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ABSTRACT 

Biomedical time series are non-stationary stochastic processes with hidden 

dynamics that can be modeled by state-space models (SSMs), and processing of 

which can be cast into optimal filtering problems for SSMs. The existing studies 

assume discrete-time linear Gaussian SSMs with estimation solved analytically by 

Kalman filtering for biomedical signals which are continuous, non-Gaussian and 

non-linear. However, general non-linear non-Gaussian models admit no closed form 

filtering solutions. This research investigates the general framework of continuous-

time non-linear and non-Gaussian SSMs with sequential Monte Carlo (SMC) 

estimation for biomedical signals generally, electroencephalography (EEG) signal in 

particular, to solve two of its analysis problems. Firstly, this study proposes time-

varying autoregressive (TVAR) SSMs with non-Gaussian state noise to capture 

abrupt and smooth parameter changes that are inappropriately modeled by Gaussian 

models, for parametric time-varying spectral estimation of event-related 

desynchronization (ERD). Evaluation results show superior parameter tracking 

performance and hence accurate ERD estimation by the proposed model. Secondly, a 

partially observed diffusion model is proposed for more natural modeling the 

continuous dynamics and irregularly spaced data in single-trial event-related 

potentials (ERPs) for single-trial estimation of ERPs in noise. More efficient Rao-

Blackwellized particle filter (RBPF) is used. Evaluation on simulated and real 

auditory brainstem response (ABR) data shows significant reduction in noise with 

the underlying ERP dynamics clearly extracted. In addition, two non-linear non-

Gaussian stochastic volatility (SV) models are proposed for better modeling of non-

Gaussian dynamics of volatility in EEG noise especially of impulsive type. 

Application to denoising of simulated ABRs with artifacts shows well estimated 

volatility pattern and better elimination of impulsive noise with SNR improvement of 

12.46dB by the best performing non-linear Cox-Ingersoll-Ross process. 
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ABSTRAK 

Siri masa bioperubatan, stokastik process bukan pegun dengan dinamik 

tersembunyi, boleh dimodel oleh model ruang keadaan (SSM), dengan 

pemprosesannya boleh dijadikan masalah penurasan. Kajian kini menganggap SSMs 

sebagai diskrit, linear Gaussian dengan anggaran secara analitis oleh penapisan 

Kalman untuk isyarat bioperubatan yang biasanya berterusan, tidak linear dan tidak 

Gaussian. Tetapi, model tidak linear tidak Gaussian tiada penyelesaian tertutup. 

Kajian ini menyelidik rangka kerja umum model tidak linear dan tidak Gauss dengan 

penapisan Monte Carlo berjujukan (SMC) untuk isyarat bioperubatan secara umum 

dan electroencephalography (EEG) khasnya, untuk menyelesaikan dua masalah 

analisis khusus. Pertama, kajian ini mencadangkan model time-varying 

autoregressive (TVAR) dengan bunyi keadaan tidak Gaussian untuk menangkap 

perubahan parameter yang mendadak dan lancar yang tidak sesuai dimodelkan oleh 

model Gaussian, untuk anggaran spektrum event-related desynchronization (ERD) 

yang berubah masa. Penilaian menunjukkan model ini memberikan prestasi 

penjejakan yang lebih baik dan anggaran ERD yang tepat. Kedua, kajian ini 

mencadangkan partially observed diffusion model untuk memodelkan dinamik 

berterusan dan data berjarakan tak seragam dalam single-trial event-related 

potentials (ERPs). Penapis Rao-Blackwellized (RBPF) yang lebih efektif digunakan. 

Penilaian ke atas data auditory brainstem response (ABR) simulasi dan benar 

menunjukkan pengurangan ketara dalam bunyi dengan dinamik ERP tersembuyi 

jelas diekstrak. Dua model volatiliti stokastik yang tidak linear tidak Gaussian 

dicadangkan untuk memodelkan dinamik tidak Gaussian dalam volatility bunyi EEG 

dengan lebih baik terutama yang jenis impulsif. Aplikasi dalam pembuangan bunyi 

untuk simulasi ABRs dengan artifak menunjukkan anggaran corak volitiliti yang 

bagus dan pembuangan bunyi impulsif yang lebih baik dengan peningkatan SNR 

12.46dB oleh proses Cox-Ingersoll-Ross yang tidak linear yang mempunyai prestasi 

tertinggi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Most physiological processes from human body are accompanied by or 

manifest themselves as signals that reflect their nature and activities. One type of 

such signals is electrical in the form of potential, among others are electromyogram 

(EMG), electrocardiogram (ECG), electroencephalography (EEG), phonocardiogram 

(PCG) (Rangayyan, 2002). The signal as a function of time is time series in 

mathematical sense. These bioelectrical signals, usually in digitized form, can be 

used for medical diagnostics purposes and human-computer interaction. EEG signals 

are studied in this thesis. EEG is bioelectrical activity of the brain recorded at the 

scalp using surface electrodes, which is an average of multifarious activities of many 

small zones of the cortical surface beneath the electrode. Clinically, several channels 

of EEG are recorded simultaneously from various locations on the scalp (Rangayyan, 

2002). Figure 1.1 shows locations of the electrodes placement recommended by the 

International Federation of Societies for Electroencephalography and clinical 

Neurophysiology (After Rangayyan (2002)). This research proposes non-linear non-

Gaussian modeling of EEG signals with estimation by sequential Monte Carlo (SMC) 

method, to solve two specific EEG processing problems, i.e. spectral estimation of 

event-related desynchronization (ERD) and single-trial estimation of event-related 

potentials (ERPs). 
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Figure 1.1: The 10 – 20 system of electrode placement for EEG recording 

(Copper et al., 1980). Notes regarding channel labels: pg- naso-pharyngeal, a- 

auricular (ear lobes), fp- pre-frontal, f- frontal, p- pareital, c- central, o- 

occipital, t- temporal, cb- cerebellar, z- midline, odd number on the left, even 

numbers on the right of the subject. 

1.2 Background of Problems 

Many digital signal processing (DSP) techniques have been adopted in the 

modern biomedical engineering field for the analysis of biomedical signals. 

Processing of biomedical signals such as recovering the clean signals from noises 

and artifacts (filtering) as well as extracting its features in time or frequency domain 

are of much importance to their uses as reliable tools for diagnostics purposes. 

Biomedical time series are complex real world processes which are highly non-

stationary. The underlying dynamics behind biomedical signals contain important 

information for analysis. Many time series models and analysis techniques can be 

used for biomedical signal processing. Non-stationary processes (Kitagawa, 1987) 

with underlying hidden dynamics can be modeled by state-space models (SSMs). 
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The SSMs have become a powerful tool for modeling and forecasting 

dynamic systems. The SSM consists of two components: (1) state equation which 

models the dynamics of the hidden states{ }tx where t is the discrete time index, 

typically following a Markov process and (2) observation equation which describes 

the mapping of the hidden states to the observations{ }ty . Besides, this formulation 

enables modeling of underlying hidden process behind the observations. The SSMs 

have been applied as statistical modeling framework for various kinds of time series 

such as speech signals, biomedical signals, DNA sequences, and financial time series. 

SSMs have been extensively used for modeling biomedical signals. However, the 

existing studies assume linear Gaussian model for biomedical signals, which is 

inappropriate for the complex real processes typically which exhibit non-linearity 

and non-Gaussianity. Besides, biomedical signals are mostly modeled by discrete-

time model in the literature. However, biomedical signals are generated by 

continuous process for which continuous-time modeling may be appropriate choice, 

even though biomedical signals themselves are discrete-time samples. Continuous-

time models are able to model conveniently and naturally irregularly spaced data 

which is also inherent in biomedical signal.  

Formulation in state-space form enables online inference of the hidden states 

given the observations, which is known as Bayesian filtering or optimal filtering 

problem (Doucet et al., 2000). Within the Bayesian framework, all the information 

about the system states 0: 0{ , , }t t=x x x… given sequence of observations 

0: 0{ , , }t t=y y y… is reflected in the posterior density 0: 0:( | )t tp x y .  Since the 

observation often arrives sequentially in time, the objective is to perform online state 

inference which involves estimating recursively in time the posterior 

density 0: 0:( | )t tp x y and its marginals (including filtering density 0:( | )t tp x y ). Many 

biomedical signal processing problems involve online inference of the underlying 

processes behind these observed non-stationary biomedical signals such as noise 

filtering and feature extraction, which can be considered as optimal filtering 

problems. Optimal filtering methods have been applied successfully to problems 

associated with biomedical signal processing. 
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However, the posterior distributions can be evaluated in closed form only in a 

few cases including the linear Gaussian state-space models using the well-known 

Kalman filter (KF) and hidden finite state-space Markov chain using hidden Markov 

model (HMM) filter. Analytical solution is intractable for more general non-linear 

non-Gaussian SSMs. KF has been used extensively to solve the optimal filtering 

problems related to signal processing based on linearity and Gaussianity assumptions 

of the models. Relaxing the assumptions to non-linearity and non-Gaussianity 

precludes analytical filtering solutions. This also poses a challenge in estimation of 

non-linear non-Gaussian modeling of biomedical signals. To solve this problem, 

many approximation schemes have been proposed such as the popular extended 

Kalman filter (EKF) which approximate the nonlinear model by local linearization 

using first order Taylor series expansion, however fails for substantial nonlinearity. 

Another example is the Gaussian sum filter which approximates the posterior 

distribution by a mixture of Gaussians. These approximation methods are still 

constrained by the assumption of linearity and Gaussianity. Refer to Cappe et al. 

(2007) for a review.  

Alternative approaches are sequential Monte Carlo (SMC) methods or 

particle filtering (PF) methods which have significant advantages that allow 

inference of the full posterior densities in more general non-linear non-Gaussian 

SSMs. The SMC methods are simulation-based methods which recursively generate 

and update a set of weighted samples or particles to approximate the posterior 

density sequentially in time. (Refer to Doucet et al. (2000) for introduction and 

Cappe et al. (2007); Doucet and Johansen (2008) for survey of recent advances). The 

SMC filtering has been applied widely for discrete-time dynamical system and its 

extension to continuous-time diffusion models have been recently proposed 

(Fearnhead et al., 2008; Poyiadjis et al., 2006; Moral et al., 2001; Golightly and 

Wilkinson, 2006; Rimmer et al., 2005). Implementation of SMC methods is efficient, 

parallelizable and scalable. The flexibility of SMC methods is traded off with their 

expensive computation. However, the great increase of computational power enable 

their use in real-time applications in many areas including computer vision, signal 

processing, target tracking, control, financial econometrics, statistics, and robotics. 

However, there are limited studies of applying SMC methods in biomedical signal 

processing in the literature. 
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The likelihood evaluation and maximum likelihood estimation (MLE) of 

linear Gaussian SSMs can be obtained analytically by KF. The analytical derivation 

of the marginal likelihood for the non-linear and non-Gaussian SSMs is intractable. 

This thesis also considers model parameter estimation problems in general SSMs. 

Many SMC techniques have been proposed to solve unknown static parameter 

estimation for general SSMs (Kantas et al., 2009). In MLE, the optimal estimates are 

obtained by maximizing the particle approximated (marginal) likelihood of the 

observations. Gradient methods and expectation-maximization (EM) algorithm have 

been proposed for maximizing the likelihood in the SMC approximation framework. 

These methods provide guaranteed convergence, however, tends to be easily trapped 

in a local maximum. We consider another approach i.e. Bayesian estimation where 

the unknown parameters are augmented with the hidden states and cast the problem 

to the filtering one. This method is simple and needs less computational effort than 

the approximation based maximum likelihood approach and thus more practical for 

real biomedical signal processing problems. Besides, the setting of prior distribution 

of parameters can be tailored by prior knowledge. This method, however, gives 

estimates optimal in minimum mean-squared error (MMSE) sense. 

1.2.1 Filtering Problems in EEG Analysis 

In this thesis, we focus on state-space modeling and sequential estimation of a 

particular type of biomedical signal i.e. EEG and consider two classes of problems 

related to EEG analysis which can be formulated into optimal filtering problems, i.e. 

(1) Parametric time-varying spectral estimation and (2) Single-trial event-related 

potential (ERP) estimation. Different variants of state-space models for EEG have 

been proposed respectively to solve these two problems, and will be reviewed in 

Section 2.7. However, the existing studies assume linear Gaussian modeling for EEG 

signals with parameter estimation solved analytically by KF. But, real EEGs are non-

linear non-Gaussian processes, for which closed-form solution for the optimal 

filtering is not available. Besides, continuously evolving processes in EEG are 

typically modeled by discrete models. 
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1.2.1.1 Parametric Time-varying Spectral Estimation 

Time-varying spectrum of non-stationary EEG signals can be obtained by 

parametric approach using time-varying autoregressive (TVAR) models and time-

varying autoregressive moving-average (TVARMA) models. The parametric spectral 

estimates, which provide high time resolution, have been used for analysis of event-

related desynchronization (ERD) and synchronization (ERS). ERD and ERS are used 

to represent frequency-specific changes of on-going EEG activity, induced by 

specific stimulus, which consist either of decrease or increase of power in specific 

frequency band. The objective is to estimate sequentially the TVAR coefficients 

which are subsequently used to compute the time-varying power spectral density. 

This can be formulated into optimal filtering problem, i.e. formulating TVAR model 

into state-space model and estimating sequentially in time the filtered density of 

TVAR coefficients given the EEG observations. The challenge is that the underlying 

TVAR process of EEG, especially in ERD and ERS, exhibit abrupt changes, which is 

kind of non-Gaussian behavior and cannot be tracked rapidly by Gaussian TVAR 

models used in the existing studies. 

1.2.1.2 Single-trial ERP Estimation 

ERPs are scalp-recorded bioelectrical potentials generated by brain activity in 

response to specific stimulation. ERPs provide useful information about various 

neurological disorders and cognitive processes. Besides, ERP waveforms vary from 

trial to trial due to different degrees of fatigue, habituation, or levels of attention of 

subjects (Georgiadis et al., 2005). The single-trial based ERP estimation involves 

extracting these inter-trial dynamics of ERPs hidden in various noises e.g. 

background EEG and non-neural artifacts, typically with poor signal-to-noise ratio 

(SNR). This can be considered as optimal filtering problem which aims to estimate 

sequentially in time the filtered density of ERP parameters given the noisy EEG 

observations. The underlying physiological process in ERP dynamics is continuous 

by nature, which is however modeled by the currently used discrete-time models. 

Besides, the irregularly spaced data problem inherent in ERP estimation cannot be 
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solved implicitly by the discrete-time models. The variances in real EEG noise are 

time-varying with smooth and occasionally abrupt changes, especially in noises of 

impulsive type. This non-Gaussian characteristic of EEG noise volatility cannot be 

properly modeled by conventional linear Gaussian random-walk of log-variance. 

To the best of author’s knowledge, there are no studies on applying 

continuous-time non-linear non-Gaussian state-space models estimated using SMC 

filtering to address these two problems, and limited studies for biomedical signal 

processing in general. 

1.3 Statement of Problems 

The problems of the research are summarized as follows: 

(1) Existing studies assume inappropriate linear Gaussian SSMs for 

biomedical signals. Relaxing this invalid assumption to non-linear 

non-Gaussian form in modeling biomedical signals is the main 

concern of this research. 

(2) Existing studies use discrete-time models for biomedical signals 

which are typically continuous processes. Continuous-time models 

may be appropriate for continuous process of biomedical signals and 

are ideally suited for modeling irregularly spaced data in biomedical 

signals. Continuous-time state-space modeling of continuous transient 

process in real biomedical signals is considered in this research. 

(3) Many biomedical signal processing problems are optimal filtering 

problems. This research attempts to investigate the application of 

optimal filtering methods to biomedical signal processing. The online 

state inference problem for linear Gaussian model can be solved 

analytically using KF. However, non-linear non-Gaussian state-space 

modeling of biomedical signals renders the closed form solution 

intractable. Inference problem for non-linear non-Gaussian SSMs of 

biomedical signals is addressed in this research. 
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(4) Motivated by the abovementioned more appropriate modeling of 

biomedical signals in continuous-time non-linear non-Gaussian 

models and advantages of SMC methods for their estimation, studies 

of which are still limited in the literature, this research investigates the 

non-linear non-Gaussian SSMs with online inference problems solved 

by SMC methods for biomedical signal processing. In addition, we 

investigate continuous-time state-space modeling of biomedical signal 

with SMC estimation. 

(5) This research focuses on the state-space modeling and estimation of a 

particular type of biomedical signal i.e. EEG, with application to two 

specific filtering problems as discussed in Section 1.2.1. EEG signal is 

inappropriately modeled by linear Gaussian models with estimation 

by KF in the existing studies. This is because EEGs are non-linear 

non-Gaussian processes, modeling of which however, renders filtering 

solution intractable. Besides, continuous process of EEG is modeled 

by discrete-time models. Development of continuous-time non-linear 

non-Gaussian models for EEG time series with their online parameter 

estimation solved by SMC filtering methods is the main interest of 

this thesis. Applications of these general SSMs of EEG with SMC 

estimation to the two important areas of EEG analysis, have not been 

studied in the literature, but are addressed in this research. 

i. Use of Gaussian state noise in TVAR state-space modeling of 

EEG signals is inappropriate due to its inability to model both 

abrupt and smooth changes of TVAR state parameters which 

are typically inherent in ERD/ERS in EEG process. Modeling 

this non-Gaussian behavior in TVAR parameter changes in 

state-space form is studied in this research. 

ii. The underlying physiological process behind the single-trial 

ERPs is continuous process which is however modeled by 

discrete-time models in existing studies. Besides, irregularly 

spaced ERP data cannot be modeled efficiently by discrete-

time models. Continuous-time state-space modeling is 

investigated in this research. The use of continuous-time 

models is motivated by more appropriate modeling of the 
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continuous physiological process generating ERP observations, 

even though the observations themselves are available only at 

discrete times, i.e. at each single-trial. Besides, continuous-

time models are able to solve implicitly the irregularly spaced 

data problem in ERPs. 

iii. The changing volatility in real noises in EEG is 

inappropriately modeled by fixed variance models. The 

variance of the observation noise can be allowed to be time-

varying for better capturing the changing-variance 

characteristics in real EEG noises. Besides, volatilities in real 

noises especially of the impulsive type e.g. artifacts typically 

exhibit non-Gaussian dynamics which are inappropriately 

modeled by linear Gaussian stochastic volatility (SV) models. 

Modeling of the changing volatility in EEG noise and its non-

Gaussian dynamics is addressed. 

iv. Online state inference and parameter estimation for the use of 

non-linear non-Gaussian state-space modeling of EEG do not 

admit closed form solutions, and will be solved in this research. 

v. Performance comparisons between linear Gaussian and non-

linear non-Gaussian modeling of biomedical signals are 

limited. Comparisons are performed in term of performance in 

the two EEG analyses. 

1.4 Objectives of the Research 

The main objectives of the research are as follows: 

(1) To develop the general framework of continuous-time non-linear non-

Gaussian state-space models with SMC based estimation for 

biomedical signals. 
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(2) To propose continuous-time non-linear non-Gaussian state-space 

modeling of EEG signals, with parameter estimation solved by SMC 

methods. 

i. To propose non-Gaussian TVARMA SSM of EEG signals to 

capture non-Gaussian parameter changes. 

ii. To introduce continuous-time diffusion process in state-space 

form for more natural modeling of continuous dynamics and 

irregularly spaced data in ERPs. 

iii. To apply non-linear non-Gaussian SV models for modeling 

the non-Gaussian dynamics of volatility in EEG noise, and to 

incorporate them in the state-space framework of EEG for 

reduction of impulsive noise. 

iv. To apply SMC methods to solve online state inference 

problems and model parameter estimation in the proposed 

models. 

 

(3) To solve two class of filtering problems in EEG analysis as special 

case investigation of this framework: (a) Parametric time-varying 

spectral estimation and (b) Single-trial ERP estimation. 

 

 

1.5 Scope of the Research 

The scope of this research is given as follows: 

(1) We establish a general framework of applying the non-linear non-

Gaussian and continuous-time SSMs with estimation by SMC 

methods for EEG signals in particular and biomedical signals in 

general. In this research, we develop mathematical models with 

general properties, which are not restricted for modeling EEG 

signals but also can be applied to other biomedical signals with 

similar characteristics as EEG, such as heart sound signals and 

ECG. 
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(2) To develop continuous-time non-linear non-Gaussian SSMs of 

EEG signals. The models developed with application to solve the 

two filtering problems are respectively: 

Non-Gaussian TVARMA state-space models of EEG. 

 

i. Non-Gaussian state noise i.e. heavy-tailed distribution 

(such as Cauchy distribution) is used to model the abrupt 

and smooth changes of TVARMA coefficients. 

ii. This proposed model is used for modeling EEG signals 

and applied to parametric spectral estimation for ERD. 

Partially observed diffusion model of single-trial ERP 

dynamics. 

 

i. The ERP dynamics are modeled as continuous-time 

diffusion process discretely observed in background noises, 

formulated in state-space form. 

ii. In observation equation, the ERP waveform at each trial is 

modeled as a mixture of shifted Gaussian functions 

observed in additive noise. The single-trial ERPs are 

assumed as discrete samples from an underlying 

continuous process. 

iii. In state equation, the underlying ERP transients are 

modeled by an example of diffusion process, i.e. mean-

reverting Ornstein-Uhlenbeck (OU) process, to model both 

the inter-trial dynamic changes in ERP parameters and 

their stationary trends. 

iv. The SV of observation noise in the SSM of ERPs is 

modeled as follows 

(a) Log-variance follows a random walk model with 

Gaussian noise. (discrete-time linear Gaussian SV 

model) 
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(b) Log-variance follows a random walk model with non-

Gaussian heavy-tailed noise. (discrete-time linear non-

Gaussian SV model) 

(c) Cox-Ingersoll-Ross (CIR) process (continuous-time 

non-linear SV model). 

v. The proposed model is applied to modeling and dynamical 

estimation of single-trial chirp-evoked auditory brainstem 

responses (ABRs). 

(3) SMC methods are applied to online state inference problems in the 

proposed SSMs to solve the two EEG analysis problems. 

i. Online inference of the state of TVARMA coefficients are 

performed by a generic SMC method i.e. sequential 

importance sampling Resampling (SIR). 

ii. The ERP SSM are estimated by more efficient Rao-

Blackwellized particle filtering (RBPF) based on variance 

reduction techniques. 

(4) SMC methods are applied for model parameter estimation. 

i. The unknown parameters of the non-Gaussian TVARMA 

model, such as the variance of the Cauchy state noise, need 

to be estimated. 

ii. The unknown model parameters of the proposed partially 

observed OU SSM includes stationary trend components 

and the time-varying variance of observation noise. 

iii. Bayesian estimation is used, where the model parameters 

are augmented to the state and jointly estimated using PF. 

(5) To perform comparison  

i. Gaussian and non-Gaussian TVARMA modeling of EEG 

signals for ERD estimation, in term of spectrum resolution, 

ERD tracking performance, and goodness of fit of the 

models. 
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ii. Linear Gaussian and non-linear non-Gaussian SV models 

in estimating the volatility changes on impulsive type of 

EEG noise for noise reduction in ERPs. 

1.6 Contribution of the Research 

The research contributes in developing continuous-time non-linear non-

Gaussian SSMs of EEG with SMC based estimation with application to solve two 

classes of optimal filtering problems in EEG analysis. 

Firstly, this research proposes non-Gaussian TVAR SSM which allows the 

state noise to be non-Gaussian heavy-tailed distributed to simultaneously capture 

smooth and abrupt parameter changes. The heavy-tailed distribution has larger 

spread out at tails to predict rare large parameter changes. We extend to TVARMA 

model with the MA coefficients to smooth the spurious spectral pole by the heavy-

tailed AR model and formulate it in state-space form. We apply SMC methods for 

parameter estimation in the proposed model. The model is used for modeling EEG 

signals with application to solve spectral estimation of ERP. 

Secondly, we develop a partially observed mean reverting OU process where 

the continuous-time OU process is discretely observed in noise. The process is used 

for modeling time-varying Gaussian mixture model parameters. We allow the model 

parameters i.e. the variance of observation noise and process asymptotic mean, to be 

time-varying. We use SV models to model the stochastic observational noise 

variance. Thus, a hybrid model based on combination of partially observed diffusion 

process and SV model is introduced. We formulate it into state-space form and apply 

combined state and model parameter estimation using SMC methods. A more 

efficient RBPF is used taking advantage of the formulated conditionally linear 

Gaussian state-space form. We adopt the model to better describe the continuous 

dynamics of single-trial ERPs hidden in noise, where continuous dynamics of the 

ERP Gaussian mixture parameters and their trends are defined by the discretely 

observed OU process and the background EEG noises are modeled by the SV models. 
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The OU process which is a continuous-time model described by SDE is able to 

describe the continuous transient underlying ERPs. Besides, the continuous-time 

model can implicitly define arbitrary time-intervals between observations, and thus is 

convenient and flexible to handle irregularly spaced data in ERPs. The asymptotic 

mean of mean-reverting OU process can also model the trends of ERP dynamics. 

The approach is applied for dynamical estimation of single-trial ABRs hidden in 

noises and to solve missing data problem in ERP estimation. 

Finally, two non-linear non-Gaussian SV models for better modeling the non-

Gaussian dynamics of volatility in EEG noise especially of impulsive type are 

introduced. We propose random-walk model with non-Gaussian noise and non-linear 

CIR process with adjustable heavy-tailed conditional distribution to better capture 

both smooth and abrupt volatility changes in impulsive EEG noise. The models are 

applied for denoising of single-trial ABRs corrupted by artifacts. 

The contributions of the research are summarized in Figure 1.2. 

1.7 Outline of the Thesis 

The structure of the thesis is summarized as follows. The thesis consists of 

introductory material (motivation, objectives, scope and contributions of the research 

– Chapter 1), review on SMC methods (Chapter 2), and our novel contributions and 

methodology (Chapter 3, 4 and 5) and conclusion and future works (Chapter 6). 

Chapter 2 presents literature review on SMC methods for state and model 

parameter estimation in general state-space models. The mathematical formulation of 

general SSMs is presented and their related filtering objectives are defined. 

Analytical solution for linear Gaussian models i.e. Kalman filtering is described. 

SMC approaches for filtering of non-linear non-Gaussian models are investigated in 

details: the basic ideas, algorithm, and implementation such as resampling, choice of 
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importance function, variance reduction techniques. SMC methods for model 

parameter estimation are also introduced. 

Chapter 3 proposes non-Gaussian TVARMA state-space models for 

parametric spectral estimation with application to event-related desynchronization 

(ERD) estimation of non-stationary EEG. We firstly introduce non-Gaussian state-

noise to capture the abrupt and smooth changes in TVAR coefficients. We extend the 

non-Gaussian TVAR model to TVARMA to further smooth spurious spectral peaks 

and illustrate its formulation into state-space form. We show how to apply PF 

methods for estimation of TVARMA coefficients and static model parameters and 

the subsequent spectral estimation of ERD. Simulation results and comparisons of 

the Gaussian and non-Gaussian models on ERD estimation and model fitness 

evaluation are presented and discussed. 

Chapter 4 proposes partially observed diffusion model of ERP dynamics with 

RBPF estimation for single-trial estimation of ERPs. We propose the use of partially 

observed OU process for modeling the continuous process underlying ERP dynamics. 

We illustrate how the proposed model is formulated into conditionally linear 

Gaussian state-space model with its joint state and model parameters estimation 

efficiently solved by the RBPF. Single-trial dynamical estimation results for 

simulated and real ABR data are presented and discussed. We also demonstrate the 

proposed continuous-time model in solving irregularly spaced data problem in ERPs. 

Chapter 5 proposes non-linear non-Gaussian SV models for modeling 

stochastic volatility of impulsive EEG noise. We discuss two types of models for SV 

i.e. non-Gaussian random walk model and non-linear CIR process for modeling the 

non-Gaussian volatility changes in impulsive noise. Comparisons of different SV 

models of EEG noise for denoising of ABRs on simulated data with artifacts are 

presented and discussed. 

Chapter 6, the final chapter summaries the research findings. Some 

suggestions for future works which might be useful for further development and 

improvement of the proposed models and their SMC estimation are discussed. 
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Parametric Time-varying Spectral Estimation 
(Frequency domain analysis) 

Single-Trial ERP Estimation 
(Time domain analysis) 

Analysis of EEG Signals 

Application: 
Estimation of event-related Desynchronization (ERD) of motor 
imagery.

Application: 
De-noising of ABRs for analysis of inter-trial variability and 
detection of wave V.  

Objective: 
To estimate the TVAR coefficients to obtain the time-frequency 
representation of EEG. 

Objective: 
To extract the inter-trial dynamics of ERPs hidden in various 
noises. 

Filtering Problem: 
To estimate sequentially in time the filtered density of TVAR 
coefficients given the EEG observations. 

Filtering Problem: 
To estimate sequentially in time the filtered density of ERP 
parameters given the noisy EEG observations. 

Motivation: 
The underlying TVAR coefficients of EEG process in ERD 
exhibit abrupt changes which cannot be tracked rapidly by 
Gaussian TVAR models. 
 

Motivation: 
• The real noises in EEG exhibit changing volatility with 

non-Gaussian dynamics, for which linear Gaussian SV 
models are inappropriate. 

• The physiological processes underlying ERP dynamics are 
continuous processes which are unsatisfactorily modeled by 
discrete-time models.  

• Irregularly spaced data problem in ERP estimation cannot 
be solved implicitly by discrete-time models. 

16

 

 

 

 

 

 

 

 

 

Figure 1.2(a): Two classes of filtering problems in EEG analysis. 
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Proposed Models: 
Non-Gaussian TVARMA state-space model of EEG 

Observation Eq.: 
TVARMA with Gaussian noise (fixed variance) 
 
 
 
 
 
 
 
 
State Eq. for AR Changes: 
Random-walk model with non-Gaussian noise (heavy-tailed 
distribution)

Proposed Models: 
Partially observed diffusion model of single-trial ERP dynamics 

Observation Eq.: 
Gaussian mixture modeling of ERP components, with 
additive Gaussian noise with time-varying variance modeled by: 
• Log-variance follows random-walk with Gaussian noise 

(discrete-time linear Gaussian SV model) 
• Log-variance follows random-walk with non-Gaussian noise 

(discrete-time linear non-Gaussian SV model) 
• Cox-Ingersoll-Ross (CIR) process (continuous-time non-linear 

SV model) 

State Eq. for ERP Dynamics: 
Continuous-time diffusion model (Mean-reverting Ornstein-
Uhlenbeck process)

Filtering Methods: 
Particle filter 
 
Model Parameter Estimation: 
Bayesian approach 

Filtering Methods: 
Rao-Blackwellized particle filter 
 
Model Parameter Estimation: 
Bayesian approach 

Figure 1.2(b): Contributions of the research for solving the filtering problems in EEG analysis. 17
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