
Engineering JADEX Agents with the MaSE Methodology

Radziah Mohamad, Safaai Deris
Faculty of Computer Science and

Information Systems, Universiti Teknologi
Malaysia, 81310 Skudai, Johor, Malaysia

radziah@fsksm.utm.my,
safaai@fsksm.utm.my

Hany H. Ammar
Computer Science and Electrical

Engineering Department, West Virginia
University, Morgantown, WV26506, USA

Hany.Ammar@mail.wvu.edu

Abstract

Agent Oriented Software Engineering (AOSE) is
one of the fields of the agent domain with a continuous
growing interest. The reason is that the possibility to
easily specify and implement agent-based systems is of
a great importance for the recognition of the add-
value of the agent technology in many application
fields. In this paper we present an attempt towards this
direction, by proposing a kind of roadmap of how one
can combine the MaSE methodology for agent-
oriented analysis and design and JADEX, a FIPA
compliant agent development framework, for an easier
analysis, design and implementation of multi-agent
systems. Our objective is realized through the
presentation of the analysis, design and
implementation phases, of a water treatment plant
information management system.

1. Introduction

During the last few years, there has been a growth
of interest in the potential of agent technology in the
context of software engineering. This has led to the
proposal of several development environments to build
agent systems (for example Zeus [3], AgentBuilder
[12], AgentTool [7] and RETSINA [13]) and software
frameworks to develop agent applications in
compliance with the FIPA specifications (for example
FIPA-OS [10], JADE [2] and Jadex [3]). These
development environments and software frameworks
demanded that system analysis and design
methodologies, languages and procedures would
support them. As a consequence, many of these were
proposed along with a methodology (e.g. Zeus [6],
AgentTool [7]) while in parallel have been proposed
some promising agent-oriented software development
methodologies, such as Gaia [14], AUML [1], Tropos

[4], MASE [8]. However, despite the possibilities
provided by these methodologies, we believe that a
further progress must be made, so that agent-based
technologies realize their full potential, concerning the
full covering of the software life cycle and the
proposal of standards to support agent interoperability.

In this paper we present an attempt to use MaSE in
order to engineer a multi-agent system (MAS) that is to
be implemented with the JADEX framework. The only
pretension we have with this paper is to share our
experience to conceive and develop a MAS, by
combining MaSE and JADEX, in the context of the
Water Treatment Plant Information Management
System (WTPIMS), with people who are interested in
the development of real life agent-based systems. The
MaSE methodology can be applied in a high level
design. There is no given way to go from a MaSE
model to a system implementation. Thus, the aim of
this paper is to describe a kind of roadmap for
implementing a MaSE model using the JADEX
framework. Towards this end, we provide some
additional modeling techniques and make some slight
modifications to the MaSE original specification,
without obviously altering its philosophy and concepts.

This paper is organized in the following way. In
sections 2 and 3 we briefly present the MaSE
methodology and JADEX framework. In section 4 we
provide a sample MaSE model. In section 5 we
provide a methodology for converting the MaSE
model to a JADEX implementation. Finally, section 6
concludes.

2. MaSE Methodology Overview

MaSE methodology is a methodology for
developing heterogeneous multi-agent systems. MaSE
covers the complete lifecycle of the system, from the
analysis to the design utilizing a number of graphically

mailto:radziah@fsksm.utm.my
mailto:safaai@fsksm.utm.my
mailto:Hany.Ammar@mail.wvu.edu

based models. The models are transformed into
diagrams in order to describe system agents, their
communications, and the internal structure of each
agent detailed in depth.

MaSE is supported by a software engineering tool
called AgentTool [7]. AgentTool allows the designer
to formally specify all the MaSE models. It also
supports automated design transformations and
automatic verification of inter-agent communications.

There are two basic phases in the MaSE: analysis
and design. The first phase, Analysis, includes three
steps: Capturing Goals, Applying Use Cases and
Refining Roles. The purpose of the Analysis phase is
to produce a set of roles whose tasks describe what the
system has to do to meet its overall requirements.
MaSE assumes that the development process starts
with a requirements specification which includes the
whole set of well-defined requisites. Using the initial
requirements of the system, in the Capturing Goals
step, the goals are identified and structured into a Goal
hierarchy diagram. Next, the Applying Use Cases stage
identifies the use cases and creates the sequence
diagrams to help to define an initial set of roles. These
use cases are, like in UML, a basic scenario about the
desired behavior of the system. Finally, the Refining
Goals phase transforms the goals previously obtained
into a set of roles. Together with roles, a set of tasks
are created; tasks define the role behavior. This step
implied the construction of a Role Model Diagram and
several Concurrent Task Diagrams, each one
specifying the role behavior for each task, using a
finite state automaton.

The main aim of the design stage is to define the
overall system organization by transforming the roles
and tasks introduced during analysis into agent types
and conversations. The design stage is composed of
four phases: Creating Agent Classes, Constructing
Conversation, Assembling Agent Classes, and System
Design.

The first stage maps roles to groups of agent classes
and creates the Agent Classes Diagram. Next, in
Constructing Conversation, all the conversations are
detailed. Description of each conversation needs two
Communication Classes diagrams: one diagram for the
initiator agent and another for the responder. In the
phase of Assembling Agent Classes, the architecture
used for agents is decided and then all the internal
agent components are defined. Finally, it is in the
System Design where the number, kind and location of
each agent instance are shown in the Deployment
Diagram.

3. JADEX Overview

Jadex [3] is a Java based, FIPA compliant agent
environment, and allows to develop goal oriented
agents following the BDI model. Jadex provides a
framework and a set of development tools to simplify
the creation and testing of agents.

Jadex framework consists of an API, an execution
model, and predefined reusable generic functionality.
The API provides access to the Jadex concepts when
programming plans. Plans are plain Java classes,
extending a specific abstract class, which provides
useful methods e.g. for sending messages, dispatching
sub goals or waiting for events. Plans able to read and
alter the beliefs of the agent using the API of the belief
base. In addition to the plans coded in Java, the
developer provides an XML based Agent Definition
File (ADF), which specifies the initial beliefs, goals,
and plans of an agent. The Jadex runtime engine reads
this file to instantiate an agent model, and executes the
agent by keeping track of its goals while continuously
selecting and executing plan steps, based on internal
events and messages from other agents.

4. A MaSE Model

In order to better understand our proposal on how
MaSE and JADEX can be combined to conceive and
implement a multi-agent system (MAS) we will
present a prototype of the water treatment plant
information management system that is currently being
implemented. WTPIMS is aimed to automatically
generate daily, weekly and monthly quality reports for
all of the Water Treatment Plant (WTP) plants. This
research used Sungai Johor and Sungai Layang WTPs
managed by Strategi Tegas Sdn. Bhd. as the case
study. The reports related to an industry’s water use
seem infinite. A facility’s reporting needs vary
dramatically and include those reports required by
regulation as well as those needed for process control
management. The system will automatically generate
reports based on a default schedule or set by the
authorized person. The system will automatically
notify the management for all the reports that are auto
generated. The management then can access the
automatically generated reports by choosing the report
from the list of the available reports. The related
reports will be e-mailed to the supervisor and CEO
when they are created. We chose the MaSE
methodology to analyze and design the WTPRMS
application for its architectural independence,
simplicity and supporting tool. This system is
appropriate to use the agent approach since the report

must be proactively provided to the plant staffs that
manage the plants. Therefore, the system to be
developed requires its components to show a high
degree of autonomy. We will show how this system
can be analyzed, designed and implemented.

4.1 Analysis Phase

After taking into account the functional
requirements, the system goals have been identified.
These goals are included in a Goal Hierarchy Diagram
as depicted in a Figure 1. In this diagram the main
goals were: schedule reports, generate reports, display
reports and send notification. With an iterative process
all the main goals were discomposed in sub-goals. For
instance, the main schedule report has been divided
into: schedule daily, schedule weekly and schedule
monthly.

Figure 2 Role Diagram of the WTPIMS System

In the Role Model Diagram of the water treatment
plant information management system, five roles were
identified by the developer; Schedule manager, Report
manager, Report Generator, Viewer and Notifier. To
satisfy each goal, a role develops certain tasks. In
Figure 2, the association between report generator role
and task is detailed: producing report. Finally, all
interactions involving tasks (communication protocols)
are shown in the same figure. With these roles and
tasks the designer defined the internal behavior of each
role in Concurrent Task Diagram Models. Figure 3
depicts an example of concurrent task diagram model
for scheduling a report.

Figure 3 Concurrent Task Diagram for
scheduling the report

4.2 Design Phase

The final results of this stage are the Agent Classes

Diagram that shows the overall agent system classes
and conversations among them. Four agents have been
identified: UserInterface, RepManager, RepGeneration
and SchedManager. Figure 4 shows four agent classes,
their associated roles and the corresponding
conversations.

Figure 1 Goal Hierarchy Diagram of the

WTPIMS System
Figure 4 Agent Class Diagram

In MaSE, a conversation is a coordinator protocol

between two agents and it documents a communication
class diagram for the initiator and responder of each
conversation by finite state machines. Figure 5 shows
the "Scheduling Report state diagram" for the
scheduler manager agent as an initiator. Figure 6

shows the “Scheduling Report state diagram” for the
report generator agent as a responder.

Figure 5 Scheduling Report Conversation

(Initiator)

Figure 6 Scheduling Report Conversation

(Responder)

5. Developing JADEX Agents from a
MaSE Model

MaSE does not use BDI concepts throughout the
whole development cycle. Therefore, when moving
from the MaSE model to an implementation using the
Jadex framework, some assumptions need to be made.
In our work, the task of each role identified in MaSE
analysis is considered as its plan to achieve its goals
with correspondence with the Jadex terminology.

5.1 Detailed Design

Many important design issues have yet to be

considered and covered while trying to implement a
MaSE model with the Jadex framework. Some of
them are: a) Agent Internal Architecture, b) Social
Architecture and c) Communication.

Jadex is focused on the use of BDI-concepts for its
agent internal architecture. Hence, these have to be
supported by the MaSE. MaSE needs to be able to
describe how goals (by which plan) can be achieved
and which beliefs these plans need to access. For this,

we propose a slight modification to the agent
architecture model compared to the original agent
architecture model presented in MaSE. We believe that
this modification able to properly described BDI-
concepts elements to be implemented using Jadex.
Figure 7 shows an example of internal architecture of a
scheduler manager agent (SchedManager).

Figure 7 Scheduler Manager Agent Internal

Architecture

MaSE uses roles as a concept to structure a MAS

and to identify single agent classes. Roles are not
explicitly supported by Jadex, they can be
implemented using services. MaSE describes protocols
between agents as the exchange of messages in relation
to the processing inside the agents. We found that this
representation is of the same suitability for Jadex.

5.2 The Jadex Implementation

The procedure is quite straightforward. All MaSE
role tasks are translated to Jadex plan for the agent.
Jadex uses the plan-library approach to represent the
plans of an agent. For each plan, a plan head defines
the circumstances under which the plan may be
selected and a plan body specifies the actions to be
executed. The most important parts of the head are the
goals and/or events which the plan may handle and a
reference to the plan body.

Figure 8 depicts an example of a plan head for the
scheduler manager agent. The plan head is very simple
in this case and consists only of the obligatory body
expression that describes how a plan body is created at
runtime and how it is triggered. As the trigger refers to
the “schedule_report” goal type it is applicable for
each goal instance of that type. The plan body, as
depicted by Figure 9 is a Java class named
“SchedulingReportPlan” that extends the Jadex
framework class “Plan”. Inside the mandatory body()
method the plan create a message event to send a
request to a report generator agent.

Figure 8 Plan head example

Figure 9 Plan body example

Each task identified in the role model and detailed

in the concurrent task diagrams, has been used as basis
for defining the details of each conversation. From the
communication class diagrams of both the agent that
initiates the conversation and the responder the
interaction protocols that must be used were identified.
For instance, when a report is scheduled to be
generated, the scheduler manager agent makes a
request for writing a report to its report generator
agent using a FIPA-Request. This is implemented
through a message event declared in the Scheduler
Manager Agent as depicted in Figure 10.

In the ontology development, the facilities of Jadex
relating Protégé integration using Beanynizer
Generator tool have been exploited. The basic
elements of the defined ontology have been:
• Concepts: User, Report, Schedule.
• Actions performed by agents: TriggerGenerate,

RetrieveReportTemplate, RetrieveReportDetails,
RetrieveReport, Notify.

• Predicates: SystemUsers.
To create and start an agent in Jadex, the system

needs to know the properties of the agent to be
instantiated. A complete definition of an agent is
defined in a XML based Agent Definition File (ADF).
The initial state of an agent is determined among other
things by the beliefs, goals, and the library of known
plans. Figure 11 depicts part of the scheduler manager
agent definition file. Based on the example, the initial
belief for the agent consists of three objects namely the

reference to the report generator agent, the report and
the timer to trigger a message to be sent to the report
generator agent.

Figure 10 Declaration of a message event in

the scheduler manager agent

Figure 11 Extracted Scheduler Manager Agent

Definition File example

Summarizing, the following steps should be

followed in order to easily translate a MaSE model to a
Jadex implementation:
1. Define all plans for an individual agent using the

tasks identified in the MaSE role model. Based on

the role model, we can know which goals and sub-
goals that the plan needs to achieve.

2. Define the details of each agent conversation by
using the MaSE role model and its detailed
concurrent task diagrams.

3. Identify both the agent that initiates the
conversation and the responder and the interaction
protocols to be used by using the communication
class diagram of both the initiator and responder
agent.

4. Define the XML based Agent Definition File by
using the improved MaSE internal architecture
diagram.

6. Conclusion

This paper has presented the analysis, design and
implementation phases of a Water Treatment Plant
Information Management System. As mentioned
before, the only pretension we have with this paper is
to share our experience on how one can combine the
MaSE methodology and the JADEX development
environment in order to implement a real multi-agent
system. MaSE methodology is an easy to use agent-
orient software development methodology that
however presently, covers only the phases of analysis
and design. On the other hand JADEX is a FIPA
specifications compliant agent development
environment that gives several facilities for an easy
and fast implementation. Our aim was to reveal the
mapping that may exists between the basic concepts
proposed by MaSE for agents specification and agents
interactions and those provided by JADEX for agents
implementation, and therefore to propose a kind of
roadmap for agents developers.

7. References

[1] Agent UML: http://www.auml.org/
[2] Bellifemine, F., Caire, G., Trucco, T., Rimassa,

G., “JADE: A FIPA-compliant agent framework”,
in Proceedings of the Practical Applications of
Intelligent Agents and Multi-Agents, April 1999,
pp. 97--108.

[3] Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex:
A Short Overview, in: Main Conference
Net.ObjectDays 2004, AgentExpo.

[4] Bresciani, P., Giorgini, P., Giunchiglia, F.,
Mylopoulos, J and Perini, A.: “TROPOS: An
Agent-Oriented Software Development
Methodology” in Journal of Autonomous Agents

and Multi-Agent Systems, Kluwer Academic
Publishers Volume 8, Issue 3, Pages 203 - 236,
May 2004.

[5] Collis, J. and Ndumu, D., Zeus Technical Manual.
Intelligent Systems Research Group, BT Labs.
British Telecommunications. (1999)

[6] Collis, J. and Ndumu, D., Zeus Methodology
Documentation Part I: The Role Modelling Guide.
Intelligent Systems Research Group, BT labs.
British Telecommunications (1999).

[7] DeLoach S. and Wood, M., “Developing
Multiagent Systems with agentTool”, in:
Castelfranchi, C., Lesperance Y. (Eds.): Intelligent
Agents VII. Agent Theories Architectures and
Languages, 7th International Workshop (ATAL
2000, Boston, MA, USA, July 7-9, 2000),. Lecture
Notes in Computer Science. Vol. 1986, Springer
Verlag, Berlin (2001)

[8] DeLoach, S. A., Wood, M. F. and Sparkman, C.
H.: “Multiagent Systems Engineering”, The
International Journal of Software Engineering
and Knowledge Engineering, Volume 11 no. 3,
pp. 231-258, June 2001.

[9] FIPA specification XC00061E, FIPA ACL
Message Structure Specification (2000)
http://www.fipa.org.

[10] FIPA-OS: A component-based toolkit enabling
rapid development of FIPA compliant agents:
http://fipa-os.sourceforge.net/

[11] Kendall, E.A., “Role Model Designs and
Implementations with Aspect Oriented
Programming”, in the Proceedings of the
Conference on Object- Oriented Programming
Systems, Languages, and Applications
(OOPSLA'99), 1999.

[12] Reticular Systems Inc: AgentBuilder An
Integrated Toolkit for Constructing Intelligent
Software Agents. Revision 1.3. (1999)
http://www.agentbuilder.com

[13] Sycara, K., Paolucci, M., van Velsen, M. and
Giampapa, J., “The RETSINA MAS
Infrastructure.” Technical report CMU-RI-TR-01-
05, Robotics Institute, Carnegie Mellon
University, March, 2001.

[14] Wooldridge, M., Jennings, N.R., Kinny, D., “The
Gaia Methodology for Agent-Oriented Analysis
and Design.” Journal of Autonomous Agents and
Multi-Agent Systems Vol. 3. No. 3 (2000) 285-312

	1. Introduction
	2. MaSE Methodology Overview
	3. JADEX Overview
	4. A MaSE Model
	4.1 Analysis Phase
	4.2 Design Phase

	5. Developing JADEX Agents from a MaSE Model
	5.1 Detailed Design
	5.2 The Jadex Implementation

	7. References

