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 ABSTRACT  
 
 
 
 

 In this work, the physical problems dealing with unidirectional 

magnetohydrodynamic (MHD) flows of some viscoelastic fluids in a porous medium 

and rotating frame are investigated. By using modified Darcy’s law, the 

corresponding equations governing the flow are modelled. Employing Fourier sine 

transform, new results in terms of the exact solutions of the modelled equations are 

generated for the problems of constantly accelerating and oscillatory MHD flows of 

second grade fluid in a porous space, accelerated MHD flows of an Oldroyd–B fluid 

in a porous medium and rotating frame, accelerating rotating MHD flow of second 

grade fluid in a porous space, accelerated MHD flow of Maxwell fluid in a porous 

medium and rotating frame, accelerated rotating MHD flow of generalized Burgers’ 

fluid in a porous medium. The Fourier sine and Laplace transforms are then utilized 

to obtain new exact solutions by solving analytically the Stokes’ first problem for 

two types of MHD fluids, namely the second grade fluid and Maxwell fluid in a 

porous medium and rotating frame. The new explicit solutions for the corresponding 

velocity fields are obtained for constant accelerated, variable accelerated and 

constant velocity flows for each problem mentioned above. The well – known 

solutions for Newtonian fluid in a porous medium in the cases mentioned above, are 

significantly shown to appear as the limiting cases of the present analysis. Finally, 

the effects of the material parameters (i.e. rotation, MHD and porous) on the velocity 

fields are demonstrated via graphical illustrations. These graphs generally show that: 

(i) by increasing the rotation parameter, this would lead to a decrease in the real part 

of the velocity profile; however for the magnitude of imaginary part of the velocity 

profile, it is found to be quite the opposite, (ii) when MHD parameter increases, the 

real and imaginary parts of the velocity profile decrease, and (iii) by increasing the 

porous parameter, both parts of the velocity profile increase.  
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ABSTRAK 

 
 
 
 

 Kajian ini adalah mengenai masalah fizikal berkaitan dengan aliran sehala 

magnetohidrodinamik (MHD) bagi cecair kenyal-likat dalam medium berliang dan 

kerangka berputar. Dengan menggunakan hukum Darcy terubahsuai, persamaan 

sepadan yang menerajui cecair itu dimodelkan. Melalui jelmaan sinus Fourier, 

keputusan-keputusan baru dalam bentuk penyelesaian tepat bagi persamaan termodel 

dijana bagi masalah-masalah berikut: pecutan secara malar dan berayunan bagi aliran 

MHD dengan cecair gred kedua dalam ruang berliang, aliran MHD berpecutan dan 

berputar bagi cecair Oldroyd-B dalam medium berliang dan kerangka berputar, 

cecair gred kedua beraliran MHD yang memecut dan berputar dalam suatu ruang 

berliang, aliran MHD berpecutan bagi cecair Maxwell dalam medium berliang dan 

kerangka berputar, dan bagi aliran MHD berputar dengan cecair Burgers teritlak 

dalam medium berliang. Seterusnya digunakan jelmaan sinus Fourier dan Laplace 

untuk memperoleh penyelesaian tepat dan baru dengan menyelesaikan secara analisis 

masalah pertama Stokes bagi dua jenis bendalir MHD iaitu bendalir gred kedua dan 

bendalir Maxwell dalam medium berliang dan berputar. Ungkapan-ungkapan 

eksplisit yang baru bagi medan halaju sepadan diperoleh bagi aliran dipecutkan 

secara malar, dipecutkan pembolehubah dan halaju malar bagi setiap masalah yang 

dinyatakan. Penyelesaian terkenal bagi cecair Newtonan dalam suatu medium 

berliang dalam kes-kes yang dinyatakan di atas, secara signifikannya ditunjukkan 

sebagai kes-kes pengehad bagi analisis semasa. Akhirnya, kesan-kesan parameter 

bahan (iaitu putaran, MHD dan berliang) terhadap medan halaju diperlihatkan 

melalui ilustrasi bergraf. Graf-graf ini umumnya menunjukkan: (i) menaikkan 

parameter putaran, didapati bahagian nyata profil halaju menurun; walau 

bagaimanapun bagi magnitud bahagian khayal profil halaju, didapati bertentangan, 

(ii) apabila parameter MHD bertambah, maka bahagian-bahagian nyata dan khayal 

profil halaju berkurang, dan (iii) menaikkan parameter berliang, kedua-dua bahagian 

profil halaju juga menaik. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION  
 
 
 
 

1.1     Research Background 

 

 The equations which govern the flows of Newtonian fluids are Navier–Stokes 

equations. It is a known fact that these equations in general are non–linear partial 

differential equations and few analytic solutions are reported to exist in the present 

literature. To obtain analytic solutions of such equations is still a current topic of 

research. Therefore mathematicians, physicists and engineers are involved in 

obtaining the analytic solutions of such equations by employing various techniques. 

Analytic solutions are very important not only because they serve as approximations 

to some specific problems but also serve a very important purpose, namely, they can 

be used as tests to verify numerical methods that are developed to study complex 

flow problems.    

 

 Recently the non Newtonian fluids are increasingly being considered as more 

important and appropriate in technological applications in comparison with 

Newtonian fluids.  

 

 A large class of real fluids does not exhibit the linear relationship between 

stress and the rate of strain. Because of the non linear dependence, the analysis of the 

behaviour of fluid motion of the non Newtonian fluids tends to be more complicated 

and subtle in comparison with that of the Newtonian fluid. 
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Figure 1.1:  Classification of fluid.  
 

 The inadequacy of classical Navier-Stokes theory to describe rheological 

complex fluids such as polymer solutions, blood, paints, certain oils and greases, has 

led to the development of several theories of non Newtonian fluids. Because of the 

complexity of these fluids, several constitutive equations have been proposed. These 

constitutive equations are somewhat complicated and contain special cases of some 

of the previous fluids. 

 

 The constitutive equations of viscoelastic fluids are usually classified under the 

categories of differential type, rate type and integral type models (see Figure 1.1). 

The celebrated  Navier-Stokes model describes a fluid of the differential type, and 

rate type models are used to describe the response of fluids that have slight memory 

such as diluted polymeric solutions while integral models are used to describe 

materials such as polymer melts that have considerable memory. Here by memory 
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one means the dependence of the stress on the history of the relative deformation 

gradient. 

 

 The first viscoelastic rate type, which is still used widely, is due to Maxwell. 

While Maxwell did not develop his model for polymeric liquids but instead for air, 

the methodology that he used can be generalized to produce a plethora of models. 

Maxwell recognized that the body had a means for storing energy and a means for 

dissipating energy, where the storing of energy characterizes the fluids elastic 

response and the dissipation of energy characterizes its viscous nature. Recently, 

Rajagopal and Srinivasa (2000) have built upon the seminal work of Maxwell and 

developed a systematic framework within which models for a variety of rate type 

viscoelastic fluids can be obtained. 

 

 The study of viscoelastic fluids in a porous medium offers special challenges to 

mathematicians, engineers and numerical analysts, since such studies are important 

in enhanced oil recovery, paper and textile coating and composite manufacturing 

processes. Moreover, the study of the physics of the magneto hydrodynamic (MHD) 

flow of viscoelastic fluid through a porous medium in the presence of magnetic field 

has become the basis of many scientific and engineering applications. Specifically, 

the study of the interaction of the coriolis force with electromagnetic force is 

important with some geophysical as well as astrophysical problems.  

 

 The solid body rotation is defined as a fluid or object that rotates at a constant 

angular velocity so that it moves as a solid (see Figure 1.2). 

 
                                                        Figure 1.2:  Rotating frame.  
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The influence of an external uniform magnetic field on the rotating flows studied by 

various workers Abelman et al. (2009) amongst the various models of non 

Newtonian fluids, the viscoelastic fluids of rate type models have acquired the 

special status. 

 

 This research project specifically considers and investigates the problems 

dealing with unsteady unidirectional flows of some non Newtonian fluids in a porous 

medium. By using modified Darcy’s law and employing Fourier transformation 

technique and Fourier - Laplace integral transform method; the exact analytical 

solutions are developed for the MHD flows of the problems in a porous medium and 

rotating frame.  

 
 
 
1.2 Statement of the Problem 

 

 This research specifically studies the MHD second grade and rate type fluids in 

a porous medium and rotating frame. The problems are related to 

 

1. Constantly accelerating and oscillatory MHD flows of second grade fluid in a 

porous medium. 

2. Accelerated MHD flows of an Oldroyd–B fluid in a porous medium and 

rotating frame. 

The limiting cases of this problem are considered as follows. 

2.1 Accelerated MHD flows of Second grade fluid in a porous medium and 

     rotating frame. 

2.2 Accelerated MHD flows of Maxwell fluid in a porous medium and 

      rotating frame. 

3.  Accelerated MHD flows of generalized Burgers’ fluid in a porous medium and 

rotating frame.  

4. New exact solution for Rayleigh–Stokes problem of Maxwell and second grade 

fluids in a porous medium and rotating frame. 
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1.3   Objectives of the Research  

 

 The objectives are 

 

1. To derive exact solution of MHD second grade fluid induced by the 

constantly accelerating and oscillatory flows in a porous medium. 

2. To establish exact solution for the accelerated MHD flow of an Oldroyd-B 

fluid in a porous medium and rotating frame. 

3. To determine exact solution of accelerated MHD flow of Maxwell fluid in a 

porous medium and rotating frame.  

4. To develop exact solution for the accelerated MHD flow of second grade 

fluid in a porous medium and rotating frame. 

5. To examine the solution for large times for MHD flow of generalized 

Burgers’ fluid in a porous medium. 

6. To develop exact solutions for transient MHD flow of a second grade fluid in 

a porous medium and rotating frame. 

7. To generate new exact solution for Rayleigh–Stokes problem of MHD 

Maxwell fluid in a porous medium and rotating frame. 

 
 
 
 

1.4  Scope of the Research 

 

 This research will consider the problems of which the fluids are assumed to be 

incompressible and the flow is of two types namely MHD unidirectional flow and 

MHD rotating flow in porous medium. 

 

 By using modified Darcy's law, the equations governing the flows are 

modelled. The study will employ Fourier sine transform and Fourier–Laplace 

integral transform method, to derive the exact analytical solutions. The problems are 

simplified as linear ordinary differential equation, and following the works by 

Fetecau (2005), Hayat et al. (2008a) and Hayat et al. (2008b), Hussain et al . (2010), 

we are able to develop the exact analytical solutions. 
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1.5 Significance of Research   

 

The significance of the research are: 

 

1. The research of viscoelastic fluids in a porous medium offers special 

challenges to mathematicians, engineers and numerical analysts. 

2. The research of the physics of MHD flow of a viscoelastic fluid through a 

porous medium in the presence of a magnetic field has become the basis of 

many scientific and engineering applications.     

3. More realistic mathematical models to interpret and enhance understanding of 

the flow of viscoelastic fluid in a porous space under appropriate conditions 

through mathematical behaviour. 

4. The research of non–Newtonian fluid in a porous medium and rotating frame 

will be useful for many applications in meteorology, geophysics and turbo 

machinery. 

5. Establish the analytical exact solutions to serve as : 

 
i. Approximations to some specific problems. 

ii. Useful as tests to verify numerical methods that are developed to study 

                   complex flow problems.  

 
 
 
 

1.6 Methodology 

 

 To achieve these objectives, the methodology adopted is Fourier sine 

transforms and Fourier–Laplace integral transform methods. These methods are 

essentially mathematical techniques which can be used to solve several problems in 

mathematics and engineering. The main question as to why one should use the 

traditional Fourier sine transform and Fourier–Laplace integral transform methods 

when other methods are available, justifiably, these traditional methods have the 

following important features. They are a very powerful technique for solving these 

kinds of problems, which literally transforms the original linear differential equation 

into an elementary algebraic expression. More importantly, the transformation is 
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used to generate the solution of certain problems with less effort and in a simple 

routine way. 

 
 
 
 

1.7  Thesis Outline 

 

 This thesis is divided into seven chapters including this introductory chapter. 

Chapter 2 begins with a review of previous studies on Newtonian fluids and non–

Newtonian fluids. The discussion focuses on rate type and differential type fluids 

particularly, second grade fluid, Maxwell fluid, Oldroyd–B fluid and Generalized 

Burgers’ fluid. These fluids occupy the porous space and are electrically conducting. 

In addition, the whole system is also rotating. 

 

Chapter 3 deals with MHD flows of second grade fluid in a porous medium. 

We investigate the constant accelerated flows over an oscillating plate. In addition, 

the fluid is electrically conducting and the Hall effects are taken into account. Two 

flow problems are considered and exact solutions for velocity field are established. In 

the first problem, the fluid occupying the half space is bounded by an oscillating and 

accelerated rigid plate. The second problem deals with the flow between the two 

plates. The upper plate is taken stationary while the lower one is constantly 

accelerated and oscillating. In these problems, both sine and cosine oscillations are 

considered. 

  

 

  In Chapter 4 the rotating flow of an electrically conducting Oldroyd–B fluid 

due to an accelerated plate is examined. Modified Darcy’s law is used to formulate 

the mathematical problem in a porous space. Two cases namely constant and variable 

accelerated flows are addressed. Fourier sine transform technique is adopted to solve 

the resulting problems. Many interesting results in are obtained as the special cases 

of the present analysis. Finally, the effects of emerging flow parameters on the 

velocity component are displayed and discussed. 
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 The aim of Chapter 5 is to determine the exact steady-state solution of 

magnetohydrodynamic (MHD) and rotating flow of generalized Burgers’ fluid 

induced by (1) constant accelerated plate (2) variable accelerated plate. This is 

attained by using the Fourier sine transform. This result is then presented in 

equivalent forms in terms of exponential, sine and cosine functions. Similar solutions 

for Burgers’, Oldroyd–B, Maxwell, Second grade and Navier–Stokes fluids can be 

shown to appear as the limiting cases of the present exact solution. The graphical 

results illustrate the velocity profiles which have been determined for the flow due to 

the constant and variable acceleration of an infinite flat plate. 

 The aim of Chapter 6 is to determine new exact solution of a 

magnetohydrodynamic (MHD) and rotating flow of some non–Newtonian fluids over 

a suddenly moved flat plate. Two fluids namely Second grade and Maxwell fluids 

are addressed. The new exact solution is derived by using the Fourier sine and 

Laplace transforms. Based on the modified Darcy’s law, the expression for the 

velocity field is obtained.  Many interesting available results in the literature are 

obtained as limiting cases of our solution. Finally some graphical results are 

presented for different values of the material constants. 

 Finally, Chapter 7 concludes the thesis with a summary of the work presented 

together with suggestions for further research in the future. 
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