flow need different techniques and 

tools when the abstraction level decreases toward a real 
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implementation. 

 

Heterogeneous co-simulation environments use distinct simulation 

kernel and different language descriptions for HW and SW side. 

HW is normally described using HDL, while SW is modelled using 

high level language, such as C/C++/Java. It allows the mix-

abstraction level co-simulation to produce a higher timing accuracy 

model, but it is suffered with the low simulation speed compared to 

the homogeneous environment. (Bombana and Bruschi, 2003; 

Maciel et al., 2007) are two of the examples that propose 

heterogeneous co-simulation platform. 

 

By using SystemC as a hardware description language and the 

simulation backbone, a semi-homogeneous co-simulation 

environment can be created. The software parts are executed by a 

C/C++ Instruction Set Simulator (ISS), which simulate the 

behaviour of a general purpose processor. The hardware parts are 

described using SystemC. Co-simulation is performed in a 

SystemC environment, with the SystemC kernel as the master 

simulator.  Other similar work using SystemC is reported in 

(Fummi et al., 2007; Yuyama, 2004; Sayinta et al., 2003). There is 

also other semi-homogeneous co-simulation environment 

available, such as GEZEL (Gezel2 Homepage), using the similar 

approach. 

 

The HW/SW co-simulation environment proposed in this work is 

categorized into the semi-homogeneous co-simulation type. Due to 

lack of space in this chapter, we will only provide a description of 

the design of our co-simulation platform at the System Level 

(architectural) design abstraction level (refer to Figure 1.1). Figure 

1.2 shows the design of the proposed co-simulation environment at 

this system abstraction level, which is built on the SystemC kernel 

as the master simulator. The resulting co-design framework 

facilitates architecture exploration that assists the system designer 

in finding the best HW/SW partitioning. In addition, the proposed 
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Figure 1.2 Proposed SystemC-based co-simulation platform. 

 

HW/SW co-simulation platform can be used to validate the 

behaviour for both the hardware and the software modules of the 

embedded SoC, as well as the interaction between them, thus 

permitting the evaluation of the complete system at an early stage 

of the design flow, before any implementation prototype is built. 

 

4.3.1 Software, Hardware, and Communication Modeling 

In the proposed co-simulation platform, the software model-of-

computation (MoC) is scripted using C/C++ high level 

programming language and simulated by an instruction set 

simulator (ISS). An ISS is a simulation model running in a general 

PC, to mimics the behaviour of a dedicated mainframe or 

microprocessor. It is built based on the Instruction Set Architecture 

(ISA) of a dedicated processor. Although SystemC can be used to 

create the ISS, its simulation speed is generally slower compared to 
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the ISS developed by the native C++ language. Besides, there is 

many C/C++ ISS of different processors already available 

compared to the SystemC ISS. In the proposed design platform, we 

choose the SimIt-ARM 2.1 (SimIt-ARM Homepage) as the ISS to 

simulate the software model. It simulates the StrongARM 

architecture. The motivation of choosing the SimIt-ARM is 

because it contains an instruction- and a cycle-accurate simulator, 

which meets our requirement to model a system in time- or cycle-

accuracy. Besides, it is open source and has a very high simulation 

speed, as well as high accuracy. The ARM cross compiler toolkit is 

also available and well-established. In addition, the ISS supports 

memory address mapping to access the coprocessor. 

 

Hardware MoC is modelled in SystemC to model, abstracted either 

behaviourally or RTL. Timed- or cycle accurate model is 

generated. The hardware MoC is also pin-accurate, and this is done 

by having special I/O pins to control the data flow with the ISS via 

IPC module and bus wrapper. To operate the hardware MoC, a 

device driver firmware (FW) need to be scripted using C/C++ 

programming language and simulated by the ISS. 

 

In the communication modelling between the HW and SW 

partition, there are two main components involved, namely: (a) 

Interprocess communication (IPC) module, and (b) the bus 

wrapper. The IPC handles the communication between the ISS and 

the SystemC simulator. The bus wrapper is to ensure the 

synchronization between the system simulation and the ISS. It 

translates the information coming from the ISS into cycle-accurate 

bus transactions. These communication models require the ISS 

source code modification. 

 

4.3.2 Interprocess Communication (IPC) 

Interprocess communication protocol is a technique which 

describes various ways to exchange data between threads in one or 
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more processes. Its objective is to realise the efficient and fast data 

transfer and sharing. There are single-host IPC and IPC across a 

network. Single-host IPCs are such as shared memory and message 

passing using pipe, FIFO, and message queue. The IPC across a 

network are such as socket. In practice, single-host IPC is often 

much faster and sometimes simpler than IPC across a network. 

 

Since SimIt-ARM ISS supports memory address mapping in 

accessing the coprocessor, we choose the shared memory of single-

host IPC method to allow the data communication between the 

HW/SW partitions. It is the fastest form of IPC and no kernel 

involvement occurs in exchanging information between the 

processes. The memory within the SimIt-ARM ISS is used as the 

shared memory to communicate with the other hardware 

coprocessor. The shared memory declares a given section of 

memory to be used by several processors in parallel.  The software 

simulated in the ISS can communicate with the coprocessors by 

accessing user-defined memory locations through memory address 

mapping. The ISS accesses these coprocessors using the same 

instructions that it uses to access memory. The concept is same as 

the memory mapped I/O. In general SoC design, the embedded 

processor also exchanges the data with the other I/O, coprocessor 

or HW accelerators using memory address mapping. 

 

To enable the co-simulation, the macro (COSIM_STUB) of the 

SimIt-ARM needs to be defined. Besides, we need to add two IPC 

modules into ISS, so that it can send/receive data to/from hardware 

MoC through shared memory. In this context, we named the IPC 

modules as iss_source and iss_sink. The iss_source is to send the 

data from ISS to hardware MoC, while the iss_sink is vice versa. 

Referring to Figure 1.2, since the IPC protocol is based on shared 

memory, these two IPC modules are integrated with the ISS 

memory block. Figure 1.3 shows the pseudo code illustrating the 

behaviour of iss_source when the ISS is writing a data to the 

shared memory (send data to hardware MoC). The same case is 
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Figure 1.3 Pseudo code of iss_source IPC module behaviour to 

write memory (send data to hardware). 

 

applied to iss_sink with slightly different behaviour. 

 

4.3.3 Bus Wrapper 

In the proposed ESL platform, we need two wrappers: (1) ISS bus 

wrapper, and (2) IPC wrappers. It is to synchronize the data 

communication between the SystemC hardware MoC with the C++ 

ISS under control of the SystemC master simulation kernel. 

 

Figure 1.4 shows the behavioural flowchart of the ISS bus wrapper. 

We use SystemC clock signal (sc_clock) as the system master 

clock to synchronize the ISS embedded in the bus wrapper, named 

sc_iss. When the SystemC clock triggered, the ISS is also triggered 

for one clock cycle to update the states and internal values. For the 

case of SimIt-ARM ISS, the clock cycle update operation is 

clock_tick() function. 

 

The same method goes to the IPC wrapper design. The IPC 

wrapper is to wrap the C++ IPC module within ISS in the SystemC 

simulation kernel for data communication between HW/SW 

partitions with proper synchronization. It also translates the data 

type from ISS C++ variable to a specific signal that can 

communicate with pin-accurate SystemC hardware model. There 

are two wrappers need to be modelled: (a) sc_isssource, and (b) 

1. If write memory, 

1.1 Check the memory address registration. 

1.2 If  address is registered for hw/sw co-simulation, 

1.2.1 Retrieve the IPC module dedicated to the 

memory address. 

1.2.2 Check the condition flag of the IPC module 

a. If FALSE, write the data to the data register 

b. If TRUE, back to Step 1.2.2. 

1.3 If not registered, do normal memory writing 

1.4 Back to Step 1. 
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Figure 1.4 Behavioural flow chart of sc_iss bus wrapper. 

 

sc_isssink. The sc_isssource is to wrap the iss_source IPC module, 

to send the data from ISS to SystemC hardware MoC. The 

sc_isssink is to wrap the iss_sink IPC module, to receive the data 

from SystemC hardware MoC and read by the ISS. 

 

The only difference between these two IPC wrappers is the 

sc_isssource is synchronized by the SystemC master clock. 

Besides, the data communication between the ISS and the SystemC 

hardware is controlled using a simple handshake protocol, which 

acts as a mutex control. The mutex control (a condition flag) 



14  Advances in Microelectronics 

 

controls the data availability of the data register in the iss_source 

IPC module within the ISS. For sc_isssink, the wrapper is without 

the SystemC clock and the handshake protocol is not required. To 

achieve the proper data synchronization between hardware and 

software partition, the system designer can implements the high-

level two-way handshake protocol in device driver or API. 

 

5.4 CASE STUDY: ELLIPTIC CURVE CRYPTO SoC 

Typically, the EC-based crypto SoC is targeted to perform several 

EC-based cryptographic schemes, such as Elliptic Curve Digital 

Signature Algorithm (ECDSA), Elliptic Curve Diffie-Hellman 

(ECDH) key exchange protocol, etc. Figure 1.5 shows the 

arithmetic hierarchy of EC-based computations on prime finite 

field, GF(p). The main computational operator is the point (or 

scalar) multiplication, which applies EC divisor operations of point 

addition and point doubling in GF(p). These divisor operations 

require several GF(p) field arithmetic operations, mainly modular 

division, modular multiplication, modular addition and modular 

subtraction. 
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Figure 1.5 Arithmetic Hierarchy of EC-based system. 
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Referring to Figure 1.5, the field arithmetic operations (at the 

lowest level in the hierarchy) are realized in a Modular Arithmetic 

Processor (MAP), which can be partitioned either into HW and 

SW. HW is realized as behavioural model with timed-accurate 

based on add-and-shift algorithms as presented in (Hlavac, 2003; 

Shantz, 2001). The HW is paired with firmware (FW) as the device 

driver. SW implements the multi-precision prime field arithmetic 

algorithm with the C source code taken from (Rosing, 1999). The 

operations in the ECC arithmetic hierarchy above the field 

arithmetic operators are all realized in SW. The system designer 

can decide the final HW/SW architecture based on the profiling 

metrics output provided by the HW/SW co-simulation platform to 

fit their design constraint and targeted system performance. 

 

5.5 REFINING THE DESIGN: FROM 

SPECIFICATIONS TO IMPLEMENTATION 

In this section, we scope our discussion to the design and model 

refinement of ECDSA digital signature crypto subsystem. The 

ECDSA subsystem involves the modelling of several crypto 

operations, which include key deployment, message signing and 

signature verification. Due to lack of space, only simple exemplary 

models that are part of the message signing module in ECDSA are 

presented in this section. The corresponding algorithm to be 

mapped to the SoC is given in Figure 1.6. In the figure, the 

Modular Arithmetic Processor (MAP) is main module that 

implements the field arithmetic operations of ECC. 

 

Figure 1.6 ECDSA message signing algorithm. 

1. Generate a random number, k 

2. Compute R = (Rx, Ry) = k*G 

3.  r = Rx (mod n) 

4. e = SHA-1(M) 

5. s = k
-1 

(e + du . r)  (mod n) 

6. Return signature = (r, s) 
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1.5.1 UML Specification Modeling 

As mentioned above, MAP is partitioned into HW and SW, and the 

UML class diagram, shown in Figure 1.7, models the structure of 

MAP. Each of the class models in the class diagram performs a 

specific function, either carried out by hardware or software 

partition. Figure 1.8 shows the UML sequence diagram 

corresponding to the ECDSA signing algorithm given in Figure 

1.6. It depicts the dynamic behaviour of system. Communication 

between each class model is through message passing. The 

functional behaviour within each class model can be described 

using UML state diagram. 

 

1.5.2 SystemC Functional Modeling 

The system-level model (functional) is now derived from the UML 

specifications model described in previous subsection. From the 

UML class diagram (Figure 1.7) each class is modelled to a 
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Figure 1.7 UML class diagram of modular arithmetic processor. 
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SystemC module (SC_MODULE). The behaviour of each module 

is derived from the corresponding state diagram (not shown here, 

for lack of space), and is modelled in a SystemC process 

(SC_THREAD or SC_METHOD). From the UML sequence 

diagram (Figure 1.8), an abstract FIFO channel in SystemC is 

derived to model the communication between the SystemC 

modules. (The FIFO is one of the simplest channels to control the 

data flow.) Figure 1.9 shows the resulting block diagram of 

SystemC untimed functional model. SystemC simulation of this 

model verifies the system architecture and functionality. 

 

ISS Point_multiply mod_mult mod_add mod_div

Compute R = k*G

Return R

r = R.x
mod_mul(d, r, n, &temp1)

Return temp 1 = du.r

mod_add(e, temp1, n, &temp1)

Return temp1  = (e+temp1) mod n

mod_div(temp1, k, n, &s)

Return s = (temp1/k) mod n

Return signature 

= (r, s)

 

Figure 1.8 Sequence diagram of ECDSA signing operation. 
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Figure 1.9 SystemC architectural model. 
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1.5.3 SystemC Timed Architectural Modeling 

At this abstraction level, the designer performs the HW/SW 

partitioning of the system. Figure 1.10 shows the block diagram of 

SystemC timed functional model (TF). The HW blocks of the 

MAP is still in SystemC, while the SW module is now refined into 

C code, that is, as SW MoC for execution in the ISS. 

 

For SystemC co-simulation to be performed, an inter-process 

communication (IPC) module with wrapper is created, and the ISS 

is wrapped with a SystemC bus wrapper. The IPC modules 

facilitate data communication between HW and SW. The bus 

wrapper and IPC wrapper ensure proper synchronization and 

handle the datatype conversion between the partitions. 

 

In this case study, the ISS is SimIt-ARM version 2.2 (SimIT-ARM) 

to provide cycle-accurate simulations. Shared memory is used for 

inter-process communication. Communication between 

components (SW-SW, SW-HW) can be done using this shared 

memory, through SystemC signals. SW simulated in the ISS 

communicates with HW by accessing user-defined memory 

locations sitting in the ISS. Figure 1.11 shows an example of 

SystemC source code of ISS source module in IPC. 
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Figure 1.10 SystemC Timed Functional (TF) model. 
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#include "sc_armsource.h" 

#include "armsim.hpp" 

#include <iostream> 

using namespace std; 

//-------------------------------- 

//      sc_armsource 

//-------------------------------- 

// Constructor 

sc_armsource::sc_armsource(sc_module_name nm) 

: sc_module(nm) , address(0) , arm_sim(0) , interface_id(0) 

{  src = new arm_source; 

 SC_THREAD(device_read); 

  sensitive << clk.pos();  } 

//Destructor 

sc_armsource::~sc_armsource() 

{ delete src;  }  

// Set the parameter of the arm_source 

void sc_armsource::setparam(sc_arm* _arm_sim, unsigned int _address) 

{  arm_sim = _arm_sim; 

 address = _address; 

 interface_id = arm_sim->sim->mem->register_addr(address); 

 register_armsource(interface_id, this->src);   } 

void sc_armsource::device_read() { 

 while(1)  { 

  while (!(src->interface_written))   { 

   //cout << "Waiting ARM processor writing data..." << endl; 

   wait();   } 

  src->reset_flag( ); 

wait();  } } 

Figure 1.11 SystemC code of IPC module (ISS source). 

 

The SystemC hardware MoCs are pin-accurate, and this is done by 

having special I/O pins to control the data flow (unlike in the case 

of the abstract FIFO channel in architectural model). The 

communication delay between each component is estimated 

through access count on every IPC module. The hardware MoC 

can be made timed- or cycle-accurate. In each hardware MoC, the 

designer needs to determine every atomic operation that can be 

executed in parallel of every process of HW blocks. These atomic 
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operations, which can be executed in parallel, are separated from 

each other to different states by adding wait() statements with 

specific delay times. In this way, the SystemC model is able to 

provide cycle-accurate timing estimates, in terms of cycle count. 

 

1.5.4 SystemC Implementation Modeling 

At this abstraction level, HW MoC is refined to an RTL model 

(FSM-datapath). The resulting SystemC implementation model in 

RTL is shown in Figure 1.12, and it can provide a more accurate 

estimation of timing performance of the system. This SystemC 

RTL model is made to be synthesizable. SW and communication 

models are remaining unchanged. 

 

The SystemC implementation model is then refined further to 

produce a RTL model for prototyping into an Altera FPGA 

hardware development board, either through auto translator tool or 

manual translation. The result is the system design shown in Figure 

1.13, where SW on ISS is now translated to C code in Altera Nios 

II processor, and HW is RTL design in VHDL which is synthesize 

to the MAP co-processor IP core. The communication models are 

refined into a system bus interface module based on Altera Avalon 

Memory-Mapped (Avalon-MM) system bus specification. 
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Figure 1.12 SystemC RTL model. 
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Figure 1.13 RTL Implementation model. 

 

5.6 EXPERIMENTAL RESULTS 

Performance test was conducted on the system to measure the 

execution times of the MAP processor designed in different 

HW/SW partitioning. The test vectors are taken from (Certicom, 

1999). Table 1.1 shows the execution speed performances of the 

Modular Arithmetic Processor (MAP) in ECC in different 

configurations of the HW/SW partitioning. The result is dedicated 

to digital signature signing, but the performance metric is similar to 

other ECDSA operations, which is key deployment and digital 

signature verification operations. As mentioned earlier, the field 

arithmetic functions of modular addition, subtraction, 

multiplication and division are being partitioned either in HW or 

SW. In the table, columns marked with an „HW‟ indicate that the 

field operation is performed by HW partition, while columns 

marked with an „SW‟ indicate that the field operation is performed 

in SW partition. The execution speed-up is computed as follows: 

 
Speed-up = Execution time of system implemented completely in SW 

 Execution  time of system partitioned in SW/HW 

 

The test results in Table 1.1 suggest that, for this case study, the 
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Table 1.1 Execution speed performance of ECDSA signature 

signing in different HW/SW partitioning 

 

best HW/SW partitioning is such that, the field operations of 

modular division and multiplication be computed in HW, while the 

modular addition and subtraction operations be performed in SW, 

taking into account the speed-area tradeoff. Intuitively, this is as 

expected, as modular multiplication and division are highly 

compute-intensive, hence should be offloaded to a HW accelerator 

for enhanced system speed. With this kind of performance 

profiling, the designer can explore the design-space and evaluate 

complex SoC solutions quickly and efficiently.  For example, if the 

designer desires to design a server with an extremely high 

performance elliptic curve processing power, then results from 

Table 1.1 indicates that all the field arithmetic computations should 

be hardware accelerated. Such an implementation will have its 

system performance to be about 174 times speed gain over a design 

that is completely implemented in SW. 

 

Performance tests were also conducted to compare the simulation 

speeds between SystemC timed functional (system level) model 

with the corresponding VHDL RTL model. SystemC simulation is 

performed using a terminal in Ubuntu Linux open source 

environment. The RTL simulation is performed on the VHDL 

design synthesized for implementation in an Altera Stratix Nios II-

based FPGA development board using ModelSim 6.0. Both 

SystemC model and the VHDL model apply the same test vectors. 

Table 1.2 shows the simulation speed of prime field arithmetic 

computation, elliptic curve arithmetic computation, and ECDSA 

operations. For this simulation speed comparison, the simulation is 

 

Mod 
Add 

Mod 
Sub 

Mod 
Mult 

Mod 
Div 

Computation 
cycle count (%) 

Communication 
cycle count (%) 

Total 
cycle count 

Speed-
up 

SW SW SW SW 100.00 0.00 1,521,056,507 1 

SW SW SW HW 99.87 0.13 344,953,590 ≈ 4 

SW SW HW HW 87.45 12.55 20,464,814 ≈ 74 

HW HW HW HW 46.07 53.93 8,715,993 ≈ 174 
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Table 1.2 Simulation Speed: System-level Model in SystemC 

against RTL Model in VHDL 

Operations 

Simulation speed 

(seconds) Simulation 

speed gain RTL 

simulation 

SystemC 

simulation 

Prime Field Arithmetic Computation, GF(P) 

Mod Division 20.28  0.072  281 

Mod Multiply 20.66 0.048 430 

Mod  Add  20.34 0.061 333 

Mod Subtract  20.20  0.038 531 

Elliptic Curve Arithmetic Computation 

Point Add  24.98  0.092 271 

Point Doubling 26.88  0.104  258 

Point Multiply 1406.39  6.644  211 

Elliptic Curve Digital Signature Algorithm (ECDSA) 

Key Deployment 1401.24 6.558  213 

Signature Signing 1550.53 6.691 231 

Signature Verification 3007.04 13.074  230 

 

run on Intel Core2 CPU T5500 running at 1.66 GHz with 1GB 

RAM. The simulation speed gain is computed as follows: 

 

Simulation speed gain = RTL simulation 

 SystemC simulation 

 

It is observed that the simulation speed of the SystemC timed 

functional model is far more efficient than the VHDL RTL model, 

that is, at least 200 times faster. 

 

5.7 CONCLUSION 

This chapter has presented a SystemC-based HW/SW co-design 

methodology and co-simulation environment for design of 

embedded SoC. Details of design refinements illustrating the 

design flow, as well as the hardware modelling, software 

modelling and communication modelling are provided using a case 

study on the design of an elliptic curve crypto SoC. This 

methodology and the co-simulation platform  is aimed to enable 
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early SoC design space exploration and system verification, fast 

simulation speed, and testbench reuse. The advantages of the 

proposed co-design framework achieved include: (a) a unified 

HW/SW representation, overcoming the difficulties in verifying 

the complete system and overcoming the incompatilibities across 

the HW/SW boundary, (b) facilitate design space explorations 

which allow different configurations of HW/SW partitioning to be 

evaluated early in the design, leading to more optimal designs 

faster, and (c) provide a well-defined modelling and co-design 

flow, which simplifies specification revision, redesign, leading to 

much improved design time-to-market. 

 

Current implementation of the co-design platform has some 

limitations. Among these drawbacks include: for performance 

analysis, only execution speed is available, area profiling is not yet 

available; heterogeneous co-simulation between SystemC and 

HDL models is not yet available; RTOS modelling is not yet 

supported; manual code translation from one abstraction level to 

another one is prone to error and is time consuming – need 

automatic translators. These outstanding issues are the subject for 

further work in this research. 
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