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ABSTRACT 

 

 

 

 

 Composites are engineered materials that consist of two or more insoluble 

phases combined together; a continuous phase, known as the matrix, as well as 

interdispersed component known as the reinforcing phases.  If at least one of the 

constituent phases of a composite material is less than 100 nm in size, e.g. the 

reinforcing phase, this composite is commonly termed nanocomposite.  Among all 

the variety of different fillers that can be used as a nanocomposite’s reinforcing 

phase, carbon nanotubes (CNTs), have shown to be promising candidates for their 

very specific and remarkable mechanical and physical properties.  Carbon nanotube–

based nanocomposites, i.e. composite materials in which carbon nanotubes are used 

as the composite’s reinforcing phase, are therefore very much interesting for 

scientists and scholars, for the many outstanding applications that they can 

contribute to the world of science and industry.  This study uses a computational 

mechanics approach to numerically characterise the properties of single– and multi–

walled carbon nanotubes by simulating their molecular structure, by the finite 

element method, at the first stage.  Special emphasis is given to investigate the effect 

of some imperfections in the structure of both single– and multi–walled CNTs on 

their mechanical properties, namely perturbation, missing atoms and silicon doping 

in the structure of CNTs.  Later on, a unit cell of a composite material, consisting of 

a single CNT and its surrounding matrix is simulated and studied and finally, parallel 

CNTs, as reinforcement fibres in a macroscopic polymer matrix, are randomly 

distributed and modelled to obtain the mechanical properties of the structure and 

observe how random distribution of short fibres influences the properties of 

nanocomposites.  Based on the results of this research, any type of imperfection in 

the structure of carbon nanotubes and carbon nanotube-based nanocomposites leads 

to a Young's modulus value of less than 1TPa.  
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ABSTRAK 

 

 

 

 

 Komposit adalah bahan kejuruteraan yang terdiri daripada dua atau lebih 

fasatidak larut yang digabungkan bersama–sama; fasa sejajar, yang dikenali sebagai 

matriks, serta komponen tersebar–dalam yang dikenali sebagai fasa pengukuh. Jika 

sekurang–kurangnya satu fasa unsur bahan komposit adalah kurang daripada 100nm 

dalam saiz, contohnya bagi fasa pengukuh, komposit ini biasanya diistilahkan 

sebagai nanokomposit.Di kalangan semua pelbagai bahan pengisi yang berbeza yang 

boleh digunakan sebagai fasa pengukuh, nanotuib karbon (carbon nanotubes –

CNTs), telah menunjukkan kebolehannya untuk menjadi calon terbaik yang sangat 

khusus dan luar biasa dari sifat mekanikal dan fizikalnya. Nanokomposit berasaskan 

nanotiub karbon, iaitubahan komposit di mana nanotiub karbon digunakan sebagai 

fasa pengukuh komposit, adalah sangat menarik untuk digunakan oleh ahli–ahli sains 

dan cendekiawan, bagi banyak aplikasi yang boleh disumbangkan kepada dunia 

sains dan juga industri.Fokus utama kajian ini adalah untuk mencirikan sifat–sifat 

nanotiub karbon berdindingtunggal dan berdindingpelbagai dengan membuat 

simulasi struktur molekul mereka menggunakan kaedah unsurterhingga, pada 

peringkat pertama. Tumpuan khusus akan diberi untuk mengkaji 

kesanketidaksempurnaan dalam struktur kedua–dua CNTs berdinding tunggal dan 

berdindingpelbagai ke atassifat mekanikal mereka. Kemudian, sel unit bahan 

komposit yang terdiri daripada CNTtunggal dan matriks sekitarnya akan disimulasi 

dan dikaji dan akhirnya CNTs sebagai pengisi tetulang dalam matriks polimer 

makroskopik akan dimodelkan dan dikaji untuk mendapatkan sifat–sifat mekanik 

struktur.Berdasarkan keputusan kajian ini, apa-apa jenis ketidaksempurnaan dalam 

struktur nanotiub karbon dan nanokomposit berasakan karbon nanotiub akan 

mengakibatkan nilai modulus Young kurang daripada 1TPa.  
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CHAPTER 1 

 

 

 

 

1 INTRODUCTION 

 

 

 

 

Composites are engineered materials that consist of two or more insoluble 

phases combined together; a continuous phase, known as the matrix, as well as 

interdispersed components known as the reinforcing phase.  The matrix is typically 

the major constituent that provides durability for the overall composite and it can be 

for instance, a metallic, a ceramic or a polymer material.  The reinforcing inclusions 

are the structure’s load carriers that can be in the form of fibres, particles, or flakes.  

This phase of the composite structure provides its stiffness and strength.  Now if at 

least one of the constituent phases of a composite material is less than 100 nm in 

size, e.g. the reinforcing phase, this composite is commonly termed nanocomposite. 

 

 

 

 

1.1 Composite structure 

 

 

The reinforcing phase and matrix are the major constituents in all reinforced 

polymer composites.  Therefore, suitable selection of type, amount and orientation of 

these components is very important and has a significant effect on the characteristics 

of the produced composite; such as its tensile and compressive strengths, fatigue 
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strength and failure mechanisms, electrical and thermal conductivities, specific 

gravity, and cost (Kaw, 2006). 

 

 

 

 

1.1.1 Reinforcing phase types 

 

 

Fibres can be classified as follows: 

 

 

(a) Glass fibres 

Glass fibres are usually isotropic and as a result of their low cost, high 

chemical resistance, excellent insulating properties and high tensile strength, they are 

the most common reinforcing materials for polymeric matrix composites.  However, 

they have some disadvantages such as low tensile modulus, relatively high specific 

gravity, low fatigue resistance, high hardness and sensitivity to abrasion that 

decrease their tensile strength.  The two most important kinds of glass fibres are 

called E–glass fibres, named because of their high electrical properties, and S–glass 

fibres, named so because of their high tensile strength (Kaw, 2006). 

 

 

(b) Aramid fibres 

These types of fibres are anisotropic and the most widely used organic fibres.  

Tensile strength, stiffness, and toughness of them are very high in the axial direction 

of the fibre.  However, their tensile strength and stiffness in the transverse direction 

is relatively low.  Low compressive strength is the major disadvantage of these types 

of reinforcing fibres. 

 

 

(c) Boron fibres 

Boron fibres are one of the first high performance fibres available for use as 

reinforcing phase in composite materials.  The diameter of boron fibres is in the 
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range of 0.1–0.2 mm, which is an order of magnitude larger than glass, aramids, or 

graphite fibres.  But their large diameter and high stiffness restricts their bend radius 

greatly, offering high resistance to buckling, which in turn contribute to an excellent 

compressive performance of boron–reinforced composites. 

 

 

(d) Ceramic fibres  

Some examples of ceramic fibres are silicon carbide and aluminium–boron–

silica fibres.  An outstanding feature offered by ceramic fibres is their resistance to 

extremely high temperatures, while still maintaining competitive structural 

properties.  Having applications in metal and ceramic matrix composites, ceramic 

fibres are suitable options for reinforcing metal matrices in which boron and carbon 

fibres exhibit adverse reactivities. 

 

 

(e) Graphite and carbon fibres 

The terms graphite and carbon are often interchangeably used in the 

composite community.  Major advantages of carbon fibres are their extraordinarily 

high tensile strength–weight ratios, as well as tensile modulus–weight ratios, very 

low coefficient of thermal expansion and high fatigue strengths.  They behave 

anisotropic and have a high longitudinal stiffness due to alignment of the basal 

planes parallel to the fibre axis.  Their low impact resistance and high cost are their 

major disadvantages, but these reinforcing materials are mostly very appropriate 

options in aerospace industry, where weight savings is considered to be more critical 

than lowering costs.   

 

 

Transferring stresses between the fibres and protect the surface of the fibres 

from mechanical abrasion are the main role of the matrix in a fibre–reinforced 

composite.  The matrix provides lateral support against the possibility of fibre 

buckling under compression loading (Kaw, 2006). 
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1.1.2 Matrix phase types 

 

 

Matrices can be classified as follows: 

 

 

(a) Polymeric matrix 

Polymer is defined as a long chain of molecules, containing one or more 

repeating units of atoms joined together by strong covalent bonds.  Polymeric 

materials are collections of a large number of polymer molecules of similar chemical 

structure, but not necessarily of equal length.  In solid state, these molecules are 

either frozen in space in a random fashion, e.g. for amorphous polymers, or in a 

mixture of random and orderly folded fashions, e.g. for semi–crystalline polymers. 

 

 

Among different types of polymeric matrices, thermoplastic and thermoset 

polymer matrices are two major categories.  In thermoplastic polymers, individual 

molecules are linear in structure, without any chemical linking between them.  

Thermoset polymers, on the other hand, consist of molecules which are chemically 

joined together by cross–links, forming a rigid three–dimensional network structure 

during polymerization reaction which as a result, cannot be easily melted or reshaped 

under heat and pressure. 

 

 

(b) Metal matrix 

Metals have high modulus and yield strength which candidate them for 

applications requiring high transverse strength and compressive strength.  Another 

important advantage of a metal matrix, over the polymeric matrix, is its long–term 

resistance to severe environmental conditions, such as being used in high 

temperatures, or enduring a variety of mechanical and thermal treatments, allowing 

them to be plastically deformed and strengthened. 
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Metals have some disadvantages as well, such as high specific weight, high 

melting points and hence hard to process.  They also have the tendency toward 

corrosion at the matrix/fibre interface (Kaw, 2006). 

 

 

 

 

1.1.3 Carbon nanotube–based composites 

 

 

Among all the variety of different fillers that can be used as a 

nanocomposite’s reinforcing phase, carbon nanotubes (CNTs), have shown to be 

promising candidates for their very specific mechanical and physical properties 

which will be explained later.  carbon nanotube–based nanocomposites, i.e. 

composite materials in which carbon nanotubes are used as the composite’s 

reinforcing phase, are therefore very much interesting for scientists and scholars, for 

the many outstanding and remarkable applications that they can contribute to the 

world of science and industry.  They are expected to influence many fields in terms 

of technology and industry.  They will have applications in many diverse fields such 

as energy, signal processing, medicine, biotechnology, information technology, 

aerospace, agriculture, and environment (Wang et al., 2010).  These outstanding 

materials can be used as stand–alone nanomaterials or as reinforcements in 

composites for a wide variety of application.  Therefore, several detailed studies 

have been conducted to explore different properties of carbon nanotubes and carbon 

nanotube based composite materials. 

 

 

Composite materials mostly show more significant advantageous properties 

compared to monolithic materials.  Monolithic metals and their alloys cannot always 

meet the demands of today’s advanced technologies and performance requirements.  

It means that by incorporating reinforcements into a, for instance, metallic, ceramic 

or polymer matrix, the properties of the matrix improves to a higher mechanical 

strength, more significant temperature stability and better chemical durability.  The 
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existence of reinforcing elements improves the structure’s physical and chemical 

properties.   

 

 

The main focus of the project is therefore to characterise the properties of 

single– and multi–walled carbon nanotubes by simulating their molecular structure 

using the finite element method (FEM), at the first stage.  Special emphasis will be 

given to investigate the effect of imperfections in the structure of both single– and 

multi–walled CNTs on their mechanical properties.  Later on, a unit cell of a 

composite material consisting of a single CNT and its surrounding matrix will be 

simulated and studied and finally CNTs as reinforcement fillers in a macroscopic 

polymer matrix will be modelled and studied to obtain the mechanical properties of 

the structure. 

 

 

 

 

1.2 Statement of problem 

 

 

There are very vast variety of emerging applications for CNTs and CNT–

based polymer nanocomposites, ranging from nano–electronics to biomedical 

devices.  Due to the restrictions in manufacturing perfect CNTs, different 

configurations of defects in CNTs should be investigated before proceeding to the 

high cost of making them experimentally available; namely, vacancies i.e. single or 

several carbon atoms being missed in the related C–C bonds and therefore in the 

whole structure, improper location of carbon atoms making the structure 

perturbated, as well as the existence of other atoms doped in the structure that will 

all influence the properties of nanostructure material. 

 

 

Finding out how defects and imperfections influence the mechanical 

properties of different types of CNTs and CNT–based polymer nanocomposites, 

before getting involved in the burden of experimental production and its pertinent 
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high expenses is the main issue that this investigation tries to study as much as 

possible.  It is quite necessary and helpful to study how these defects and 

imperfections influence the mechanical properties of different types of CNTs and to 

embed them later in a polymer matrix and study the properties of the nanocomposite 

for its potential applications ranging from nanoelectronics to biomedical devices. 

 

 

 

 

1.3 Scopes of the study 

 

 

(a) To characterise the properties of single– and multi–walled carbon 

nanotubes by simulating their molecular structure using the finite element method. 

 

 

(b) To model and study the composite material consisting of CNTs as 

reinforcement fillers inside a polymer matrix. 

 

(c) Special emphasis will be given to investigate the effect of imperfections 

in the structure of both single–and multi–walled CNTs as nanocomposites’ 

reinforcement elements independently, as well as the randomness of the distribution 

of fibres inside matrix, on the mechanical and physical properties of the whole 

structure by means of the finite element method. 

 

 

 

 

1.4 Research objectives 

 

 

The objectives of this research can be stated as follows: 
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(a) To determine the effects of deficiencies and imperfections in carbon 

nanotube’s structure on its main mechanical properties. 

 

 

(b) To simulate the structure of a unit cells of CNT/polymer matrix 

nanostructure as a basic investigation for evaluating the macroscopic structure later. 

 

 

(c) To simulate the macroscopic structure of different CNT/polymer matrices 

and study their mechanical and physical properties with different orientations and 

dispersion densities. 

 

 

 

 

1.5 Structure of the thesis 

 

 

This dissertation is organised in five chapters as follows: 

 

 

Chapter 1, the current chapter, looks mainly on the significance of the 

research topic and gives a general definition of nanocomposites and carbon 

nanotube–based composites.  The scopes and objectives of the research are also 

presented in this chapter. 

 

 

Chapter 2 is arranged to introduce the basic definitions pertaining to the 

involved nanomaterials and to give a brief review of the main steps forward in the 

path of characterising the above–mentioned nanostructures.   
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The methods applied and the steps taken for investigating the structures’ 

properties and achieving the appropriate results are presented in Chapter 3, whereas 

the obtained results are depicted and discussed in detail in Chapter 4. 

 

 

Finally, a conclusion of the whole research approach and the achieved results 

is introduced in Chapter 5.  



120 
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