
 Electronic System Level Design Methodology 1

1

SYSTEMC-BASED

ELECTRONIC SYSTEM LEVEL

DESIGN METHODOLOGY FOR

SoC DESIGN-SPACE EXPLORATION

Yuan Wen, HAU

Mohamed Khalil-Hani

5.1 INTRODUCTION

The trend today is to apply embedded systems based on System-

on-Chip (SoC) in the design of electronic systems. Such SoC

solutions typically consist of embedded processor(s), embedded

memories, hardware accelerators (or IP cores), high-speed

communication interfaces and reconfigurable logic. Consequently,

the development of these electronic systems has become

increasingly complex, as they impose more severe demands (such

as lower cost, higher performance, product quality, security, and

time-to-market). In addition, as Moore‟s Law drives further the

capabilities of digital hardware, there is a demand for greater

number of functionalities to be conceived in a more constrained

design space (Camposano, 1997).

One of the key challenges of the SoC design is the partitioning of

system functionality across the HW/SW dichotomy. A

functionality once relegated to software is now, for enhanced

performance, implemented in hardware, while hardware

components must integrate with higher-level software APIs. In

current CAD methodology, a priori definition of the partition is

2 Advances in Microelectronics

made, thus creating separate hardware and software specifications.

Changes to the HW/SW partitioning necessitate extensive redesign

which usually ends up with sub-optimal designs. Furthermore, with

the introduction of embedded processors in FPGAs, digital

designers are exposed to a new field of CAD, which involves the

concurrent development of both hardware and software (program

executed on the embedded processor).

Another critical drawback of the current CAD methodology is that

it is RTL-centric which, due the increase in circuit complexity,

suffers from long simulation time, which is gradually becoming

unacceptable. It is clear that speed of simulating a complete system

is a critical factor when designing a complex digital system such as

an SoC. This verification issue is further exacerbated when the

amount of test vectors needed for verification rises by a factor of

100 every six years, which is 10 times the increase of the number

of gates on a chip as stated by Moore‟s law (Camposano, 1997). In

addition, the complete verification and validation of the system

functionality is often not possible until a fully working prototype

has been built. This is especially true for a design in a highly

distributed and heterogeneous environment, such as a networked

embedded system (Klingauf and Gunzel, 2005).

Clearly, in order to reduce development time and cost, computer-

aided design (CAD) tools must now include features that facilitate

design-space and architecture exploration, and promote design at a

higher level of abstraction. Among the solutions to the above-

mentioned design issues, being actively pursued today is to capture

the design at the Electronic System Level (ESL) of abstraction, and

applying the standard design language of SystemC (Bocchio et al.,

2005; SystemC Homepage). This approach will require a

hardware-software (HW/SW) co-design and co-simulation

framework that facilitates design-space exploration and provide

 Electronic System Level Design Methodology 3

high simulation speed. References (Fummi et al., 2007; Benign et

al., 2003; Yuyama et al., 2004) have proposed co-simulation

methodologies based on SystemC with an Instruction Set Simulator

(ISS) as a model of the processor in a common source file. In

(Sayinta et al., 2003), a SystemC abstract model of the system was

used as a golden reference model for enabling a vertical reuse of

testbenches during the whole design process. Work on SystemC-

VHDL co-simulation has been reported in (Bombana and Bruschi,

2003; Maciel et al., 2007), in which discussions were provided on

the advantages of the technique to validate new models and reuse

previous designs. References (Hodjat et al., 2005; Sakiyama et al.,

2006; Gezel2 Homepage; Schaumont and Verbauwhede, 2006)

proposed GEZEL co-design platform, and illustrated its application

in the design of an elliptic curve cryptographic coprocessor. Much

research is ongoing on this subject of ESL, but however, most

current SoC design platform still suffers from limited architecture

exploration, lacks distributed, real-time support and standard

design language and IP reuse facilities.

In this chapter, we present a SystemC-based ESL HW/SW co-

design methodology used in the design of SoC-based embedded

systems. This methodology aims to provide the ability to quickly

develop and evaluate complex SoC and embedded system designs.

The associated co-simulation platform is implemented entirely in

SystemC language, except for the Instruction Set Simulator (ISS),

which is wrapped under SystemC. This methodology and the

design platform enable early system functionality verification, as

well as new algorithm exploration before the final implementation

prototype is available. It can be used to validate the behaviour for

both the hardware and the software modules of the embedded SoC,

as well as the interaction between them with timed/cycle-accuracy.

By having an early simulation model, it permits the evaluation of

the complete system at an early stage of the design flow. This can

4 Advances in Microelectronics

avoid extensive redesigning, which can contribute to significantly

long design time and incur high design cost, and furthermore, the

result usually ends up with sub-optimal designs. Besides, the

framework also aims to facilitate architecture exploration that

assists the system designer in finding the best HW/SW dichotomy.

Another key advantage is the speed of simulation at the system

level is significantly faster than RTL simulation of the whole

system. It is also independent of any vendor specific tools.

Section 1.2 of this chapter describes the proposed SystemC-based

ESL co-design methodology. Section 1.3 briefly describes the

proposed co-design/co-simulation platform. Section 1.4 presents

the design of an Elliptic Curve Crypto (ECC) SoC as a case study

to illustrate the design flow, and the design refinement steps

applied are described in Section 1.5. Results and conclusions are

provided in Sections 1.6 and 1.7 respectively.

5.2 PROPOSED SYSTEMC-BASED ESL HW/SW CO-

DESIGN METHODOLOGY

Figure 1.1 shows the architecture of the proposed SystemC-based

ESL HW/SW co-design methodology, which consists of four

design abstraction levels, namely: (a) specifications level - UML

modelling, (b) system level (functional) - SystemC modelling, (c)

system level (architectural) - modelling in SystemC and C/C++,

and (d) RTL - modelling in HDL and C/C++. In the proposed

methodology, SystemC is mainly used as system modelling

language and simulation kernel at the system levels of abstraction.

It is an extension of C++ class library, which provides both

modelling and simulation kernels based on discrete event

structures. It can be used to effectively create cycle-accurate

models of software algorithms, hardware architectures, interfaces,

and system-level designs (SystemC Homepage). One of the key

strengths of SystemC is that it allows modelling at different levels

of abstraction, supports the refinement of high level models down

 Electronic System Level Design Methodology 5

SystemC Co-simulation Environment

Low

UML Specification Model

Structural – Class Diagram)

Behavioral – Sequence Diagram, State Diagram

Untimed Architectural Model

HW
(Functional Block)

SW
(Functional Block)

System Level

(Architectural)

A
b

s
tr

a
c
ti
o

n
 L

e
v
e

l
High

Timed/Cycle-Accurate Model

HW
(SystemC)

SoC Implementation Model

HW
(HDL)

Embedded

Processor

(c/c++ SW)

Testbench

Design

specification

System Level

(Functional)

System

Bus

Interface

Abstract

channel

Bus Wrapper

SW

(ISS)

C/C++

SW IP

Library

SystemC

HW IP

Library

HDL

HW IP

Library

RTL

IP
C

M
o

d
u

le

System Bus

Figure 1.1 HW/SW co-design environment.

to low levels abstraction and even combining them into a single

model (Grotker et al., 2002; Gerlach and Rosenstiel, 2000).

SystemC also can model both hardware and software modules in

the same source file. A SystemC model is an executable

specification of a system, which means a C++ program that

exhibits the same behaviour as the system when executed.

With reference to the diagram of the proposed HW/SW co-design

methodology depicted in Figure 1.1, we now describe the design

flow from specification model to the final implementation model

6 Advances in Microelectronics

targeted for prototyping in an FPGA development board. The

design flow begins with the modelling of the specifications using

UML. The light-weight UML 2.0 can be used to model almost any

type of application, running on any combination of hardware,

operating systems, programming languages, and networks (UML

Homepage). In this work, the UML class diagram is used to

describe the static architecture, while the UML sequence and state

diagrams are used to describe the dynamic behaviour of the system

to be designed. Essentially, the UML specification model serves as

a “schematic” design entry or paper specification model for the

SystemC executable model.

From the UML specification model, we obtain a system level

functional model. This is a SystemC untimed functional model

(UTF) of the system architecture, and it is the golden reference

model to verify the system functionality and algorithm in the

following design abstraction level. It bridges the algorithmic world

(possibly validated in Matlab) to the lower levels in the design

hierarchy.

At the next design level, the system level architectural model is

obtained, where partitioning is made for hardware (HW) and

software (SW). Timed functional models (TF) of the HW and SW

are designed in parallel, with the HW functional models being

described behaviourally in SystemC, while the SW and hardware

device driver firmware (FW) blocks are written in C and executed

in an Instruction Set Simulator (ISS), which is wrapped under a

SystemC bus wrapper. Depending on the modelling accuracy

required, when needed, cycle-accurate (CA) of TF can be created

for performance-critical modules. Co-simulation of the SystemC

HW and SystemC-ISS SW can now be performed to verify the

functionality of the whole system.

This co-simulation can be used to check the interoperability of a

 Electronic System Level Design Methodology 7

single designed module (HW or SW) with the rest of the system

without having the whole system being first implemented. Also,

the co-simulation can provide hardware profiling which assists the

system designer to find the best HW/SW partitioning such that a

balance between area constraints and targeted system performance

(area-speed design tradeoffs) can be achieved.

Once the system architecture and HW/SW partitioning has been

chosen, the system-level design above is refined further to RTL

model for implementation. At this implementation level, all models

of the computation and communication detail are taken into

consideration. The main advantage of this methodology is that, by

having an early simulation model of the complete system, system

verification can be made well before the final implementation of

the design is available; unlike in the traditional RTL methodology,

system validation can only be performed when a fully functional

prototype has been built. HW/SW integration can be explored at

high level of design abstraction, and design errors can be

discovered in early design cycle to shorten the product time-to-

market.

5.3 SYSTEMC-BASED HW/SW CO-SIMULATION

PLATFORM

Co-simulation design environments, currently under research, can

be categorized as: (1) homogeneous, (2) semi-homogeneous, and

(3) heterogeneous types (Fummi et al., 2007). The work in

(Ptolemy Homepage; Berkeley, 1999; Slomka et al. 2000)

pioneered the homogeneous co-simulation environment, in which a

single engine is used for the simulation of both HW and SW

components. Good simulation performance can be obtained with

this method. However, the technique is just adequate in the very

first stage of the development, before the HW/SW partitioning. It is

because the HW and SW design flow need different techniques and

tools when the abstraction level decreases toward a real

8 Advances in Microelectronics

implementation.

Heterogeneous co-simulation environments use distinct simulation

kernel and different language descriptions for HW and SW side.

HW is normally described using HDL, while SW is modelled using

high level language, such as C/C++/Java. It allows the mix-

abstraction level co-simulation to produce a higher timing accuracy

model, but it is suffered with the low simulation speed compared to

the homogeneous environment. (Bombana and Bruschi, 2003;

Maciel et al., 2007) are two of the examples that propose

heterogeneous co-simulation platform.

By using SystemC as a hardware description language and the

simulation backbone, a semi-homogeneous co-simulation

environment can be created. The software parts are executed by a

C/C++ Instruction Set Simulator (ISS), which simulate the

behaviour of a general purpose processor. The hardware parts are

described using SystemC. Co-simulation is performed in a

SystemC environment, with the SystemC kernel as the master

simulator. Other similar work using SystemC is reported in

(Fummi et al., 2007; Yuyama, 2004; Sayinta et al., 2003). There is

also other semi-homogeneous co-simulation environment

available, such as GEZEL (Gezel2 Homepage), using the similar

approach.

The HW/SW co-simulation environment proposed in this work is

categorized into the semi-homogeneous co-simulation type. Due to

lack of space in this chapter, we will only provide a description of

the design of our co-simulation platform at the System Level

(architectural) design abstraction level (refer to Figure 1.1). Figure

1.2 shows the design of the proposed co-simulation environment at

this system abstraction level, which is built on the SystemC kernel

as the master simulator. The resulting co-design framework

facilitates architecture exploration that assists the system designer

in finding the best HW/SW partitioning. In addition, the proposed

 Electronic System Level Design Methodology 9

Bus Wrapper

Instruction Set Simulator (ISS)

IPC Module

(iss_source)

IPC Module

(iss_sink)

manager

kernel

Cache

Others

SystemC-based Semi-Homogeneous HW/SW Co-Simulation Environment

IPC Module

(iss_source)

IPC Wrapper

:

memory

:

IPC Module

(iss_sink)

System C

master clock

Software Modelling
Communication

Modelling

Hardware

Modelling

SystemC

HW

Module

IPC Wrapper

sc_isssource

sc_isssink

Figure 1.2 Proposed SystemC-based co-simulation platform.

HW/SW co-simulation platform can be used to validate the

behaviour for both the hardware and the software modules of the

embedded SoC, as well as the interaction between them, thus

permitting the evaluation of the complete system at an early stage

of the design flow, before any implementation prototype is built.

4.3.1 Software, Hardware, and Communication Modeling

In the proposed co-simulation platform, the software model-of-

computation (MoC) is scripted using C/C++ high level

programming language and simulated by an instruction set

simulator (ISS). An ISS is a simulation model running in a general

PC, to mimics the behaviour of a dedicated mainframe or

microprocessor. It is built based on the Instruction Set Architecture

(ISA) of a dedicated processor. Although SystemC can be used to

create the ISS, its simulation speed is generally slower compared to

10 Advances in Microelectronics

the ISS developed by the native C++ language. Besides, there is

many C/C++ ISS of different processors already available

compared to the SystemC ISS. In the proposed design platform, we

choose the SimIt-ARM 2.1 (SimIt-ARM Homepage) as the ISS to

simulate the software model. It simulates the StrongARM

architecture. The motivation of choosing the SimIt-ARM is

because it contains an instruction- and a cycle-accurate simulator,

which meets our requirement to model a system in time- or cycle-

accuracy. Besides, it is open source and has a very high simulation

speed, as well as high accuracy. The ARM cross compiler toolkit is

also available and well-established. In addition, the ISS supports

memory address mapping to access the coprocessor.

Hardware MoC is modelled in SystemC to model, abstracted either

behaviourally or RTL. Timed- or cycle accurate model is

generated. The hardware MoC is also pin-accurate, and this is done

by having special I/O pins to control the data flow with the ISS via

IPC module and bus wrapper. To operate the hardware MoC, a

device driver firmware (FW) need to be scripted using C/C++

programming language and simulated by the ISS.

In the communication modelling between the HW and SW

partition, there are two main components involved, namely: (a)

Interprocess communication (IPC) module, and (b) the bus

wrapper. The IPC handles the communication between the ISS and

the SystemC simulator. The bus wrapper is to ensure the

synchronization between the system simulation and the ISS. It

translates the information coming from the ISS into cycle-accurate

bus transactions. These communication models require the ISS

source code modification.

4.3.2 Interprocess Communication (IPC)

Interprocess communication protocol is a technique which

describes various ways to exchange data between threads in one or

 Electronic System Level Design Methodology 11

more processes. Its objective is to realise the efficient and fast data

transfer and sharing. There are single-host IPC and IPC across a

network. Single-host IPCs are such as shared memory and message

passing using pipe, FIFO, and message queue. The IPC across a

network are such as socket. In practice, single-host IPC is often

much faster and sometimes simpler than IPC across a network.

Since SimIt-ARM ISS supports memory address mapping in

accessing the coprocessor, we choose the shared memory of single-

host IPC method to allow the data communication between the

HW/SW partitions. It is the fastest form of IPC and no kernel

involvement occurs in exchanging information between the

processes. The memory within the SimIt-ARM ISS is used as the

shared memory to communicate with the other hardware

coprocessor. The shared memory declares a given section of

memory to be used by several processors in parallel. The software

simulated in the ISS can communicate with the coprocessors by

accessing user-defined memory locations through memory address

mapping. The ISS accesses these coprocessors using the same

instructions that it uses to access memory. The concept is same as

the memory mapped I/O. In general SoC design, the embedded

processor also exchanges the data with the other I/O, coprocessor

or HW accelerators using memory address mapping.

To enable the co-simulation, the macro (COSIM_STUB) of the

SimIt-ARM needs to be defined. Besides, we need to add two IPC

modules into ISS, so that it can send/receive data to/from hardware

MoC through shared memory. In this context, we named the IPC

modules as iss_source and iss_sink. The iss_source is to send the

data from ISS to hardware MoC, while the iss_sink is vice versa.

Referring to Figure 1.2, since the IPC protocol is based on shared

memory, these two IPC modules are integrated with the ISS

memory block. Figure 1.3 shows the pseudo code illustrating the

behaviour of iss_source when the ISS is writing a data to the

shared memory (send data to hardware MoC). The same case is

12 Advances in Microelectronics

Figure 1.3 Pseudo code of iss_source IPC module behaviour to

write memory (send data to hardware).

applied to iss_sink with slightly different behaviour.

4.3.3 Bus Wrapper

In the proposed ESL platform, we need two wrappers: (1) ISS bus

wrapper, and (2) IPC wrappers. It is to synchronize the data

communication between the SystemC hardware MoC with the C++

ISS under control of the SystemC master simulation kernel.

Figure 1.4 shows the behavioural flowchart of the ISS bus wrapper.

We use SystemC clock signal (sc_clock) as the system master

clock to synchronize the ISS embedded in the bus wrapper, named

sc_iss. When the SystemC clock triggered, the ISS is also triggered

for one clock cycle to update the states and internal values. For the

case of SimIt-ARM ISS, the clock cycle update operation is

clock_tick() function.

The same method goes to the IPC wrapper design. The IPC

wrapper is to wrap the C++ IPC module within ISS in the SystemC

simulation kernel for data communication between HW/SW

partitions with proper synchronization. It also translates the data

type from ISS C++ variable to a specific signal that can

communicate with pin-accurate SystemC hardware model. There

are two wrappers need to be modelled: (a) sc_isssource, and (b)

1. If write memory,

1.1 Check the memory address registration.

1.2 If address is registered for hw/sw co-simulation,

1.2.1 Retrieve the IPC module dedicated to the

memory address.

1.2.2 Check the condition flag of the IPC module

a. If FALSE, write the data to the data register

b. If TRUE, back to Step 1.2.2.

1.3 If not registered, do normal memory writing

1.4 Back to Step 1.

 Electronic System Level Design Methodology 13

START

Initialize ISS

END

SystemC clock

triggered?

ISS running?

Update ISS

yes

yes

No

No

SystemC

simulation finish?

No

Yes

General ISS

START

arm_simulator->initialize()

SimIt-ARM ISS

Waiting

END

SystemC clock

triggered?

arm_simulator->running?

arm_simulator->clock_tick()

yes

yes

No

No

SystemC simulation

finish?

No

Yes

wait()

Stop

SystemC

simulator

sc_stop()

Figure 1.4 Behavioural flow chart of sc_iss bus wrapper.

sc_isssink. The sc_isssource is to wrap the iss_source IPC module,

to send the data from ISS to SystemC hardware MoC. The

sc_isssink is to wrap the iss_sink IPC module, to receive the data

from SystemC hardware MoC and read by the ISS.

The only difference between these two IPC wrappers is the

sc_isssource is synchronized by the SystemC master clock.

Besides, the data communication between the ISS and the SystemC

hardware is controlled using a simple handshake protocol, which

acts as a mutex control. The mutex control (a condition flag)

14 Advances in Microelectronics

controls the data availability of the data register in the iss_source

IPC module within the ISS. For sc_isssink, the wrapper is without

the SystemC clock and the handshake protocol is not required. To

achieve the proper data synchronization between hardware and

software partition, the system designer can implements the high-

level two-way handshake protocol in device driver or API.

5.4 CASE STUDY: ELLIPTIC CURVE CRYPTO SoC

Typically, the EC-based crypto SoC is targeted to perform several

EC-based cryptographic schemes, such as Elliptic Curve Digital

Signature Algorithm (ECDSA), Elliptic Curve Diffie-Hellman

(ECDH) key exchange protocol, etc. Figure 1.5 shows the

arithmetic hierarchy of EC-based computations on prime finite

field, GF(p). The main computational operator is the point (or

scalar) multiplication, which applies EC divisor operations of point

addition and point doubling in GF(p). These divisor operations

require several GF(p) field arithmetic operations, mainly modular

division, modular multiplication, modular addition and modular

subtraction.

Mixed HW / SW Architecture

SW

MAP (add-and-shift algo.)

mod.

div.

mod.

mul.

mod.

add.

mod.

sub.

MAP Software

(affine coordinate)

All-software SHA or

All-hardware SHA

All-software RNG

ECDSA software

ECC

EC-based

Scheme

Scalar

Multiplication

GF(p) Field Arithmetic

Operations

(modular multiplication,

modular division, modular addition, etc)

Divisor Operations
(point doubling, point addition)

MAP
Firmware

MAP Software

(LSB-first algorithm)

RNG

Firmware

SHA

Firmware

Figure 1.5 Arithmetic Hierarchy of EC-based system.

 Electronic System Level Design Methodology 15

Referring to Figure 1.5, the field arithmetic operations (at the

lowest level in the hierarchy) are realized in a Modular Arithmetic

Processor (MAP), which can be partitioned either into HW and

SW. HW is realized as behavioural model with timed-accurate

based on add-and-shift algorithms as presented in (Hlavac, 2003;

Shantz, 2001). The HW is paired with firmware (FW) as the device

driver. SW implements the multi-precision prime field arithmetic

algorithm with the C source code taken from (Rosing, 1999). The

operations in the ECC arithmetic hierarchy above the field

arithmetic operators are all realized in SW. The system designer

can decide the final HW/SW architecture based on the profiling

metrics output provided by the HW/SW co-simulation platform to

fit their design constraint and targeted system performance.

5.5 REFINING THE DESIGN: FROM

SPECIFICATIONS TO IMPLEMENTATION

In this section, we scope our discussion to the design and model

refinement of ECDSA digital signature crypto subsystem. The

ECDSA subsystem involves the modelling of several crypto

operations, which include key deployment, message signing and

signature verification. Due to lack of space, only simple exemplary

models that are part of the message signing module in ECDSA are

presented in this section. The corresponding algorithm to be

mapped to the SoC is given in Figure 1.6. In the figure, the

Modular Arithmetic Processor (MAP) is main module that

implements the field arithmetic operations of ECC.

Figure 1.6 ECDSA message signing algorithm.

1. Generate a random number, k

2. Compute R = (Rx, Ry) = k*G

3. r = Rx (mod n)

4. e = SHA-1(M)

5. s = k
-1

(e + du . r) (mod n)

6. Return signature = (r, s)

16 Advances in Microelectronics

1.5.1 UML Specification Modeling

As mentioned above, MAP is partitioned into HW and SW, and the

UML class diagram, shown in Figure 1.7, models the structure of

MAP. Each of the class models in the class diagram performs a

specific function, either carried out by hardware or software

partition. Figure 1.8 shows the UML sequence diagram

corresponding to the ECDSA signing algorithm given in Figure

1.6. It depicts the dynamic behaviour of system. Communication

between each class model is through message passing. The

functional behaviour within each class model can be described

using UML state diagram.

1.5.2 SystemC Functional Modeling

The system-level model (functional) is now derived from the UML

specifications model described in previous subsection. From the

UML class diagram (Figure 1.7) each class is modelled to a

class Class Model

Top

MAP

mod_div

mod_mult

mod_add

mod_sub

ISS

Figure 1.7 UML class diagram of modular arithmetic processor.

 Electronic System Level Design Methodology 17

SystemC module (SC_MODULE). The behaviour of each module

is derived from the corresponding state diagram (not shown here,

for lack of space), and is modelled in a SystemC process

(SC_THREAD or SC_METHOD). From the UML sequence

diagram (Figure 1.8), an abstract FIFO channel in SystemC is

derived to model the communication between the SystemC

modules. (The FIFO is one of the simplest channels to control the

data flow.) Figure 1.9 shows the resulting block diagram of

SystemC untimed functional model. SystemC simulation of this

model verifies the system architecture and functionality.

ISS Point_multiply mod_mult mod_add mod_div

Compute R = k*G

Return R

r = R.x
mod_mul(d, r, n, &temp1)

Return temp 1 = du.r

mod_add(e, temp1, n, &temp1)

Return temp1 = (e+temp1) mod n

mod_div(temp1, k, n, &s)

Return s = (temp1/k) mod n

Return signature

= (r, s)

Figure 1.8 Sequence diagram of ECDSA signing operation.

SW partition of MAP HW partition of MAP

SC_THREAD() /

SC_METHOD()

SC_THREAD()/

SC_METHOD()

ISS

SC_THREAD()/

SC_METHOD()
FIFO FIFO

Figure 1.9 SystemC architectural model.

18 Advances in Microelectronics

1.5.3 SystemC Timed Architectural Modeling

At this abstraction level, the designer performs the HW/SW

partitioning of the system. Figure 1.10 shows the block diagram of

SystemC timed functional model (TF). The HW blocks of the

MAP is still in SystemC, while the SW module is now refined into

C code, that is, as SW MoC for execution in the ISS.

For SystemC co-simulation to be performed, an inter-process

communication (IPC) module with wrapper is created, and the ISS

is wrapped with a SystemC bus wrapper. The IPC modules

facilitate data communication between HW and SW. The bus

wrapper and IPC wrapper ensure proper synchronization and

handle the datatype conversion between the partitions.

In this case study, the ISS is SimIt-ARM version 2.2 (SimIT-ARM)

to provide cycle-accurate simulations. Shared memory is used for

inter-process communication. Communication between

components (SW-SW, SW-HW) can be done using this shared

memory, through SystemC signals. SW simulated in the ISS

communicates with HW by accessing user-defined memory

locations sitting in the ISS. Figure 1.11 shows an example of

SystemC source code of ISS source module in IPC.

IPC wrapperSystemC

Bus Wrapper

C++ ISS ISS

Source
Software

Partition

of MAP

(C/C++)
ISS

Sink

SystemC HW

MAP

atomic

operation

atomic

operation

atomic

operation

wait()

wait()

operand

address

control

address

status

address

result

address

input

signals

control

signals

status

signals

output

signals

MAP
FIrmware

Figure 1.10 SystemC Timed Functional (TF) model.

 Electronic System Level Design Methodology 19

#include "sc_armsource.h"

#include "armsim.hpp"

#include <iostream>

using namespace std;

//--------------------------------

// sc_armsource

//--------------------------------

// Constructor

sc_armsource::sc_armsource(sc_module_name nm)

: sc_module(nm) , address(0) , arm_sim(0) , interface_id(0)

{ src = new arm_source;

 SC_THREAD(device_read);

 sensitive << clk.pos(); }

//Destructor

sc_armsource::~sc_armsource()

{ delete src; }

// Set the parameter of the arm_source

void sc_armsource::setparam(sc_arm* _arm_sim, unsigned int _address)

{ arm_sim = _arm_sim;

 address = _address;

 interface_id = arm_sim->sim->mem->register_addr(address);

 register_armsource(interface_id, this->src); }

void sc_armsource::device_read() {

 while(1) {

 while (!(src->interface_written)) {

 //cout << "Waiting ARM processor writing data..." << endl;

 wait(); }

 src->reset_flag();

wait(); } }

Figure 1.11 SystemC code of IPC module (ISS source).

The SystemC hardware MoCs are pin-accurate, and this is done by

having special I/O pins to control the data flow (unlike in the case

of the abstract FIFO channel in architectural model). The

communication delay between each component is estimated

through access count on every IPC module. The hardware MoC

can be made timed- or cycle-accurate. In each hardware MoC, the

designer needs to determine every atomic operation that can be

executed in parallel of every process of HW blocks. These atomic

20 Advances in Microelectronics

operations, which can be executed in parallel, are separated from

each other to different states by adding wait() statements with

specific delay times. In this way, the SystemC model is able to

provide cycle-accurate timing estimates, in terms of cycle count.

1.5.4 SystemC Implementation Modeling

At this abstraction level, HW MoC is refined to an RTL model

(FSM-datapath). The resulting SystemC implementation model in

RTL is shown in Figure 1.12, and it can provide a more accurate

estimation of timing performance of the system. This SystemC

RTL model is made to be synthesizable. SW and communication

models are remaining unchanged.

The SystemC implementation model is then refined further to

produce a RTL model for prototyping into an Altera FPGA

hardware development board, either through auto translator tool or

manual translation. The result is the system design shown in Figure

1.13, where SW on ISS is now translated to C code in Altera Nios

II processor, and HW is RTL design in VHDL which is synthesize

to the MAP co-processor IP core. The communication models are

refined into a system bus interface module based on Altera Avalon

Memory-Mapped (Avalon-MM) system bus specification.

SystemC HW

MAP

Control unit

Datapath

Unit

c
o

n
tro

l

s
ta

tu
s

IPC wrapper

ISS

Source

ISS

Sink

operand

address

control

address

status

address

result

address

input

signals

control

signals

status

signals

output

signals

SystemC

Bus Wrapper

C++ ISS

Software

Partition

of MAP

(C/C++)

MAP
FIrmware

Figure 1.12 SystemC RTL model.

 Electronic System Level Design Methodology 21

HW MAP CoprocessorNios II

Processor
System

Bus

Interface

Module

HDL

HW MAP

input

signals

control

signal

status

signal

output

signal

Control unit

Datapath

Unit

c
o

n
tro

l

s
ta

tu
s

R
e

g
is

te
r

F
ile

s

A
lt
e

ra
 A

v
a

lo
n

 B
u

s

Software

Partition

of MAP

(C/C++)

MAP
FIrmware

Figure 1.13 RTL Implementation model.

5.6 EXPERIMENTAL RESULTS

Performance test was conducted on the system to measure the

execution times of the MAP processor designed in different

HW/SW partitioning. The test vectors are taken from (Certicom,

1999). Table 1.1 shows the execution speed performances of the

Modular Arithmetic Processor (MAP) in ECC in different

configurations of the HW/SW partitioning. The result is dedicated

to digital signature signing, but the performance metric is similar to

other ECDSA operations, which is key deployment and digital

signature verification operations. As mentioned earlier, the field

arithmetic functions of modular addition, subtraction,

multiplication and division are being partitioned either in HW or

SW. In the table, columns marked with an „HW‟ indicate that the

field operation is performed by HW partition, while columns

marked with an „SW‟ indicate that the field operation is performed

in SW partition. The execution speed-up is computed as follows:

Speed-up = Execution time of system implemented completely in SW

 Execution time of system partitioned in SW/HW

The test results in Table 1.1 suggest that, for this case study, the

22 Advances in Microelectronics

Table 1.1 Execution speed performance of ECDSA signature

signing in different HW/SW partitioning

best HW/SW partitioning is such that, the field operations of

modular division and multiplication be computed in HW, while the

modular addition and subtraction operations be performed in SW,

taking into account the speed-area tradeoff. Intuitively, this is as

expected, as modular multiplication and division are highly

compute-intensive, hence should be offloaded to a HW accelerator

for enhanced system speed. With this kind of performance

profiling, the designer can explore the design-space and evaluate

complex SoC solutions quickly and efficiently. For example, if the

designer desires to design a server with an extremely high

performance elliptic curve processing power, then results from

Table 1.1 indicates that all the field arithmetic computations should

be hardware accelerated. Such an implementation will have its

system performance to be about 174 times speed gain over a design

that is completely implemented in SW.

Performance tests were also conducted to compare the simulation

speeds between SystemC timed functional (system level) model

with the corresponding VHDL RTL model. SystemC simulation is

performed using a terminal in Ubuntu Linux open source

environment. The RTL simulation is performed on the VHDL

design synthesized for implementation in an Altera Stratix Nios II-

based FPGA development board using ModelSim 6.0. Both

SystemC model and the VHDL model apply the same test vectors.

Table 1.2 shows the simulation speed of prime field arithmetic

computation, elliptic curve arithmetic computation, and ECDSA

operations. For this simulation speed comparison, the simulation is

Mod
Add

Mod
Sub

Mod
Mult

Mod
Div

Computation
cycle count (%)

Communication
cycle count (%)

Total
cycle count

Speed-
up

SW SW SW SW 100.00 0.00 1,521,056,507 1

SW SW SW HW 99.87 0.13 344,953,590 ≈ 4

SW SW HW HW 87.45 12.55 20,464,814 ≈ 74

HW HW HW HW 46.07 53.93 8,715,993 ≈ 174

 Electronic System Level Design Methodology 23

Table 1.2 Simulation Speed: System-level Model in SystemC

against RTL Model in VHDL

Operations

Simulation speed

(seconds) Simulation

speed gain RTL

simulation

SystemC

simulation

Prime Field Arithmetic Computation, GF(P)

Mod Division 20.28 0.072 281

Mod Multiply 20.66 0.048 430

Mod Add 20.34 0.061 333

Mod Subtract 20.20 0.038 531

Elliptic Curve Arithmetic Computation

Point Add 24.98 0.092 271

Point Doubling 26.88 0.104 258

Point Multiply 1406.39 6.644 211

Elliptic Curve Digital Signature Algorithm (ECDSA)

Key Deployment 1401.24 6.558 213

Signature Signing 1550.53 6.691 231

Signature Verification 3007.04 13.074 230

run on Intel Core2 CPU T5500 running at 1.66 GHz with 1GB

RAM. The simulation speed gain is computed as follows:

Simulation speed gain = RTL simulation

 SystemC simulation

It is observed that the simulation speed of the SystemC timed

functional model is far more efficient than the VHDL RTL model,

that is, at least 200 times faster.

5.7 CONCLUSION

This chapter has presented a SystemC-based HW/SW co-design

methodology and co-simulation environment for design of

embedded SoC. Details of design refinements illustrating the

design flow, as well as the hardware modelling, software

modelling and communication modelling are provided using a case

study on the design of an elliptic curve crypto SoC. This

methodology and the co-simulation platform is aimed to enable

24 Advances in Microelectronics

early SoC design space exploration and system verification, fast

simulation speed, and testbench reuse. The advantages of the

proposed co-design framework achieved include: (a) a unified

HW/SW representation, overcoming the difficulties in verifying

the complete system and overcoming the incompatilibities across

the HW/SW boundary, (b) facilitate design space explorations

which allow different configurations of HW/SW partitioning to be

evaluated early in the design, leading to more optimal designs

faster, and (c) provide a well-defined modelling and co-design

flow, which simplifies specification revision, redesign, leading to

much improved design time-to-market.

Current implementation of the co-design platform has some

limitations. Among these drawbacks include: for performance

analysis, only execution speed is available, area profiling is not yet

available; heterogeneous co-simulation between SystemC and

HDL models is not yet available; RTOS modelling is not yet

supported; manual code translation from one abstraction level to

another one is prone to error and is time consuming – need

automatic translators. These outstanding issues are the subject for

further work in this research.

REFERENCES

Benign, L. et al. (2003). SystemC co-simulation and emulation of

multi-processor Systems-on-Chip. IEEE Computer.

36(4):53-59.

Bocchio, S., E. Riccobene, A. Rosti and P. Scandurra. (2005). A

HW/SW co-design environment based on UML and

SystemC. Forum on Specification & Design Languages.

Bombana, M. and F. Bruschi. (2003). SystemC-VHDL co-

simulation and synthesis in the HW domain. Proc. Design,

Automation and Test in Europe Conference and Exhibition.

 Electronic System Level Design Methodology 25

Camposano, R. (1997). Automating system implementation from

system specification. Talk at Synopsys University Day,

Aachen.

Certicom. (1999). GEC2: test vectors for SEC1. Working Draft

Version 0.3.

Fummi, F., M. Loghi, G. Perbellini and M. Poncino. (2007)

SystemC co-simulation for core-based embedded system.

Springer Journal, Design Automation Embedded System.

11:141-166.

Gerlach, J. and W. Rosenstiel. (2000). System level design using

the SystemC modeling platform. Workshop on System

Design Automation. :185-189.

Grotker, T., S. Liao, G. Martin and S. Swan. (2002). System Design

with SystemC, Kluwer.

Hlavac, J. (2003). ALU for computing SLE’s in modular

arithmetic. Diploma Thesis. Czech Technical University in

Prague.

Hodjat, A., L. Batina, D. Hwang and I. Verbauwhede. (2005). A

hyperelliptic curve cryto co-processor for an 8051

microcontroller. IEEE Workshop on Signal Processing

Systems.

Home – Open SystemC Initiative (OSCI). www.systemc.org.

Klingauf, W. and R. Gunzel. (2005). From TLM to FPGA: rapid

prototyping with SystemC and Transaction Level

Modelling. Proc. of Int. Conf. of Field Programmable

Technology :285-286.

Maciel, R. et al. (2007). A methodology and toolset to enable

SystemC and VHDL co-simulation. IEEE Computer

Society Annual Symp. on VLSI.

Main Page – Gezel2. http://rijndael.ece.vt.edu/gezel2

Object Management Group – UML. www.uml.org.

Ptolemy Project Home Page. http://ptolemy.eecs.berkeley.edu/ind-

ex.htm.

Rosing, M. (1999). Implementing elliptic curve cryptography,

Manning.

http://www.systemc.org/
http://www.uml.org/

26 Advances in Microelectronics

Sakiyama, K., L. Batina, B. Preneel and I. Verbauwhede. (2006).

Superscalar co-processor for high-speed elliptic curve-

based cryptography. In Cryptographic Hardware and

Embedded Systems – CHES 2006, Lecture Notes in

Computer Science, Springer-Verlag. 4249/2006:415-429.

Sayinta, A. et al. (2003). A mixed abstraction level co-simulation

case study using SystemC for System on Chip verification.

Proc. Design, Automation and Test in Europe Conference

and Exhibition.

Schaumont, P. and I. Verbauwhede. (2006). A component-based

design environment for ESL design. IEEE Design & Test of

Computers. :338-347.

Shantz, S. C. (2001). From Euclid's GCD to Montgomery

multiplication to the great divide. Technical Report TR-

2001-95, Sun Microsystems Laboratories.

SimIt-ARM. http://simit-arm.sourceforge.net/.

Slomka, F., M. Dorfel, R. Munzenberger and R. Hofmann. (2000).

Hardware/software co-design and rapid prototyping of

embedded systems. IEEE Design & Test of Computers.

17(2):28-38.

University of California, Berkeley. (1999). A framework for

hardware-software co-design of embedded systems. POLIS

Release 0.4, December 1999.

Yuyama, Y., M. Aramoto, K. Kobayashi and H. Onodera. (2004).

RTL/ISS co-modeling methodology for embedded

processor using SystemC. Proc. Int. Symp. on Circuits and

Systems. 5:V-305–V-308.

http://simit-arm.sourceforge.net/

