
A comparative evaluation of
the three prominent approaches in adaptable software architecture

Roslinda Maznan and Wan Mohd Nasir Wan Kadir
Software Engineering Department

Faculty of Computer Science and Information Systems
Universiti Teknologi Malaysia

81310 UTM Skudai, Johor, Malaysia
e-mail: roslinda@auspac.com.my, wnasir@fsksm.utm.my

Abstract

Due to the inherent dynamic nature of the software
environment, software evolution is inevitable. A large
portion of total software lifecycle cost is devoted to
introducing new requirements, and removing or
changing the existing requirements. Many research
projects attempt to find a more applicable way for
building a software system that is flexible to changes.
These efforts lead to the extensive study in software
architecture that is adaptable to changes. In this
paper, we compare three prominent approaches to
adaptable software architectures namely Adaptive
Object Model, Coordination Contract and Aspect
Oriented Programming. It provides a brief description
on the properties of each approach, and explains the
comparative evaluation framework that is used in the
evaluation process. Sejahtera System, which has a
dynamically changing user requirement, is chosen as
the case study to facilitate the consistent comparison of
the selected approaches. We strongly believe that the
results presented in this paper may provide a
foundation in improving the state-of-the-art adaptable
software architecture approaches.

KEYWORDS: Software architecture, adaptable
software architecture, software adaptation, architecture-
based evolution, software evolution.

1. Introduction

Nowadays, nearly all of commercial and government
organizations are highly dependent on software systems.
Due to the inherent dynamic nature of their business
environment, software evolution is inevitable. The

changes generated by business policies and operations
are propagated onto software system. A large portion of
total software lifecycle cost is devoted to introduce new
requirements, and remove or change the existing
requirements [1]. However, software evolution must be
accomplished for the software to remain useful in its
environment [2]. Due to this reason, software evolution
is considered as a key research challenge in software
engineering.

Many research projects attempt to find a more
applicable way for building a software system that is
flexible to changes as well as predicting the effect of
requirements change [3]. Most of them adapt the
existing well-proven widely accepted software
technologies or design techniques. Developing
solution on top of the existing technologies or proven
techniques, such as object-oriented, expert system,
distributed object, software architecture, design
patterns, and metamodelling, may increase the chances
for the approach to be accepted by software
development community.

In this paper, we have selected three prominent
approaches based on the exhaustive investigation on
the state-of-the-art approaches in adaptable software
architectures i.e. Adaptive Object Model, Coordination
Contract, and Aspect-Oriented Programming. It starts
with a brief introduction of each approach. Next, it
explains the comparative evaluation framework that is
used in the evaluation process. It is followed by the
discussion of the evaluation results. Finally, it presents
the conclusion and future direction of our research. For
a more subjective and consistent evaluation, we have
chosen the specification of the real system, namely a
welfare management system, as the case study.

2.0 Architecture-based Software Evolution

Software evolution is the cumulative effect of the

set of all changes made to a software system over its
entire life-cycle [4, 5]. It concerns any change that is
being made to the entire set of programs, procedures,
and related documentation associated with a computer
system that make up a software system [6]. The study
of software evolution is important due to the change in
customer requirement, need for new development of
software, adding new software features, and fixing
software defects during the maintenance phase of
software life cycle [7]. Recently, there is interest in
architecture-based software evolution [8-10].

In general, software architecture consists of
components, connectors and organization of its
components and connectors [5, 11, 12]. These
architectural constituents can be manipulated and
further defined to achieve an adaptable architectural
design, which in turn improves evolvability of a
software system. For examples, refining the role of
connectors makes run-time evolution of software
architectures feasible [13], and introducing good
abstractions of the components for composition
improves software evolvability [14]. In product-line
architectures, i.e. a set of software systems that share
core product architecture, the architectural constituents
are carefully identified and defined for a future product
member evolution [15].

This section presents three prominent approaches to

adaptable software architecture i.e. adaptive object
model, coordination contract and aspect-oriented
programming. Among the leading approaches is
Adaptive Object Model (AOM), which is defined as “a
system that represents classes, attributes, and
relationships as metadata” [16, 17]. It is a meta-
architecture that allows users to manipulate the
concrete architectural components of the model such as
business objects and business rules. These components
are stored in a database instead of code. Thus, a user
only needs to change the metadata instead of changing
the code to reflect domain changes. Simple rules such
as defined types of entities, legal subtypes,
relationships, and cardinality, are normally controlled
by object-oriented modeling semantics. Strategies and
RuleObjects are used to model complex rules. The
example of AOM is show by the Figure 1 below.

Figure 1: Example of Adaptive Object Model

Based on the example of Adaptive Object Model,
there show combination two elements such as
TypeObject and ObjectProperty, these combinations is
also call as TypeSquare. There have showed how the
property of the object is different between another
object.

Coordination Contract aims to separate core

business entities that are relatively stable and volatile
business products that keep changing for the business
to remain competitive [18]. Volatile business products
are implemented as contracts. Contract aims to
externalize the interactions between objects (core
entities) by explicitly defining them in the conceptual
model.

Here is given an example of Contract for
openAccount:

Contract openAccount package
 Partners x:Customer; y:Account;
 Constants con_Balance:Integer
 Attributes Balance: Integer; Name:String;

IC:String;
Invariants
 ?own(x,y)=TRUE
 y.AverageBalance() >= con_Balance;
Coordination
 openAccount: when x.calls (y.newReg(z))
 do y.newRegister(z)
 with y.balance()+Balance() > z;
end contract

property

relationship

typeProperty

typeProperty

type

type

property

1.. *

1.. *

1.. *

1.. *

1.. *

1.. * 1.. *

1.. *

1.. *

PersonProperty

Name:string
Type:string
Value:string

PersonTypeProperty

Name:string
Type:typename

TypePerson

Typename

Account

typeAccount

AccountProperty

Name:string
Type: string

Person

typename

TypeAccount

nameAccount

AccountTypeProperty

Name:string
Type:typeAccount

Based on the example of Coordination Contract

shown in Figure 2, there was exist three contract which
is OpenAccount, updateInformation and
manageAccount. There are mainly for establishing the
interaction and coordination rule between the
components to another component.

Figure 2: Example of Coordination Contract

Aspect-Oriented Programming (AOP) is a paradigm
that enables separation of concern. It is a set of
techniques that provides the means to add additional
behaviour into existing classes and operations during
compilation or execution [19] and provides a clean
way of encapsulating crosscutting concerns [20].
Crosscutting concern is a concern that affect multiple
classes. It is responsible for weaving or composing the
different concerns into a coherent program. However,
with aspect-oriented, the code implementing the
security policy could be extracted out from all classes
and consequently integrated into an aspect.

Aspect is a programming contruct in AOP that

gives the ability to add class extensions into the
existing classes. It includes pointcuts, advices, and
intertype declarations. The example of the AOP design
model is shown in Figure 3. The code example that
uses the element of aspect is shown below:

public String DBTrans.countBalance(String);
public String DBTrans.openAccount();

Aspect AccountBank {
 pointcut p(): call (public String DBTrans.

countBalance (String));
 pointcut q(): call (public int

DBTrans.openAccount());

before(String s): p(s) {
 System.out.println(“Balance is - ” +s);
}

before(int i): q() {
 System.out.println(“New Account ” +i+ “is

open”);
}

Figure 3: Example of Aspect-Oriented
Programming

Based on the example of Aspect-Oriented

Programming, there was exist two aspect which is
OpenAccount and CountBalance. An aspect is
extracting the object from different concern and
integrates it.

3.0 The Comparative Evaluation

Framework

In this section, we describe the evaluation
framework that is used to compare the selected
approaches. The evaluation framework consists of
criteria that are classified into three components i.e.
modelling language, process and pragmatic.

3.1 Modelling language

Modelling language is a set of symbols (either

Contract
OpenAccount

Contract
updateInformation Contract

manageAccount

Customer

Name
ICNo
Balance

Account

AccountType
Transaction

staffBank

Name
StaffNo
ICNo
Department
Salary
Duty CountBalance()

Customer

Name
IC
Balance

Account

AccountType
Transaction

OpenAccount()

StaffBank

Name
StaffNo

graphical or textual), syntax and semantics that is
defined for supporting and representing the specified
concepts of an approach. The criteria considered under
the modelling language component include
understandability, expressiveness, formality, and
evolvability.

Understandability refers to the degree of adaptation
of the modelling language representation. Natural
language is highly understandable compared to formal
language or programming language. However,
structured natural language or pseudo-code is more
understandable to system developers. Expressiveness is
related to a capability of the expressions produced by
the modelling language in completely and correctly
presenting the adaptation concepts. Formality is the
measure of rigour in the specification produced by a
modelling language. It is important for the
implementation, executability, testability, and
preciseness of adaptive expressions. Evolvability refers
to the flexibility of a software system in dealing with
adaptation changes.

3.2 Process

Process is a series of well-defined steps or activities
with corresponding input and output products which
assist users (such as analysts, developers, and
managers) to perform software development tasks.
Lifecycle coverage, process description, coherence,
and support for evolution are considered as the
evaluation criteria in the process component.

Lifecycle coverage is a set of common development
phases defined by the evaluated approach. These
phases include analysis, design, implementation, and
maintenance. Process description is how the
availability of detailed descriptions about steps or
activities within the scope of its lifecycle coverage.
The description includes deliverables at each stage and
guidelines for quality or project management.
Coherence is the degree of logical connection from a
flow of one-step to another step of the process. For the
support of evolution, an availability of process
description regarding the maintenance or evolution of
software adaptation and the relevant software design
components.

3.3 Pragmatic

Pragmatics is concerned with the practical aspects
of deploying and using the approach. It includes both
management and technical issues. Among the criteria

associated to this component include usability,
resource availability, and openness.

Usability is the easiness of applying the process and
syntax. It is hard to use an approach if the modelling
language syntax is too rigorous or too vague, or the
process is too complex to be followed. The availability
of resources such as texts book, user’s group, and
training are important for the users in facing their
everyday problem in establishing their software
development tasks. Openness is the degree of
independence of the solution of the approach to certain
implementation platforms such as architecture
framework, paradigms, or programming languages.

4.0 The Comparative Evaluation Results

In our study, we compare the selected approaches to
adaptable software architecture using the proposed
evaluation framework. For a more systematic and
consistent comparison, we use the specification from a
real-world application namely Sejahtera System.
Sejahtera System is a web-based software application
that is used to manage the distribution of government
aid to the needy families or individual. It
functionalities include the registration, selection, and
monitoring of the aid receivers.

Figure 4: The example of Sejahtera System
design using traditional OO approach

As a comparative evaluation baseline, we develop
the design model for our case study using the
traditional object-oriented approach. The design is
partly shown in Figure 4. Based on this baseline, we
develop the design models using the selected
approaches and consequently compare each design
model. Figure 5 shows the design model based on
AOM approach.

m n

n

apply
1

1ApplyPerson

applyid
name

aidApply

applyid
aidid

aidReceive

receiveid
aidid

have

receive

n Dependent

dependentid
applyid
name

Figure 5: Sejahtera System design using
Adaptive Object Model

As shown in Figure 5, there are eight classes in the

AOM-based design model i.e. class Person,
PersonProperty, PersonTypeProperty, TypePerson,
Aid, TypeAid, AidProperty, and TypeAidProperty. It
can be observed that the class Person in AOM model
combines the classes ApplyPerson and Dependent in
the traditional object-oriented model. Similarly, the
class Aid represents the classes aidApply and
aidReceive. The AOM model declares the classes,
attributes, relationships and behaviours in terms of
meta-data.

Regarding the CC model, we have identified three
contracts for the same selected design part of Sejahtera
System, which is shown in Figure 6.

Figure 6: Sejahtera System design
architecture using Coordination Contract

The specification of one of the contracts in the above
CC model is given below:

Contract application package
Partners x:ApplyPerson; y:Dependent;
Constants AidValue:Integer;

dependent:Integer, salary: money;
Attributes dependent:Integer; Name:String;

IC:String; salary: money;

Coordination application :
when x.calls(y.newReg(z))
do y.newReg(z)
with x. newReg();

end contract

Relating to the AOP model, there are two classes of

aspects created using AOP approach to provide the
means to add additional behaviour into existing classes
and operations during compilation or execution.

Figure 7: Sejahtera System design
architecture using Aspect-Oriented

Programming

A code snippet that shows the example of code used in
aspect element is shown below:

public String DBTrans.CalAid(String);
public String DBTrans.ApplyAid();

Aspect AidSejahtera {
pointcut p(): call (public String

DBTrans.CalAid (String));
pointcut q(): call (public int

DBTrans.ApplyAid ());

before(String s): p(s) {
System.out.println(“Total of Aid are ”

+s);
}

before(int i): q() {
System.out.println(“New Aid ” +i+ “is

apply”);
}

From the comparison results between three

CalcAid()

ApplyPerson

Name
IC

Aid

AidType

ApplyAid()

Dependent

Name

ApplyPerson

applyid
name

Dependent

dependentid
applyid
name

aidApply

aidid
applyid

ReceiveAid
Contract

ApplyAid
Contract

aidReceive

receiveid
aidid

Application
Contract

type

type

typeProperty

typeProperty

property

propert

relationship

1.. *

1.. *

1.. *

1.. *

1.. *

1.. * 1.. *

1.. *

PersonProperty

Name:string
Type:string

PersonTypeProperty

Name:string
Type:typename

TypePerson

typename

Aid

typeAid

AidProperty

Name:string
Type: string

TypeAid

nameAid

AidTypeProperty

Name:string
Type:typeAid

Person

typename

adaptable software architecture approaches, it is found
that AOM is more understandable than CC and AOP
since it heavily uses the graphical representation and
more simplified design model. However, AOM is less
expresive due to its limited language expression. The
CC model scores a high formality because of its
rigorous contract specification.

In terms of the process criteria, it is observed that
the AOP approach have the widest coverage in the
software lifecycle whilst AOM provides less
description on its software process. Regarding support
for evolution, AOP gives the highest support by
providing enough maintenance or evolution coverage
in its software process.

Concerning pragmatic aspect, the AOM model is
found to be less usable than others since it is hard to
develop the meta-level of design model although the
well-developed model is more understandable. In
terms resource availability, there plenty of references
and examples on applying the AOP approach due to its
popularity.

Table 1: The comparative evaluation results of

the three adaptable architecture approahes

Lifecycle coverage: A-Analysis, D-Design, I-Implementation,

T-Testing, M-Maintenance/Evolution

6.0 Conclusion and Further Work

In this paper, we briefly describe the three
prominent approaches to software evolution i.e. AOM,
CC, and AOP. We also propose the comparative
evaluation framework that consists of various criteria

classified under three main components namely
programming language, process, and pragmatic. Based
on the evaluation results, we found that AOM is better
than others in terms of modelling language. However,
AOP is superior to others in process and pragmatic
aspects. We hope that the results presented in this
paper may provide a starting point for future research
in improving the existing state-of-the-art adaptable
software architecture approaches.

At the moment we are continuing our research in
two directions. First, we aim to develop our own
adaptable software architecture that extends and
improves the existing approaches, and extensively
apply it to the industrial-strength case study. Second,
we attempt to develop the automated tools that support
the proposed approach. The ultimate aim of our
research is to produce an adaptable software
architecture that supports software evolution and
satisfies most of the criteria included in our
comparative evaluation framework.

References

[1] P. Grubb and A. A. Takang, Software Maintenance:

Concepts and Practice. Singapore: World Scientific
Publishing, 2003.

[2] M. M. Lehman, "Laws of Software Evolution
Revisited," in European Workshop on Software
Process Technology '96, 1997.

[3] A. Finkelstein and J. Kramer, "Software Engineering :
A Roadmap," in Conference on the Future of Software
Engineering, Limerick, Ireland, 2000.

[4] E. Eijkelenboom, "Trends in Software Evolution," PhD
Thesis, Utrecht University, 2005

[5] M. A. Babar, L. Zhu, and R. Jeffery, "A Framework for
Classifying and Comparing Software Architecture
Evaluation Methods," in 2004 Australian Software
Engineering Conference (ASWEC'04), Melbourne,
Australia, 2004.

[6] C. Varhoef, "Software Evolution: A Taxonomy."
[7] L. C. Nary Subramanian, "Software Architecture

Adaptability: An NFR Approach."
[8] M. E. Fayad, H. S. Hamza, and H. A. Sanchez,

"Towards scalable and adaptable software
architectures," in IEEE International Conference on
Information Reuse and Integration, 2005.

 Technique
Criteria AOM CC AOP

Modelling Language
Understandability High Medium Medium
Expressiveness Low Medium Medium
Formality Low High Medium
Evolvability High High High
Process
Lifecycle Coverage D,I,M D,I,T,M A,D,I,T,M
Process Description Low Medium Medium
Coherence Medium Medium Medium
Support For Evolution Low Medium High
Pragmatic
Usability Low Medium Medium
Resource Availability Medium Medium High
Openness Medium Medium Medium

[9] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund,
and E. Gjorven, "Using architecture models for runtime
adaptability," IEEE Software, vol. 23, no. 2, 2006, pp.
62-70.

[10] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H.
C. Cheng, "Composing adaptive software," IEEE
Computer, vol. 37, no. 7, 2004, pp. 56-64.

[11] D. E. Perry and A. L. Wolf, "Foundations for the Study
of Software Architecture," Software Engineering
Notes, vol. 17, no. 4, October 1992, 1992, pp. 40-52.

[12] M. Shaw and D. Garlan, Software Architecture :
Perspective of an emergance discipline. New Jersey:
Prentice Hall Inc., 1996.

[13] P. Oreizy, N. Medvidovic, and R. N. Taylor,
"Architecture-Based Runtime Software Evolution," in
International Conference on Software Engineering
1998 (ICSE'98), Kyoto, Japan, 1998.

[14] L. Andrade, J. Fiadeiro, J. Gouveia, and G.
Koutsoukos, "Separating Computation, Coordination
and Configuration," Journal of Software Maintenance
and Evolution: Research and Practice, vol. 14, no. 5,
2002, pp. 353-59.

[15] M. Svahnberg and J. Bosch, "Issues Concerning
Variability in Software Product Lines," in Third
International Workshop on Software Architectures for
Product Families, 2000.

[16] D. Riehle, M. Tilman, and R. Johnson, "Dynamic
Object Model," Proceedings of the 2000 Conference on

Pattern Languages of Programs (PLoP 2000),
Technical Report WUCS-00-29, Dept. of Computer
Science, Washington University, 2000.

[17] J. W. Yoder and R. Johnson, "The Adaptive Object
Model Architectural Style," in Proceeding of The
Working IEEE/IFIP Conference on Software
Architecture 2002 (WICSA3 '02), Montreal, Canada,
2002.

[18] L. Andrade and J. Fiadeiro, "Coordination
Technologies for Managing Information System
Evolution," in 13th Conference on Advanced
Information Systems Engineering, Interlaken,
Switzerland, 2001.

[19] P.-W. N. Ivar Jacobson, Aspect-oriented Software
Development with Use Cases: Addison-Wesley, 2004.

[20] L. Chen, "Aspect-Oriented Programming in Software
Engineering, 2004."

	1. Introduction
	2.0 Architecture-based Software Evolution
	3.0 The Comparative Evaluation Framework
	3.1 Modelling language
	3.2 Process
	3.3 Pragmatic

	4.0 The Comparative Evaluation Results
	6.0 Conclusion and Further Work
	References

