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ABSTRACT 

Composite structures present high strength, low weight and design flexibility in terms of 

fiber orientation and number of plies and used vastly in advanced and modern 

applications. Among them, carbon fiber-reinforced polymer composites (CFRP) are used 

widely in aeronautic and automotive industries in which components are subjected to 

different loading types and this will double the necessity of investigation on fatigue and 

fracture analysis using damage mechanics concepts. The reliability of structures made of 

composites, depends on continual process of damage initiation and propagation. In the 

current research, a specific CFRP composite is being tested and finite element simulated 

under monotonic loading and subsequent cyclic loading with dominant shear stress along 

its length. The specimen is designed so that the damage development can be tracked 

easily on the localized interface. The 3ENF experiments and FE simulation have been 

used simultaneously to investigate the damage under mode II fracture loading condition. 

Damage model used is cohesive zone model (CZM) which is developed and validated 

before. The key contribution of the current research is to present and describe a concept 

to extend current damage model to account for material behavior in cyclic loading in 

terms of development of damage. Damage is interpreted as degradation of penalty 

stiffness in normal and shear directions. Monotonic results showed that the CZM-based 

FE model is correlated well with experimental results and based on the experimental-

computational approach, CZM parameters can be obtained and damage model will be 

characterized so that finite element method can be validated and stress and deformation 

analyses using FE results are feasible. The cyclic tests are also conducted for different 

load amplitude and number of cycles and necessary results are extracted to monitor and 

investigation on degradation in material stiffness and fracture energy as an effect of 

fatigue phenomenon and also being utilized to obtain presented fatigue damage model 

and as guidance and useful resource for future finite element simulation applying proper 

user-written subroutine into FE package. 

 . 
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ABSTRAK 

Struktur komposit memberikan kekuatan yang tinggi, berat yang rendah dan reka 

bentuk yang fleksibel terutamanya  dari segi orientasi gentian dan bilangan lapisan 

gentian dan digunakan secara meluas dalam aplikasi maju dan moden. Di antara 

kebanyakkan komposit, komposit polimer bertetulang gentian karbon (CFRP) 

digunakan secara meluas dalam industri aeronotik dan automotif. Di mana, komponen 

ini  dikenakan beban yang berbeza-beza dan ini akan menggandakan keperluan dalam 

analisis kelesuan dan analisis patah menggunakan konsep mekanik kerosakan. 

Kebolehpercayaan struktur yang diperbuat daripada komposit ini bergantung kepada 

proses pemulaan dan perebakan kerosakan. Kajian pada masa kini, komposit CFRP 

tertentu telah diuji dan simulasi finite element telah dijalankan di bawah beban 

monotonik dan beban kitaran berikut dengan tegasan ricih mendominasi panjangnya. 

Spesimen yang digunakan direka supaya kerosakan  dapat dikesan dengan mudah 

pada antara muka setempat. Eksperimen 3ENF dan simulasi FE telah digunakan 

secara serentak untuk memeriksa kerosakan di bawah beban keadaan patah pada mod 

II. Model kerosakan yang digunakan ialah cohesive zone model (CZM) yang telah 

dibangunkan dan telah disahkan. Sumbangan utama penyelidikan ini adalah untuk 

menerangkan satu konsep untuk melanjutkan kerosakan model semasa dengan 

mengambil kira perilaku  bahan di dalam beban berkitar dari segi pembangunan 

kerosakan. Kerosakan ditafsirkan sebagai penurunan kekakuan penalti pada arah 

normal dan ricihan. Keputusan monotonik menunjukkan model CZM berasaskan FE 

berhubung baik dengan keputusan eksperimen. Berdasarkan pendekatan eksperimen-

pengiraan, parameter CZM boleh diperolehi dan model kerosakan boleh dikenalpasti. 

Oleh itu, kaedah FE boleh disahkan, tegasan  dan pembentukan analisis menggunakan 

keputusan FE dapat dilakasanakan. Ujian kitaran dilaksanakan untuk beban amplitude 

yang berlainan dan bilangan kitaran dan keputusan yang diperlukan untuk memantau 

dan memeriksa penurunan di dalam kekakuan bahan dan tenaga patah sebagai kesan 

fenomena lesu dan juga digunakan untuk mendapatkan model kelesuan sebagai 

panduan dan sumber yang diperlukan untuk simulasi FE akan datang dengan 

menggunakan subrutin FE yang sesuai ke dalam perisian FE. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

In this chapter, the background of the study and some discussions on key 

issues relating to damage mechanics of advanced composite structures, under cyclic 

loading condition will be presented and briefly described. Moreover, the finite 

element method as a key numerical procedure to study the behavior of material 

during evolution of damage under shear stress will be shortly discussed. 

Subsequently, the objectives of the study will be either presented or followed by a 

discussion on the scope and significance of the study.  The chapter ends with a 

description of the framework and supports exploited in this study and the operational 

definition. 

The current research will focus on modeling and finite element (FE) 

simulation of a specific carbon fiber reinforced polymer (CFRP) with specific number 

of plies and fiber orientation with pre-existing crack and in three point flexural cyclic 

loading condition and tries to predict the dominant damage mechanisms and 

evolution of damage in such situations. The FE simulation should then validated with 

real-world conditions, therefore a systematic experimental procedure will be 

conducted and the results of both numerical modeling and simulation and also 
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experimental data will be compared with each other to investigate on accuracy and 

reliability of numerical method. 

1.2 Background of the study 

The increasing use of fiber-reinforced materials, especially carbon fiber-

reinforced plastics, for load-bearing components which may be subjected to vibratory 

conditions, such as in aerospace applications, necessitates knowledge of the fatigue 

behavior of these materials. Research into the fatigue response of fiber composites 

has been carried out since the materials themselves first began to be a subject of 

serious study. Some of the first papers on the fatigue behavior of glass-reinforced 

plastics, for example, were published in the USA by Boller in the 1950s and 60s, and 

shortly after this Owen and his collaborators at Nottingham University in the UK 

were reporting the results of work on early carbon-fiber reinforced plastics 

(CFRPs).[1] 

Unlike metals, composite materials are inhomogeneous (on a gross scale) and 

anisotropic. They accumulate damage in a general rather than a localized fashion, and 

failure does not always occur by the propagation of a single macroscopic crack. The 

micro-structural mechanisms of damage accumulation, including fiber breakage and 

matrix cracking, debonding, transverse-ply cracking, and delamination, occur 

sometimes independently and sometimes interactively, and the predominance of one 

or the other may be strongly affected by both materials variables and testing 

conditions. 
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1.2.1    Cohesive zone model 

The Cohesive zone Model (CZM) offers an alternative way to view failure in 

materials or along material interfaces. It is a phenomenological model instead of an 

exact physical representation of material behavior in the fracture process zone, where 

distributed micro cracking or void formation takes place (Atkinson [2]). The original 

proposal of the strip yield zone model of Dugdale [2] idealized the plastic region as a 

narrow strip extending ahead of the crack tip, and a relation is obtained between the 

extent of plastic yielding and external load applied. This concept has been regarded as 

a cohesive zone type model with the strip yield zone treated as a cohesive zone. 

Based on the underlying atomic nature of the fracture process, Barenblatt [2] assumes 

a nonlinear cohesive force to be distributed over a sufficiently large zone (relative to 

atomic dimensions) along the crack plane instead of infinitesimally concentrated 

along a line. Later applications have related the cohesive zone to the plastic zone or 

the process zone. Despite various definitions of the cohesive zone, the physical 

meaning is still up to individual understanding. 

1.2.2     Composite material 

According to the definition a composite consists of two or more chemically 

distinct materials which when combined have improved properties over the individual 

materials. Composite materials have advantageous over metals such as high strength, 

light weight, design flexibility, consolidation of parts etc. Advanced composite 

materials are finding increasing application in aerospace, automotive, marine and 

many other industries due to the advantages in performance, structural efficiency and 

cost they provide. Composite structures have different classifications, such as 

Particle-Reinforced, Fiber-Reinforced and Structural composites. Form these 

categories; fiber-reinforced composites have wide range of application in modern and 

advanced structures. Carbon Fiber-Reinforced Polymer (CFRP) composites are 
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commonly employed in modern structural application such as aircraft wing, rotor 

blades, and automobile chassis. 

1.2.3  Finite element method 

The finite element method (FEM) is a numerical method seeking an 

approximated solution of the distribution of field variables in the problem domain 

that is difficult to obtain analytically. It is done by dividing the problem domain into 

several elements. Known physical laws are then applied to each small element, each 

of which usually has a very simple geometry. A continuous function of an unknown 

field variable is approximated using piecewise linear functions in each sub-domain, 

called an element formed by nodes. The unknowns are then the discrete values of the 

field variable at the nodes. Next, proper principles are followed to establish equations 

for the elements, after which the elements are „tied‟ to one another. This process leads 

to a set of linear algebraic simultaneous equations for the entire system that can be 

solved easily to yield the required field variable.[3] 

1.3       Statement of the problem 

Simply supported laminated composite specimen under three point flexural 

cyclic loading is considered. This laminate can be generally in any type of angle-plies 

or cross-plies. The task is to investigate the process of damage first in static and then 

under cyclic flexural loading. The investigation should be done on how the damage 

initiates and will propagate in composite laminas under fatigue loading condition. 

The method which is applied is finite element method (FEM). Moreover, simulation 

on the damage mechanism of specimen will be done with one of the commercial CAE 
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packages, namely, ABAQUS. The method of monitoring damage in composite 

laminate and its reliability should also be investigated. 

1.4  Research Question 

 What are the damage mechanisms in CFRP composites under cyclic 

loading? 

 

 What are the current models for deformation and failure of CFRP under 

shear fatigue loading condition? 

 

 

 How can these models be used effectively to result in life prediction of 

composite part under mentioned load? 

 

 What is the suitable testing procedure for establishing model parameters 

and damage evolution characteristics? 

 

 

 How could the FEA be validated for damage tolerance and reliability of 

CFRP composite component? 

 

1.5  Objective of study 

Main research objectives are briefly as below: 

 

 To identify dominant damage mechanisms and their interactions during 

failure process of CFRP laminates. 

 

 To study and determine damage evolution characteristics of CFRP 

composites under shear cyclic loading. 
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 To demonstrate a model for fatigue life prediction of CFRP composites 

under cyclic loading using finite element method (FEM). 

 

 To validate damage mechanics model for the composite laminate failure. 

1.6  Scopes of the study 

 Carbon fiber-reinforced polymer (CFRP) composite laminates with 

specific lay-up will be used as representative material. 

 

 Testing procedure and specimen preparation will be according to ASTM 

standard (D709-07). 

 

 

 Damage Model of material will be based on existing damage-based 

formulations, with some modifications when needed. 

 

 Damage model will be validated using data from standard test procedure 

on cyclic loading. 

 

 

 Finite Element software, ABAQUS ver. 6.9 EF will be used for simulation 

and analysis. 
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1.7  Importance of the study 

Considering that fatigue is the main failure mechanism under cyclic loading 

and difficulties in fatigue analysis and consequent life prediction since the difference 

between material properties of constituents and possible fatigue behavior affection of 

one constituent by the presence of other constituents and also the interfacial regions 

between the fibers and matrix, it can easily be understood that study in this field is of 

prime importance and necessary. Many composites are far more sensitive to being 

loaded in shear than in tension, since their ratio of tensile to shear strength is high (20 

is typical for CFRP). Therefore a unified approach should account for various damage 

and fracture modes in the design phase with the aid of numerical modeling and 

validation testing of the composite sample coupons. 

This project proposes the development of a framework for establishing CFRP 

composite laminates behavior under cyclic loading conditions. The benefit of the 

extended framework is visible in providing guidelines on interpretation of data for 

conditions other than those under which they were obtained. Reliability test data 

generated through the proposed experimental program is indispensable during both 

initial material selection and detailed engineering design stage of CFRP composite 

structures. The outcome of the proposed research; a validated unified methodology 

for assessing composite fatigue failure process by the various damage mechanisms 

could be directly employed for predicting structural integrity of composite parts in 

service and under cyclic loading. This proposed project is in-line with industry-led 

R&D theme in aero composite structural design and development under university-

industry collaboration with the establishment of Aero structure Manufacturing 

Innovation Center (AMIC) in Malaysia. The significance of composite research is 

reflected in a continual increase of EADS/Airbus average annual sourcing in 

Malaysia from USD 50m in 2004-2007 to USD 120m in 2010-2012. 
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1.8  Research approach 

 

After that the problem is defined and the research questions, objectives, and 

project scope are well understood, the research will begin by referring to and 

exploring in previous works and other researchers` findings, firstly to get sufficient 

information and data about the peer works and also finding the less considered 

aspects of our interest. 

Next, the research will be continued by establishing a systematic methodology 

for solving the research problem which needs to be evaluated and after that being 

validated. 

Based on the specified methodology, the experimental and finite element 

simulation and analysis will be conducted and when the numerical study is validated 

and its accuracy is sufficient for our purpose, the results will be presented with deep 

analysis. 

1.9      Structure of research 

  In chapter 1, the background of the study, statement of the problem, 

objectives, research questions, significant of study, scope of project and research 

approach are described.  

 

In chapter 2 review of the literature related to damage mechanics of composite 

structures and also fatigue in fiber reinforced composites as well as introduction to 

cohesive zone model will be covered with more details. 
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In Chapter 3 the author will present and evaluate the methodology used within 

the research. The used material, experimental and numerical techniques, specimen 

geometry, data acquisition approaches, theoretical frameworks used in the study, 

preliminary results and many more will be covered and discussed. 

 

Chapter 4 will cover the key research findings and present detailed 

discussions on results with the aid of description and interpretation of acquired data, 

comparison and data analysis that can come to main research conclusions. 

 

Finally, in chapter 5 conclusion and summary of resultswill be presented 

briefly
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