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ABSTRACT 

 
 
 
 

Generally, an automatic fingerprint classification system aims to classify the 
fingerprints into several categories based on global features such as ridge structure 
and singular points. Its process basically covers: segmentation, enhancement, 
orientation field estimation, singular point detection, and classification. However, its 
performance is heavily relied on image quality that comes in various forms such as 
low contrast, wet, dry, bruise, cuts, stains, etc. Although a great effort has been made 
by previous studies to come out with various methods, their performances especially 
in terms of accuracy are fallen short, and room for improvements is still wide open. 
Thus, this thesis proposes an automatic fingerprint classification scheme based on 
singular points and structural shape of orientation fields.  This method begins with 
foreground extractions using a composite method which combines local mean values 
of the grey-levels with local variances of the gradient magnitudes. Then, noise 
patches in the foreground are detected using coherence, and are enhanced using 
minimum variance of gradient magnitude. Next, Least Mean Square algorithm is 
applied to estimate the orientation fields, and a corrective procedure is performed on 
the false ones using minimum variance of the orientation fields. Later, an orientation 
image is created, and then partitioned into several distinct regions of homogenous 
orientation fields. The convergence point of these regions implicitly reveals an area 
that most likely contains a singular point. Subsequently, core and delta in this 
localized area are then detected using the Poincaré index. Finally, based on the 
number of core and delta and their locations, an exclusive membership of the 
fingerprint can be ascertained. Should it fail, the structure shape of the orientation 
fields neighbouring the core or delta is analysed. The performance of the proposed 
method is evaluated and tested using 27,000 fingerprints of NIST Special Database 
14, which is considered de facto standard dataset for development and testing of 
fingerprint classification systems. The results obtained are very encouraging with 
accuracy rate of 89.31% that markedly outperformed the latest work of the renowned 
researchers.  
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ABSTRAK 

 
 
 
 

Secara umumnya, sistem klasifikasi cap jari automatik bertujuan untuk 
mengklasifikasikan cap jari ke dalam beberapa kategori berasaskan kepada ciri-ciri 
global seperti struktur rabung dan titik singular. Prosesnya meliputi: segmentasi, 
peningkatan, anggaran bidang orientasi, pengesanan titik singular, dan klasifikasi. 
Walau bagaimanapun, prestasinya amat bergantung kepada kualiti imej yang berasal 
dari pelbagai bentuk seperti kontras rendah, basah, kering, luka, noda, dan 
sebagainya. Walaupun usaha gigih telah dibuat oleh kajian sebelumnya untuk 
menghasilkan pelbagai kaedah, prestasinya terutamanya dari segi ketepatan adalah 
kurang memberangsangkan, dan ruang untuk penambahbaikan masih terbuka luas. 
Oleh itu, tesis ini mencadangkan skim klasifikasi cap jari automatik berdasarkan titik 
singular dan bentuk struktur bidang orientasi. Kaedah ini bermula dengan 
pengekstrakan latar-depan dengan menggunakan kaedah komposit yang 
menggabungkan nilai min tempatan tahap kelabu dengan varians tempatan magnitud 
kecerunan. Kemudian, tompokan hingar latar-depan dikesan menggunakan koherensi 
dan dipertingkatkan menggunakan varians minimum magnitud kecerunan. Selepas 
itu, algoritma min kuasa dua terkecil digunakan untuk menganggarkan bidang 
orientasi, dan prosedur pembetulan dilakukan terhadap bidang orientasi yang palsu 
dengan menggunakan varians minimum bidang orientasi. Kemudian, orientasi imej 
diwujudkan, dan seterusnya dipecahkan kepada beberapa kawasan yang berbeza 
mengikut bidang orientasi yang homogen. Titik penumpuan kesemua kawasan ini 
secara tersirat mendedahkan kawasan yang paling mungkin mengandungi titik 
singular. Selanjutnya, teras dan delta dalam kawasan setempat ini dikesan dengan 
menggunakan indeks Poincaré. Akhirnya, berdasarkan bilangan teras dan delta serta 
lokasinya, keahlian eksklusif cap jari boleh ditentukan. Sekiranya gagal, bentuk 
struktur bidang orientasi yang berjiran dengan teras atau delta dianalisis. Prestasi 
kaedah yang dicadangkan ini dinilai dan diuji dengan menggunakan 27,000 cap jari 
daripada Pangkalan Data Khas NIST 14, yang dianggap sebagai set data piawai 
untuk pembangunan dan ujian sistem pengkelasan cap jari. Keputusan yang 
diperolehi adalah sangat menggalakkan dengan kadar ketepatan 89.31% yang ketara 
mengatasi prestasi kerja terbaru dari penyelidik tersohor. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Introduction 

 
 
 Biometric is automatic recognition of a person that is based on physiological 

measurements or behavioural traits. Fingerprint as a kind of human biometric 

features has been used for over a century and the most widely used for personal 

recognition in civil, forensic, and commercial areas because of its uniqueness, 

immutability, reliability, and low cost.  For example, the total number of fingerprint 

cards where each card contains one impression for each of the 10 fingers of a person 

in the FBI fingerprint database stands well over 200 million from its original number 

of 810,000 and is growing continuously (Maltoni et al., 2009). The uniqueness of 

fingerprint has been studied and it is well established that the probability of two 

fingerprints matching is vanishingly small (Jain et al., 2000; Pankanti et al., 2002). 

The immutability of fingerprint is persistent with age and can not be easily disguised 

(Yager and Amin, 2004). 

 
 
 Generally, a fingerprint recognition system works in two modes: verification 

or identification, depend on the application and the requirement. In the verification 

mode, the user inputs fingerprint and claims identity information, then the system 

verify whether the query fingerprint is consistent with the claimed identity. In the 

identification mode, the user only inputs fingerprint and the system needs to identify 

the potential corresponding fingerprints from the database without the claimed 

identity information. Fingerprint identification needs to search the entire database to 
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find the potential corresponding ones to the query fingerprint. The huge amount of 

data of the large fingerprint databases seriously compromises the efficiency of the 

identification task, although the fastest matching algorithms take only a few 

milliseconds per matching. 

 
 

To perform fingerprint identification, both matching accuracy and processing 

time are critical performance issues. In order to achieve an efficient identification of 

a fingerprint, fingerprints in the database are organized into a number of mutually 

exclusive classes that share certain similar properties. This process is called 

fingerprint classification. Therefore, although all automatic fingerprint identification 

system require the fingerprint classification stage before the matching stage, it is very 

difficult to design an automatic system able to perform such classification with high 

accuracy (Karu and Jain, 1996). 

 
 
 
 
1.2 Background of Research 

 
 

Fingerprint classification is an important stage in automatic fingerprint 

identification system (AFIS) because it significantly reduces the processing time to 

search and retrieve in a large-scale fingerprint database (Cappelli et al., 1999). When 

a class of a query fingerprint is known, matching the fingerprint only requires the 

comparison to be done within the class similar to the query fingerprint.  

 
 

Galton (1892) began the first rigorous study of fingerprint-based 

identification. Among many contributions to the field, his work contained the first 

system for fingerprint classification. Classification was introduced as a means of 

indexing fingerprints in order to facilitate searching for a particular fingerprint within 

a collection of many prints. He proposed three basic fingerprint classes: the arch, the 

loop, and the whorl. Galton’s other major contribution was the first study into the 

uniqueness of fingerprints. In addition to permanence, uniqueness is the other 

necessity for fingerprints to be a viable method of personal identification. 
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Several years later Henry (1990) continued Galton’s work on fingerprint 

classification. Henry subdivided the three main classes into more specific subclasses, 

namely, Arch, Tented-arch, Left-loop, Right-loop and Whorl as shown in Figure 1.1. 

He also introduced the concept of fingerprint ‘‘core’’ and ‘‘delta’’ points and used 

them as aids for fingerprint classification. Henry’s classification scheme constitutes 

the basis for most modern classification schemes.  

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Tented-arch Arch Right-loop 

Whorl Left-loop 

Figure 1.1 Example of five classes 

 
 

The distribution of the classes in nature is not uniform. The probabilities of 

the classes are approximately 0.037, 0.029, 0.338, 0.317, and 0.279 for the Arch, 

Tented-arch, Left-loop, Right-loop, and Whorl, respectively (Wilson et al., 1993). 

Left- loop, Right-loop and Whorl are the most common, making up 93.4% of all 

fingerprints. Therefore, for developing and testing of a classification system, it is   

important to use a suitable dataset with sufficient sample size that can represent 

natural distribution of human fingerprints’ classes. However, most researchers 

employed NIST database 4 and insufficient samples (i.e. less than 10,000 prints) for 

testing and validating their experiments (Karu and Jain, 1996; Hong and Jain, 1999; 

Jain and Minut, 2002; Zhang and Yan, 2004; Wang and Xie, 2004; Wang and Dai, 
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2007). Thus, their experimental results’ validity is disputable, and consequently the 

performance of their proposed classification methods is also implausible (Maltoni et 

al., 2009). In relation to that, NIST Special Database 14 was created and becomes de 

facto standard dataset for developing and testing of automatic fingerprint 

classification systems (Watson, 1993; Maltoni et al., 2009). 

 
 
Naturally, there are some fingerprints that are ambiguous and can not be 

classified even by a human expert because in some cases, the fingerprints have 

properties more than one classes (see Figure 1.2). There is about 3.39% of the 27,000 

images in the NIST Special Database 14 have two different ground truth labels 

(Cappelli and Maltoni, 2009). In these cases it is unclear which fingerprint classes 

the ambiguous prints should be matched against.  

 
 

      
        (a)                                                                   (b) 

Figure 1.2 Samples of ambiguous prints 

 
 

Fingerprint images of poor quality due to scars and injuries are often difficult 

to classify, even for a human expert: in many applications such images are rejected 

(Figure 1.3). Because this would be less damaging than a wrong decision. For this 

reason, to improve the accuracy, several classification approaches apply a rejection 

mechanism in which the images are classified as “unknown”.  
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Figure 1.3 Rejected prints 

 
 

There is always the possibility of misclassification due to noise especially 

generated by excessive or insufficiently used of ink during fingerprint imprinting 

process. In relation to that, there are many dry, wet and bruises prints existed in the 

NIST Special Database 14 that is considered of unfavourable quality. The database 

also contains images that are often tainted by handwritten annotations and other 

artefacts common to inked fingerprints (see Figure 1.4). Generally, manual cropping 

of fingerprint images is a commonly used pre-processing in order to remove the 

annotations and artifacts (Cappelli and Maltoni, 2009). Besides, cropping and 

alignment are also manually applied for extracting and realignment of a foreground 

image. A foreground of size 500500×  pixels and in upright position is more 

preferable as a work area by most researchers. However, the above processes are 

considered non-automatic because of human intervention, and should be avoided if 

possible. Therefore, developing a full scale automatic fingerprint classification 

system is considered a very challenging task. 
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          (a) Dry print             (b) Wet print 

   
       (c) Bruises print                      (d) Tainted print 

Figure 1.4 Dry, wet, bruises and tainted prints 

 
 

The majority of classification schemes use five classes. However, there is a 

large distinction among orientation patterns of ridge structure within the same class, 

especially in the whorl case (see Figure 1.5(a)). This problem is usually termed as 

large-intra-class variation, in which the prints of the same class have distinct 

characteristics causing the similarity measure having to cover large spread, and 

therefore is difficult to classify (Li et al., 2007). Moreover, in some cases, prints 

from one class can appear very similar to prints from another class, particularly arch 

and arch-like classes (i.e. Left-loop, Tented-arch and Arch). In other words, there is a 

small-inter-class variation (see Figure 1.5(b)). This interclass problem is extremely 

difficult to deal even for a human expert.   
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Figure 1.5(a) Three fingerprints of the same class that have very 

different characteristic (large-intra-class variability). (Source: NIST 

Special Database 14) 

 
 

 
Figure 1.5(b) Three fingerprints belonging to different classes that 

have similar appearance (small-inter-class variability). (Source: 

NIST Special Database 14) 

 
 
Choosing the distinguishable features is very important for the fingerprint 

classification that affects its performance. The category of a fingerprint is determined 

by its global ridges and valleys structures as shown in Figure 1.6. There are two 

kinds of features for its representation: global features that describe the flow 

structure of ridges and local features that describe the minute details of ridges. The 

classification of a fingerprint is based on its global pattern of ridges and valleys. A 

valid feature set for fingerprint classification should be able to capture this global 

information effectively (Jain et al., 1999). Therefore, it is natural to base the features 

directly on the fingerprint ridges. There are many different ways to extract and 

represent ridge information. Orientations fields are a convenient way to summarize 

the ridge-valley patterns of a fingerprint. Fingerprint ridge orientation estimation, 

especially for low quality image, is still a challenging problem in automatic 
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fingerprint classification and new creative methods for orientation estimation and 

correction are expected to be proposed and investigated (Zhu et al., 2006).  

 
 

 

Valleys 

 

 

 Ridges 
 

 

 

 

 

 

Figure 1.6 Ridges and valleys structure (Right-loop class) 

 
 

Another feature that is often used for distinguishing fingerprint classes is the 

existence and location of singular points. The singular points are classified into core 

and delta as depicted by Figure 1.7. The difficulties faced by singularities-based are:  

the singular points may not appear in the image, especially if the image is small; the 

noise in the fingerprint images makes the singular points extraction unreliable, 

including missing or wrong detection. There are several methods have been proposed 

to locate the singular points. However, the most common and widely used is the 

Poincaré index (Li et al., 2007), but this method is very sensitive to noise, low 

contrast and quality of fingerprint images. 

 
 
 Local averaging of the orientation fields are often quite effective in 

preventing the detection of false singular points, even if it can lead to slight 

displacement of the delta position toward the borders (Maltoni et al., 2009). Park et 

al. (2006) proposed the orientation of any two horizontally adjacent elements is 

checked against a set of pre-defined rules to detect candidate regions of singular 

points; for each candidate region, its neighboring elements are then analyzed to 

confirm the presence of singular points. This method is very sensitive to fingerprint 

image rotation because only the upper and lower cores are used. Wang and Xie 
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(2004) employ structure shape of orientation fields around the cores when the delta 

located near the border are failed to be detected.  

 
 
In relation to that, many techniques have been proposed to locate the singular 

points; their performances are far from satisfactory, let alone a full automation. 

Therefore, it is vital to come out with an efficient technique that capable of detecting 

precisely genuine singular points without to undergo both cropping and realignment 

pre-processes.   

 
 

 

 

 

 

 

 

 

 

 

 

 

Delta 

Core 

 

Figure 1.7 Core and delta on a fingerprint image 

 
 

The above mentioned remaining issues provide a window of research 

opportunities in this area. In relation to that, the corresponding interrelated research 

questions that need to be resolved are arranged according to their order of preference: 

1. How to automatically segment fingerprint image into background and 

foreground? 

2. How to identify, locate and remove the noises from the foreground? 

3. How to accurately estimate the orientation fields? 

4. How to precisely detect the genuine singular points? 

5. How to accurately classify the fingerprint? 
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1.3  Problem Statements 

 
 

Base on the problem background and research questions, the remaining issues 

can be stated as follows: 

1. Generally, fingerprint images of NIST Special Database 14 always vary 

in terms of shape, size and orientation. Thus, previous studies applied 

manual cropping to separate foreground from background. Later the 

foreground is manually realigned and rescaled to obtain appropriate 

orientation and work area. These non-automatic pre-processes involve 

human intervention, and therefore should be avoided. Thus, a robust 

method should be invariant to scaling and rotation. 

2. Naturally, many noises exist in fingerprints especially inked prints due 

excessive or insufficiently used of inks. To accurately identify, locate and 

remove the noises require a novel approach so that it does not damage the 

ridges structure and break their flows. 

3. Accurate orientation fields are paramount importance prior to singular 

points detection. Most previous studies employed pre-define angles (for 

instance, 0, 45, 90, 135, 180 degrees) to represent the ridges’ orientations 

(Ratha et al., 1995; Wang and Xie, 2004; Hsieh et al., 2005; Zhang and 

Yan, 2007). However, these rigid pre-set angles do not truly reflect the 

actual ridges orientations. In fact, it resulted in many fake singular points. 

In addition, to identify and eliminate these artificial singular points are 

time consuming and tedious and therefore require a special tool to 

undertake the job.  

4. Original Poincaré index is considered a robust technique to locate the 

singular points and its performance is heavily relied on quality of the 

orientation fields (Zhang and Yan, 2007; Maltoni et al., 2009). However, 

most researchers have simplified the index to suite their requirements. 

Furthermore, most previous studies directly employed the Poincaré index 

to determine the singular points without first undergo filtering mechanism 

to short list the potential candidate of genuine singular points. This 

resulted in many false singular points. Therefore, an efficient algorithm is 

required to filter the singular points.  
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5. There is a wide variety of orientation fields-based classification methods 

that have been proposed by previous researches including geometric-

based, structure-based, rule-based, learning-based, statistical-based, and 

hybrid (Jain et al., 1999; Maltoni et al., 2009). However, most of the 

techniques are considered rigid and involved human intervention during 

pre-processing stage. Moreover, most of their experiments were based on 

unreliable dataset such as NIST database 4 which contains 2000 pre-

segmented and pre-cropped prints (Cappelli and Maltoni, 2009). This 

limited number of pre-processed prints is considered small and unnatural, 

and therefore, is not reliable to be an appropriate testing platform for the 

fingerprint classification. In addition, some studies have also employed 

standard dataset but with unreliable sample size (i.e. insufficient and 

biased), except for Cappelli and Maltoni (2009). Hence, their 

experimental results and as well as the proposed methods are disputable. 

 
 
 
 

1.4 Research Goal 

 
 

To develop an automatic ridges orientation structure-based fingerprint 

classification method that covers foreground segmentation, noise removal, 

enhancement, orientation field estimation, singular point detection, and 

classification.  

 
 
 
 

1.5 Objectives of Study 

 
 

In order to fulfil the above goal, the following objectives are to be targeted: 

1. To propose a new automatic fingerprint classification scheme. 

2. To propose a new pre-processing technique that includes image 

segmentation and enhancement. The technique should be able to segment 

the fingerprints from its background and discards all foreign objects such 
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as handwritten annotation and artefacts found in the inked prints. Also, it 

should be able to improve the foreground image quality. 

3. To propose a new orientation field’ estimation approach that utilizes true 

angle of the orientation fields in accordance to natural gradient of the 

ridge’s structure of the prints.  

4. To propose a new singular point detection technique using a filtering 

mechanism. This mechanism is functioned to filter singular points in 

order to minimize of both fake core and delta.   

5. To propose a new rule-based classification method using singular points 

and structure shape of orientation fields. 

 
 
 
 

1.6 Scope of the Study 

 
 

This thesis involves a complete process of automatic fingerprint classification 

including fingerprint segmentation, fingerprint enhancement, orientation field 

estimation, singular point detection, and finally fingerprint classification. 

 
 

Moreover, as for the standard dataset testing platform, this study employed 

grey-scale fingerprint images obtained from the NIST Special Database 14. The 

database is made up of 54,000 8-bit grey-scale images of rolled fingerprint 

impressions scanned from 27,000 persons using both ink and life scanner. All the 

prints in the database contain handwritten annotations labelled by human experts 

during a manual fingerprint classification process. The fingerprints also contain 

inheritance handicaps or defects such as noise, scars, cuts, bruises, wet, dry and low 

contrast. Furthermore, to reflect a real life environment, the fingerprints are taken in 

their natural forms which contain the above handicaps, and also are free of manual 

cropping and realignment. In addition, since this work is benchmarked with the latest 

work of Cappelli and Maltoni (2009), the identical sample (i.e. f0000001 to 

f0027000 prints) is used. Furthermore, for the same reason, scarred prints are 

excluded from the scope of this study.  
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1.7 List of Research Contributions  

 
 

The contributions of this study can be grouped into six findings namely, new 

scheme of fingerprint classification, segmentation, enhancement, orientation fields 

estimation, singular points detection, and classification. 

• New scheme of fingerprint classification 

A new scheme of fully automatic fingerprint classification system is 

proposed. This scheme is free of cropping and realignment processes, and 

can be considered as a significant progress compared to the previous 

methods. Besides, it also introduced a novel filtering mechanism to filter 

singular points. The scheme has successfully been tested on de facto 

standard dataset NIST Special Database 14 using 27000 prints. The 

experimental results have revealed that the scheme outperformed the most 

recent Cappelli and Maltoni’s work (2009) who are been considered as 

the most respected researchers in this area. 

• Segmentation 

A new segmentation method is proposed using a combined local mean 

and local variance of gradient magnitudes approach. This technique has 

successfully extracted the foreground from background of fingerprint 

image without human intervention. 

• Enhancement 

Once the foreground is extracted, enhancement process is followed. For 

this purpose, a new enhancement technique is proposed. In this approach, 

the noisy areas are identified, enhanced and labelled, and subsequently 

the noises are removed. The strong point of this technique is that the focal 

point of the enhancement is only on the noisy areas, while clean areas of 

the fingerprint are left unchanged. Therefore, it is not only improved the 

speed, is also does not encroach on the rest of the clean areas. Once the 

noise removal is completed, then a 33×  Gaussian filter is applied on the 

entire image to further refine the foreground. 

• Orientation fields estimation 

A new method to precisely estimate orientation fields is proposed. This 

method take advantage of true angles of the orientation fields in 
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accordance to natural gradient of ridges structure of the prints. This is 

considered an edge over the previous studies which use pre-set angles to 

estimate the orientation fields. 

• Singular point detection 

A novel filtering mechanism is proposed using orientation fields 

structure. This mechanism has successfully indentified and precisely 

determined potential candidate regions that most likely contain singular 

points. This novel approach acts like a filter in which candidate regions of 

singular point are first searched. Then, for each candidate region, the 

Poincarè index is applied to seek for genuine singular point (i.e. core or 

delta). This process has significantly reduced number of fake singular 

points. In fact, in most cases, not even a single false singular point is 

found. 

• Classification 

A novel orientation fields-based classification method is proposed using 

rule-based approach that utilizes both singular points and orientation 

fields’ structure. This technique is considered non-rigid since it utilized 

true angles of the orientation fields. Therefore, it is considered robust and 

invariant to scaling and rotation.  

 
 
 
 

1.8 Significance of the Study 

 
 

The above remaining issues and shortcomings of the previous works still 

exist despite numerous efforts to fix the problems. This compels the author to 

embark a research work to resolve the drawbacks. Although, some studies have 

claimed that their proposed classification methods have successfully classified 

fingerprints with a success rate of more than 90%, their results and as well as the 

proposed methods are disputable because the datasets used are relatively small and  

insufficient for them to make a judgement. Worse still, most studies engaged both 

cropping and realignment manually. These non-automatic processes are considered 

time consuming and tedious and obviously are impractical for a real life application.  
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Against a backdrop of the above highlighted issues, this research is vital to 

resolve all the drawbacks including automating all the processes and using de facto 

standard dataset with sufficient and unbiased sample. Nonetheless, the significance 

of this study is not only limited to knowledge enrichment, it also can be applied to 

real life applications, for instance, multipurpose national identity cards, Automated 

Teller Machine cards, and cross-border-access immigration project. 

 
 
 
 

1.9 Research Framework 

 
 

This is an experimental-based study as depicted in Figure 1.8 below. It begins 

with literature reviews to find the remaining issues and shortcomings of the existing 

methods and also to learn past experiences. Then, it’s followed by analysing the 

fingerprints of the NIST Special Database 14. In this case, minute details of the 

prints are studied in order to devise a suitable approach that can be applied to solve 

the problems that associated with the fingerprints’ quality. Amongst the many issues 

are low contrast, wet prints, dry prints, noises, handwritten annotations, and artefacts.  

 
 

Next, recent segmentation approaches are also studied to find their strengths 

and weaknesses. Subsequently, a new segmentation technique is introduced to 

extract the foreground and as well as to discard all unrelated foreign objects such as 

handwritten annotations and artefacts.  

 
 

Once an alien-free foreground is extracted from its background through the 

segmentation process, the noises are then removed by using a novel noise removal 

technique. Then, orientation fields’ estimation of the foreground is performed. 

Subsequently, a refinement process is done on the orientation fields by focusing on 

the noises’ areas of the foreground. Later, a singular point detection technique is 

applied to seek for a genuine core and delta. This technique is coupled with a 

filtering mechanism to filter the singular points. 
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Subsequently, a classification is performed by examining both the core and 

delta in terms of their numbers and positions. Concurrently, all orientation fields 

which are considered as neighbours of the singular point are also analysed with 

regard to their patterns or shapes. The technique is then evaluated by using the 

standard error rate performance measure of the fingerprints sample used. Finally, the 

results are benchmarked with the latest work of Cappelli and Maltoni (2009).  

  
 
 
 

1.10 Thesis Outline 

 
 
This thesis consists of five chapters namely, Introduction, Literature Review, 

Methodology, Experimental Results and Discussions, and finally Conclusion.  This 

introduction chapter is followed by the second chapter which discusses about related 

works by the previous authors. Among the topics reviewed are segmentation, 

enhancement, orientation field estimation, singular point detection, and classification 

of fingerprints. 

 
 
The third chapter proposes a new fully automatic fingerprint classification 

method including new scheme of fingerprint classification approach, foreground 

extraction, noise areas detection and removal, orientation fields’ enhancement and 

estimation, singular points’ filtering mechanism, singular points detection, and rule-

based classification approach. 

 
 
Fourth chapter begins with introduction, and followed by dataset used, 

experimental setting, performance evaluations, and discussions of the results of the 

implementations including segmentation, enhancement, orientation field estimation, 

singular point detection and classification of fingerprints.  

 
 
Finally, Conclusion chapter begins with a review of the mentioned remaining 

issues, objectives and proposed approaches, and ends with highlighting the 

achievements and suggestions for future works. 
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Figure 1.8 Research framework flowcharts 
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