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ABSTRACT 

  

 

 

 

Mesh generation is a mathematical technique to produce meshes in the form 

of triangle and rectangles on a given domain for approximating values such as heat, 

temperature and pressure. The values are approximated using numerical methods 

such as finite element, finite difference and finite volume based on some given 

boundary conditions. In our work, a conceptual model has been designed for 

allowing a set of sensors to be deployed along the wall of an ethylene cracker 

furnace. The main function for the deployment is to provide input in the form of 

boundary values for approximating the temperatures of flue gas and the radiative 

heat flux distribution inside the furnace. New models called Enhanced Advancing 

Front Techniques (EAFT) have been proposed which improve on the existing 

standard advancing front in the form of element creation procedure, internal 

gradation control as well as the post-processing procedure for mesh quality 

improvement. EAFT is applied to discretise the domain of the conceptual model of 

the ethylene furnace with the requirements of having the location of sensors 

deployed along the wall as boundary nodes as well as forming boundary elements, 

generating nodes at a certain boundary with linearly different lengths of boundary 

edges using layer concept as interior gradation controls and constructing the 

triangular element directly in every iteration without having to re-order the front or 

delete the existing elements. The quality of the initial mesh is determined using the 

normalized measure of skewness provided by the GAMBIT software. The final mesh 

is obtained once the post-processing procedure of improving the mesh quality has 

been applied to the initial mesh. EAFT provides the framework for the heat to be 

approximated using the discrete ordinate method, which is a variant of the finite 

volume method. Simulation results produced using FLUENT support our findings for 

effectively approximating the flue gas temperature distribution, the circumferential 

radiative heat flux incident at the reactor coils as well as the circumferential reactor 

coil temperature in the conceptual model of ethylene furnace at the end of the study. 

 



      

ABSTRAK 

 

 

 

 

Generasi jaringan adalah satu teknik matematik untuk menghasilkan jejaring 

dalam bentuk segi tiga dan segi empat pada domain atau ruang tertentu bagi 

mendapatkan nilai anggaran seperti haba, suhu dan tekanan. Nilai anggaran didapati 

dengan menggunakan kaedah berangka seperti unsur terhingga, beza terhingga dan 

isipadu terhingga berdasarkan kepada beberapa syarat sempadan yang diberikan. 

Dalam kerja ini, model konsep telah direka untuk membolehkan satu set sensor yang 

akan digunakan di sepanjang dinding relau etilena. Fungsi utama sensor tersebut 

adalah untuk memberi input dalam bentuk nilai-nilai sempadan bagi mendapatkan 

nilai anggaran suhu gas serombong dan fluks sinaran haba di dalam relau. Model 

baru yang dipanggil Enhanced Advancing Front Technique (EAFT) telah 

dicadangkan untuk memperbaiki kaedah memajukan depan sedia ada dari segi 

prosedur penghasilan elemen,  kawalan penggredan dalaman serta prosedur selepas 

pemprosesan untuk meningkatan kualiti jejaring. EAFT digunakan untuk 

membahagikan ruang model konsep relau etilena dengan memenuhi keperluan 

berikut; lokasi sensor yang di letakan di sepanjang dinding sebagai nod sempadan 

serta membentuk elemen sempadan, menjana nod di sempadan tertentu dengan jarak 

linear yang berbeza pada sempadan menggunakan konsep lapisan sebagai kawalan 

penggredan dalaman dan membina elemen segi tiga secara langsung dalam setiap 

lelaran tanpa menyusun semula depan atau memadam elemen-elemen yang sedia 

ada. Kualiti jejaring awal ditentukan dengan menggunakan ukuran kepencongan 

normal yang disediakan oleh perisian GAMBIT. Jejaring akhir diperolehi sebaik 

sahaja prosedur pemprosesan akhir untuk memperbaiki kualiti jejaring awal telah 

digunakan.  EAFT menyediakan rangka kerja bagi menganggarkan suhu dan haba 

menggunakan kaedah ordinat diskret, yang merupakan varian kepada kaedah isipadu 

terhingga. Keputusan simulasi yang dihasilkan dengan menggunakan FLUENT 

menyokong penemuan kami untuk mendapatkan taburan suhu gas serombong, fluks 

haba sinaran pada lilitan gegelung reaktor serta suhu lilitan gegelung reaktor dalam 

model konsep relau etilena pada akhir kajian. 
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CHAPTER 1 

 

 

 

  

INTRODUCTION 
 

 

 

 

1.1 Research background 

 

 

Ethylene is the greatest olefin market where most of it is consumed in plastic 

production [1]. 90% of ethylene in the Europe is produced from steam cracking using 

naphtha as the feedstocks while in North America and Middle East use ethane and 

propane as the feedstocks [2].  Ethylene is an important chemical compound 

produced in the petrochemical industry and is produced from the steam cracking 

process in ethylene cracker furnaces [3, 4]. In steam cracking, heat is used for 

breaking or cracking down the saturated hydrocarbon or feedstocks into smaller 

hydrocarbon in the reactor coils or reactor tubes, which eventually produces the 

desired products such as ethylene. 

 

 

Of all the heat transfer modes, radiation plays a significant role in the 

ethylene production [5-10]. It has been noted in [6, 11] that more than 90% of the 

heat transfers in the ethylene furnace involve radiation. Radiation is caused by 

energy emission in the form of electromagnetic waves or streams of photons [12]. 

The heating process in the ethylene furnace begins when burners which are located 

on the floor near the furnace wall heat up the furnace. This happens because the 

combustion process carried out in the burner resulted in flames and the release of its 

hot flue gas. These flue gas are composed of carbon dioxide, water vapour, oxygen 

and nitrogen [13]. The radiative heat from the furnace wall and hot flue gas is then 

transferred to reactor tubes/coils. 
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The desired parameters of the heat transfer in ethylene furnace study are the 

temperature and the radiative heat flux. In order to obtain such parameters, the whole 

process of the fluid flow simulation in Computational Fluid Dynamics (CFD) need to 

be done where it involves all three elements namely pre-processing, solving and the 

post-processing. As a matter of fact, structured or unstructured triangular mesh 

formation fall into the pre-processing element in CFD [14]. The generation of 

triangular mesh is an important step for approximating solutions to boundary value 

problems. Among the two type of meshes, unstructured mesh are becoming 

predominant because of its ability of modeling complex geometry as well as the  

natural environment it has for adaptivity [15, 16].  

 

 

There are two basic approaches for unstructured mesh namely the Delaunay 

triangulation and the advancing front technique. The Delaunay triangulation is a 

method of generating elements by adding or inserting points in the interior and 

reconnecting it to form the element [15, 17-21]. The insertion of the points can be 

controlled by several methods reported in [22]. On the other hand, the advancing 

front technique generate element with its key algorithmic step is the appropriate 

introduction of the new elements to the empty region [19, 21, 23]. It must be noted 

that the elements and the nodes in this technique are placed simultaneously in the 

region [24].  

 

 

The advancing front technique places a new element by considering an ideal 

point generated as well as the existing nodes in the circle constructed. The centre of 

the circle is the ideal point and the radius is calculated based on the empirical rules 

for the element creation procedure. The advancing front technique is guaranteed to 

preserve boundary integrity as well as having the capacity to create triangular 

elements with high aspect ratios in the boundary-layer region [15, 25]. However, 

there are also method of combining the approach of Delaunay and advancing front 

techniques for generating unstructured mesh such as in [25-31]. 

 

 

In [32], the author highlighted three cases as being possible during the 

procedure of element creation with the approach of advancing front technique: 
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(1) A new element is created with a new node as a vertex in which the new 

node is joined to the edge being considered. 

(2) An already existing front node satisfying certain conditions in the proximity 

of the edge being considered is used to create a new element. 

(3) Neither of the cases above in which an efficient algorithm of mesh 

generation should be able to tackle such a problem.  

 

 

With the advancing front technique as the approach for triangulation in the 

study, it can be seen that there is an improvement that need to be done towards the 

algorithm. The new improved algorithm of advancing front technique will be used to 

generate the unstructured meshes in the computational domain of the ethylene 

furnace for further modeling and simulation work.  

 

 

 

 

1.2 Problem statement 

 

 

The limitation of the current practice of monitoring and measuring the 

radiative heat transfer in ethylene furnace is addressed in this research. Furthermore, 

the current practice of the iterative approach in both finite volume and finite element 

also assume the initial intensity value to be zero because of unknown temperature 

distribution in the ethylene furnace. Hence, in this study a number of problems are 

addressed: 

 

 

1) Given a set of sensors distributed along the wall of the ethylene furnace, in 

what way can the domain be partitioned into meshes in the form of triangle so 

as to support approximation of the temperature of the flue gas and the 

radiative heat flux distribution inside the furnace using methods like discrete 

ordinate, finite volume and etc?   

2) What are the algorithms for effectively generating initial unstructured mesh 

that is appropriate for the conceptual model of integrating sensor network 

with the radiative heat transfer equation in ethylene furnace? The algorithm 

of the unstructured mesh must be able to tackle the problem of invalid or 
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undecided element creation in the algorithm.   

3) What is the appropriate mesh post-processing procedure to improve the 

quality of the initial unstructured mesh if required?  

 

 

 

 

1.3 Objectives and scope of the research 

 

 

The objectives of the research are as follows: 

 

Objective 1: To study the phenomena of heat transfer process in ethylene furnace 

and the current practice of monitoring the temperature and radiative 

heat flux. 

Objective 2: To develop a conceptual model of integrating sensor network and 

radiative heat transfer equation in ethylene furnace. 

Objective 3:  To develop new algorithms for the initial unstructured grid that is 

appropriate for the conceptual model of integrating sensor network 

and radiative heat transfer equation in ethylene furnace. 

Objective 4:  To perform simulations using discrete ordinate method on the newly 

developed unstructured grid in order to obtain the smooth distribution 

of the flue gas temperature and radiative heat flux in the ethylene 

furnace.  

 

 

The research concentrates on developing algorithm of initial unstructured 

triangular mesh for element creation procedure following the approach of advancing 

front technique in two dimensional domains. The research focused on triangular 

element since it is reported in [15, 16] that this element are the most flexible for 

complex two dimensional geometries especially when grading of the mesh is 

required. Although there are many more models in the ethylene furnace study, only 

radiation model will be considered for the present research. Therefore, the algorithm 

of unstructured mesh will be applied in the conceptual model of integrating sensor 

network and radiative heat transfer in order to obtain flue gas temperature and 

radiative heat flux in the ethylene furnace.  
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1.4 Research methodology 

 

 

The methodologies in the research involve the following steps: 

 

 

(1) Literature review 

 

The ethylene furnace design, process descriptions, problem related to 

ethylene furnace, current techniques of modeling and simulating the ethylene 

furnace, the unstructured mesh formation and the discretisation technique as well as 

the type of temperature sensor will be studied through books, journal papers and 

conference proceedings. This first step is very helpful in order to obtain a wider view 

on the whole problem domain. 

 

 

(2) Analysis phase 

 

The furnace designs, the processes involved in the furnace as well as the 

selected problems are carefully analyzed. This is associated with the current methods 

and techniques of solving the furnace model with special attention to radiation 

model. At the same time, the basic concepts of advancing front techniques together 

with its recent approaches are analyzed for the conceptual model in the research. The 

analysis of the unstructured mesh is done through studying and applying the standard 

algorithm in both simple and complex computational domain in order to figure out 

any space for improvement. The current problems of undecided element creation are 

spotted when the algorithm of standard advancing front techniques are implemented 

in AutoCAD software to discretise several domains of the study.  

 

 

(3) Design phase 

 

A few versions of the algorithm of enhanced advancing front technique with 

a set of structured cases for element creation procedure are designed and developed 

to encounter the existing problem as stated in the last two paragraphs of Section 1.1. 

At the same time, the conceptual model of integrating sensors and unstructured mesh 

with radiative heat transfer equation in the furnace is designed. In the conceptual 

model, sensors are assumed to be placed along the wall of the furnace in order to 
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obtain boundary value for the radiative heat transfer model. The research focused on 

two dimensional model and therefore a cross section of the furnace is considered for 

the conceptual model.  

 

 

(4) Implementation phase 

 

As stated in Section 1.1, the CFD simulation involves three elements. The 

first element which is the pre-processing in this study involves the definition of the 

geometry of the ethylene furnace as the computational domain, mesh formation and 

the selection of physical phenomena that need to be modelled. In this study, the pre-

processing element belongs to the implementation phase. The geometry of the 

ethylene furnace follows the one in the literature survey. The major contribution of 

the study focus on unstructured mesh, therefore, various simulation of the newly 

developed algorithm for the initial unstructured mesh is conducted and implemented 

in AutoCAD LT software. The selection of the physical phenomena of heat transfer 

as well as the fluid properties follows the existing research in ethylene furnace study. 

 

 

(5) Testing and evaluation phase 

 

As for testing and evaluation phase, the quality of the initial mesh 

implemented in the previous phase is determined using a number of measurements in 

GAMBIT 3.0 software. The mesh post-processing procedure is applied where 

required. The second element in CFD which is the solving process belongs to the 

testing and evaluation phase in the study. It involves numerical solution techniques 

using FLUENT software. As a matter of fact, this is one of the methods that can be 

considered to test and prove that the resulted unstructured mesh for the conceptual 

model is appropriate for further analysis. FLUENT is used to integrate and solves the 

governing equation of the heat transfer over all the unstructured mesh developed 

which represents the ethylene furnace. The discretisation technique of discrete 

ordinate method is used to convert the governing equation into a set of a system of 

algebraic equations. An iterative method is used to solve algebraic equations. The 

third element in CFD which is the post-processing also belongs to the testing and 

evaluation phase in the study. It involves the data visualisation for the final results. 

The results of the study are displayed as the contour of the flue gas temperature 
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distribution. Besides that, the circumferential radiative heat flux and the 

circumferential temperature of the reactor coils are also obtained and displayed in the 

study.  

 

 

(6) Documentation 

 

The work is reported in this thesis. The report presents all the concepts, 

simulation work, its analysis and results throughout the research. 

 

The framework of the research is summarised in Figure 1.1a and Figure 1.1b. 
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Figure 1.1a.  The framework of the research – part 1. 

 

 

 

 

 

 

 

Figure 1.1a.  The framework of the research – part 1. 

1. LITERATURE REVIEW PHASE 

Analyze furnace 

design and 

sensors: 

(1) Type of 

furnace 

technology 

(2) Sections & 

associated 

parts 

(3) The type of 

sensors 

Analyze 

processes in 

furnace: 

(1) Chemical 

reaction 

(2) Heat 

transfer 

(3) Control 

variables & 

parameters 

(4) Combustion 

Analyze problem: 

(1) Heat transfer 

(2) Coke 

formation 

 

 

Analyze 

methods/ 

techniques for 

ethylene 

furnace: 

(1) Mathematic

al equations 

(2) CFD model 

 

Analyze 

unstructured 

mesh: 

(1) Current 

techniques 

(2) How to 

improve 

current 

technique 

 

 

2. ANALYSIS PHASE 

3. DESIGN PHASE 

Design and develop a few version of algorithm for unstructured mesh. Design and 

develop a conceptual model of integrating sensor and unstructured mesh with radiative 

heat transfer equation in order to obtain desired parameters (temperature and radiative 

heat flux). 

A 



9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1b.  The framework of the research – part 2. 

 

 

 

 

1.5 Significance of the research 

 

 

This research will contribute in improving the approach of modeling and 

simulation study in an ethylene furnace where most of the current techniques use 

only existing mesh generation software (GAMBIT etc) and CFD solver software 

(FLUENT, SPYRO etc) to predict the performance and behavior of operating 

parameters in the furnace operations. Since temperature plays a significant role in the 

daily operation of the ethylene furnace, it is of great importance to monitor the flue 

gas temperature distribution in the furnace, the radiative heat flux as well as the 

temperature of the reactor coils. This proactive approach of coupling a set of sensors 

in the furnace environment will provide continuous monitoring for further action to 

the furnace operator and engineers.  

 

 

A 

4. IMPLEMENTATION  PHASE 

Implement the integration of sensors and the newly develop algorithm of 

unstructured mesh in AutoCAD for the conceptual model.  

5. TESTING AND EVALUATION PHASE 

Determine the quality of the unstructured mesh. Construct CFD simulation using 

the resulted unstructured mesh of the conceptual model. 

6. DOCUMENTATION 

Write up for PhD thesis 
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Therefore, a conceptual model of integrating sensor network and radiative 

heat transfer in the ethylene furnace environment is crucial as an initial phase of 

incorporating the ideas to the real world application. Sensors will be used to provide 

input in the form of boundary values for the simulation. Furthermore, the framework 

of the conceptual model provides the algorithm of initial triangular unstructured 

mesh where it incorporates the sensors deployment and a way of gradual mesh 

control. Besides that, it must be noted that the algorithm of the initial unstructured 

mesh is capable of constructing the triangular element directly in every iteration 

without having to re-order the front or delete the existing element as highlighted in 

the literature.  

 

 

 

 

1.6 Outline of the thesis 

 

 

An overview of the whole research is presented in Chapter 1 of the thesis. 

The research background of the ethylene furnace as well as the existing method of 

unstructured mesh formation is briefly described in the early part of the chapter. This 

is continued with the problem statements, the objectives and scope of the research as 

well as the research methodology and the significance of the research. The literature 

review is presented in Chapter 2 while a few versions of the unstructured mesh 

algorithm are developed and discussed from Chapter 3 through Chapter 5.  

 

  

 The discussion in Chapter 2 begins with an overview of ethylene furnace and 

its processes. This is followed by the phenomena of heat transfer in ethylene furnace 

and the current technique of monitoring heat transfer parameter where it serves as a 

foundation for setting up the conceptual model. The main contribution of the 

research is on the algorithm of unstructured mesh formation therefore an overview of 

related existing techniques of Delaunay mesh triangulation and advancing front 

techniques are discussed. This is followed by the existing mesh post-processing 

procedure for improving the quality of the mesh. The newly developed mesh is 

applied to solve the problem of radiation in the ethylene furnace, therefore the 

concept of radiation together with the Discrete Ordinate methods (DOM) as the 
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discretisation techniques are also described. At the end of the chapter, a review of the 

types of temperature sensors is presented.   

 

    

 Chapter 3 addressed the current problems in the element creation procedure 

of the standard advancing front technique. This problem has become a motivational 

reason of the need to enhance the current techniques in terms of element creation 

procedure. The first version of the newly developed algorithm for the unstructured 

mesh in this research is called as Enhanced Advancing Front Technique-1 (EAFT-1). 

The creation of the element in EAFT-1 is based on the five structured cases whereas 

the original technique has only two cases. The EAFT-1 is applied at a simple 

problem with enclosed wall where there is no inner boundary. The resulted 

unstructured mesh from the algorithm of EAFT-1 is integrated with the radiation 

model in order to proof that the mesh is appropriate for further analysis.   

 

 

 The second version of the unstructured mesh in Chapter 4 is called as 

Enhanced Advancing Front Technique-2 (EAFT-2). The element creation procedure 

in EAFT-2 is based on six structured cases. The radius of the circle during the 

element creation procedure does not follow the empirical rule as in SAFT but instead 

it is simpler than that. The departure zone for the element creation is set to be the 

entire front starting with the shortest edge. The algorithm of EAFT-2 incorporates the 

sensors as the boundary nodes forming boundary element. In order to tolerate the 

smaller size of element span over the shortest edges and the bigger size of the 

boundary element, the layer concept is introduced for internal gradation control of 

the mesh size. The EAFT-2 is applied at two simple conceptual models where in both 

conceptual model, the sensors are assumed to be placed along the wall. At the same 

time, the numbers of reactor coils in both simple conceptual models are reduced to 

only one complete reactor coil and half of the complete one reactor coil respectively.  

 

 

 The third version of the unstructured mesh in Chapter 5 is called as Enhanced 

Advancing Front Technique-3 (EAFT-3). The element creation procedure in EAFT-3 

is based on seven structured cases. The radius of the circle during the element 

creation procedure in EAFT-3 is set to be eighty percent from the length of the base 
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edge. The departure zone for the element creation is set to be the specific front 

starting with the shortest edge. Similar to the approach introduced in Chapter 4, the 

layer concept is used for mesh size internal gradation control. A newly developed 

post-processing procedure to improve the quality of the mesh is also introduced in 

which it is called as EAFT-3 polygon refinement procedure. The algorithm of EAFT-

3 is applied to the conceptual model which is designed and developed for ethylene 

furnace. The configuration of the ethylene furnace for the conceptual model followed 

the one in [33] and it is assumed that there is a set of sensors placed along the wall.  

The function of the sensors is to provide valuable input in the form of boundary 

value. At the end of the chapter, the resulted unstructured mesh incorporated with the 

conceptual model is applied for radiation problem in FLUENT software. The 

simulation converged and the desired parameters such as the flue gas temperature 

distribution, circumferential radiative heat flux and the circumferential skin 

temperature at the reactor coils are obtained.     

 

 

 The summary for every version of enhanced advancing front techniques can 

be found in Chapter 6. This final chapter also contains the contributions of the 

reearch in the aspect of unstructured mesh which are presented at the end of the 

chapter.   
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