
Synergy between Generative Reuse and Software Product Line

Shahliza Abd Halim, Dayang Norhayati Abg Jawawi and Safaai Deris
Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310

Skudai, Johor, Malaysia
shahliza@fsksm.utm.my, dayang@fsksm.utm.my, safaai@fsksm.utm.my

Abstract

Software reuse through concrete component

library has a strong support for component
composition, refinement and specialization. Despite
of the library’s support, scalability problem occur in
its implementation. Amongst the problem being
reported were feature combinatorics problem,
vertical and also horizontal scaling of the
components. Generative reuse is an approach in
software reuse where it combines reusable part that
are not only code but also generic architectures and
variations of components for future customization.
Generative reuse via application generator is cost
effective to build when many similar software systems
are written or when evolution of software requires
the software to be written and rewritten many times
during its lifetime. Software Product Line is a
suitable field to implement application generator
where it can help to generate similar systems and
also customize variations needed to the systems
functionalities. This paper briefly discusses the issues
in generative reuse via application generator and
software product line. The main contribution of this
paper is in the explicit mapping between generative
reuse specifically the development process of
application generator with the Software Product Line
systematic reuse process. This explicit mapping
shows several points of synergistic process between
both fields. This mapping can also help designer and
organization who are interested in the development
of application generator in software product line to
know the underlying process and artifacts for both
fields.

1. Introduction

Software systems if built from scratch can result
to significant duplication in processes and causing
overlap result. Software component reuse is the key
to significant gains in productivity where already
compiled components can be plug into the software
for functionality. However, with the changes and also

evolution in software system, the components created
for reuse increased combinatorily and it raises the
scalability problem in component library.

 “Feature combinatorics problem” have the
effect of scalability in component library thus
affecting programmers productivity. Batory [1] has
studied features related to data structure, memory
allocation, scheme, access mode and concurrency in
C++ data structure libraries. Based on the study,
features may appear in many different combinations
of classes. As there is a need for a unique class for
each legal combination of features, there is also a
need to develop and maintain a large number of
similar classes. From the study, [1] concluded that in
order to have scalable library, the library must offer
much more primitive building blocks and be
accompanied by generators that compose blocks to
yield data structures needed by application
programmer [2]. The similar problem also being
researched by [3] where he refers to this problem as
the scaling dilemma categorized into the vertical and
horizontal scaling. Vertical scaling based on the
specificity of the components and horizontal scaling
due to the generic variations of component has thus
compromise the performance of the components and
also resulting on components that are only marginally
reusable in other target applications

Generative based reusability technology was the
second technology discussed by [4] where they
compared it to composition based reusability
technology. In composition technologies, the
components to be reused are atomic and unchanged
during its reuse but it can be modified or changed to
fit the computational requirement. Generation
technologies on the other hand reused components
that are not concrete where the components being
reused are often pattern woven into the fabric of
generator program thus the components are not
concrete and self contained entity. Generation
technologies are categorized into three groups,
language based, application generators and
transformation system. Language based generation
technologies has been particularly successful in the

mailto:shahliza@fsksm.utm.my
mailto:safaai@fsksm.utm.my
mailto:safaai@fsksm.utm.my

area of programming language systems, such as
compilers, language based editing systems and static
program analyzers [5]. Application generators the
second group of generation technologies, translate
specifications into application programs.
Transformation systems, the last group of generation
techniques are software tools that “rewrite”
constellations of concepts (characters, strings, trees
and graphs) into alternative constellations. Practical
transformations systems are extremely generalized
compilers where among the possible applications of
transformation systems are translation of code from
one language to another, refactoring and code
generation [6].

In another field of research initiated by Parnas
[7], software is viewed as product line where it arises
situations when we need to develop multiple similar
products for different clients, or from a single system
over years of evolution. Members of a product line
share many common requirements and characteristics
[8]. With the use of application generator in the
software product family system, it can maximize the
automation of application development.

The remainder of this paper is organized as
follows: Section 2 outlines the concept of generative
reuse and application generator while section 3
highlights the concept of Software Product Line
(SPL). Section 4 then describe the systematic reuse
of SPL, processes involved in SPL, artifacts
generated from the processes and also the tool or
development method for the processes. The
following section conceptualizes the mapping of
application generator and SPL process. Lastly section
6 presents the conclusion of this paper.

2. Overview of Generative Reuse and
Application Generator

Generative reuse is done by encoding domain
knowledge and relevant system building knowledge
into a domain specific application generator. New
systems in the domain are created by writing
specifications for them in a domain specific
specification language. The generator then translates
the specification into code for the new system in a
target language. The generation process can be
completely automated, or may require manual
intervention [9].

Constructing an application generator is
appropriate when many similar software systems are
written, when one software system is modified or
rewritten many times during its lifetime, or when
many prototypes of a system are necessary to

converge on a usable product [10]. In [11],
application generators is viewed as soft automatic
programming systems, a form of reuse approaches
where it reuse patterns inside the generators.

Soft automatic programming such as GUI
builders reuse the knowledge on how to translate the
high level graphical specification into executable
code. Compiler and parser generators reuse the
knowledge of how to generate a compiler from the
input grammar and generative CASE tools build
class-templates from Business Object model to
relational database structures.

Application generators are practical and
mattractive when high-level abstractions from an
application domain can be automatically mapped into
executable software system [10]. A difficult
challenge for implementers of application generators
is defining optimal domain coverage and optional
distribution of domain concepts into the fix and
variable parts of the abstraction [10]. Another
challenge is to create a domain specific language for
the application generator. Domain specific language
and application generators represent a flexible form
of reuse that not only allows the reuse of the
implementations of abstract functional units as in
component-based approaches, but also allows the
reuse of how these functional units are combined to
form a complete system. Furthermore, application
generator allows this knowledge to be reused by non-
programmers because the domain-specific language
can provide an interface to the domain-user in
familiar notations [12].

In generative reuse, candidates are identified and
instantiated at the modeling level rather than at the
coding level and all the work necessary to integrate
the customized components code into the application
is done automatically by generators. In order to
automate the component assembly, the application
generator needs configuration knowledge to map
abstract user requirements onto appropriate
configurations of components. Figure 1 shows three
components which are essential to implement
generative reuse based on [13].

3. Overview of Software Product Line

The goal of the software product line (SPL) approach
is the systematic reuse of core artifacts for building
related software products or product diversities. A
software product family typically consists of a
product family architecture, a set of components and
a set of products. Each product derives its
architecture from the product family architecture,
instantiates and configures a subset of the product
family components and usually contains some
product specific code. Product diversification is
based on the concept of variability and appears in all
family artifacts where the behavior of the artifacts
can be changed, adapted or extended [14]. The main
focus of SPL is to model the commonalties and also
the variabilities of SPL. In [15], variability represents
a capability to change or adapt a system. Such a
change or adaptation can affect the behavior of the
system as well as it qualities. Viewed from technical
perspective, variability is a means to delay a design
decision to a later phase in the lifecycle of the
software system.
The following section discusses the domain
engineering and application engineering approach in
SPL.

4. Systematic Approach to Reuse in SPL

Based on [16], the problem facing software
engineering is not a lack of reuse, but a lack of
widespread systematic reuse. In product-line
engineering, systematic approach to reuse is to divide
the engineering process into two different phases:
domain engineering and application engineering as
stated in [17], [18]. Domain engineering provides the
reusable core assets that are exploited during
application engineering when assembling or
customizing individual applications. While on the

other hand, application engineering configures target
applications from domain engineering reusable core
assets. In other word, application engineering is the
instantiation process of target product in SPL.

This section will elaborate more on domain
engineering because this process gives higher
contributions towards systematic reuse in software
product line compared to application engineering
which only uses the reusable assets developed in
domain engineering.

Domain engineering is most often divided into
three main processes: domain analysis, domain
design, and domain implementation. Domain analysis
is first introduced by Neighbors to denote studying
the problem domain of a family of applications [19].
It concerned with examining a variety of related
applications to identify their common architectures,
reusable components, design alternatives and domain
oriented terminology. This information can then be
expressed in terms of abstract classes and subclasses,
protocols, framework constraints and inference rule
[20].

Figure 1 Components essential for generative
reuse

The output of domain analysis is domain model.
In [18] the generalization of the common artifacts or
processes belonging to domain model are as follows:

• Domain scoping (domain definition, context
analysis)

• Commonality analysis
• Domain dictionary (domain lexicon)
• Notations (concept modeling, concept

representation)
• Requirements engineering (feature

modeling)
There are researches which concentrate on

developing CASE tools to produce domain models
that affectively reflect the commonality and
variability in SPL such as RequiLine [21] and
DREAM [22].

Domain design means designing the core
architecture for a family of applications. It comprises
the selection of the architectural style[13], [18]. In
addition, the common architecture under design
should be represented using different views. The core
architecture should also provide variabilities between
applications. This process is to decide on how to
enable this variability or configurability. According
to feature models and commonality documents, it
should also be selected which components or items
(such as requirements) are provided in the core
architecture and which items are implemented as
variations in individual applications [18]. There are
several methods for product line architectural design

such as COPA, FAST, FORM, KobrA and QADA.
These design methods have been compared in [23].

Domain implementation covers the
implementation of the architecture, components, and
tools designed in the previous phase. This comprises,
for example, writing documentation and
implementing domain-specific languages and
generators. The purpose of domain engineering is to
produce reusable assets that are implemented in this
phase. Thus, the result of whole domain engineering
phase comprises components, feature models,
analysis and design models, architectures, patterns,
frameworks, domain-specific languages, production
plans, and generators [18].

5. Mapping of Application Generator and
SPL Process

As identified by Levy as cited in [24], there are

three-step methodology for developing with
application generators or referred by him as
metaprogramming.

i) identifying the requirements of the
generator

ii) building the generator
iii) using the generator.

Cleaveland has refined the requirements phase

into six sub phase stated in detail in [10, 24, 25].
Table 1 shows the mapping of application generator
development phases with SPL development process
discussed in section 4. Based on Table 1, we have
classified certain activity in application generator as a
suitable process in domain analysis, domain design
or domain implementation. The table also shows the
artifacts and briefly the development tools or
methods available based on undergoing research
from both fields.

SPL through systematic reuse carried in domain
engineering, assist application generator in encoding
domain knowledge essential for the requirement
process of application generator. Case tools designed
in domain analysis can be an aid in defining domain
coverage and optional distribution of domain
concepts for application generator development. On
the other hand, SPL variability handling mechanism
experienced feature combinatorics problem as
reported in [26]. Application generators can
overcome this problem in domain implementation
where generative approach basically generative
programming in the form of metaprogramming such
as using template metaprogramming in C++ [13, 27]
and XVCL[2, 28, 29] can be used to overcome

scalability problem in SPL. Based on these examples,
application generator and SPL when paired together
are capable of achieving more success in reusability
than they would separately.

6. Conclusion

The aim of SPL is to develop not one product
but several products which share commonalties and
differ through certain key variabilites. SPL also faces
the scalability problem where many of the
implementation approaches used in the industry for
handling variability has created growth in the
components created. Generative reuse is useful to
overcome the scaling dilemma where the
implementation approach used in application
generator automates the customization of
components.

Application generator and SPL has synergistic
relationship when both of this field are used together
it will reap the benefit in more systematic approach
towards reuse and also code optimization through
scalable library and configurable target application.
From this mapping, it will also enable developer who
is new to the concept of application generator and
also software product line field to anticipate the
process and product of each process in both fields.
Development tools and development methods for
implementation purposes have also been described
briefly in the mapping. The mapping can also be used
by organization interested in software product line
engineering processes and want to know the tools to
optimize code generation for their product using
application generator.

7. References

1. Batory, D., Singhal, V.,Sirkin, M. and

Thomas, J. Scalable Software Libraries. in
ACM SIGSOFT'93: Symposium on the
Foundations of Software Engineering. 1993.
Los Angeles, California: ACM.

2. Jarzabek, S.a.S., L. Adapting Redundancies
with a "Composition with Adaptation"
Meta-programming Technique. in European
Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundation of
Software Engineering. 2003. Helsinki:
ACM Press.

3. Biggerstaff, T.J., A Perspective of
Generative Reuse. . Annals of Software
Engineering, 1998. 5: p. 169-226.

4. Biggerstaff, T.J., Perlis, Alan, J, Software
Reusability Concepts and Models, ed. T.J.
Biggerstaff, Perlis, Alan, J. Vol. 1. 1989:
ACM Press and Addision Wesley.

5. Jarzabek, S., From reuse library experiences
to application generation architectures.
ACM, 1995 p. 114-122.

6. Baxter, I.D. Transformation Systems:
Generative Reuse for Software Generation,
Maintenance and Reengineering. 2002:
Springer-Verlag Berlin Heidelberg.

7. Parnas, D., On the Design and Development
of Program Families. IEEE Transactions on
Software Engineering, 1976. SE-2(1): p. 1-
9.

8. Zhang, H.J., S. and Yang, B., Quality
Perdiction and Assesment for Product Line.
Springer-Verlag Berlin Heidelberg, 2003: p.
681-695.

9. Frakes, W.B., Kang, K., Software Reuse
Status and Future. IEEE Trans. On
Software Engineering, 2005. 31. No 7: p.
529-536.

10. Krueger, C., W., Software Reuse. ACM
Computing Surveys, 1992. 24(2): p. 132-
183.

11. Goebl, W. A Survey and a Categorization
Scheme of Automatic Programming
Systems. in GCSE'99. 2000: Springer-
Verlag Berlin Heidelberg.

12. Thibault, S.a.C., Charles. A framework for
application generator design. in Symposium
on Software Reusability, Proceedings of the
1997 symposium on Software reusability.
1997. Boston, United States: ACM Press
New York, NY, USA

13. Czarnecki, K.a.E., U. Components and
Generative Programming. 1999: Springer-
Verlag/ACm Press.

14. Jaring, M.a.B., J. . Variability Dependencies
in Product Family Engineering. in
PFE2003. 2004: Springer-Verlag Berlin
Heidelberg.

15. Becker, M. Mapping Variabilities onto
Product Family Assets.

16. Prieto-Diaz, R., Status report: software
reusability. IEEE Software, 1993. Volume
10(Issue 3): p. 61 - 66.

17. Macala, R.M., Stuckey, L and Gross, D.,
Managing Domain-Specific, Product-Line
Development. IEEE Software, 1996.

18. Harsu, M., A Survey on Domain
Engineering. 2002, Institute of Software

Systems, Tampere University of
Technology. p. 48.

19. Neighbors, J.M., Software Constructions
Using Components., in Department of
Information and Computer Science. 1980,
University of California, Irvine.

20. Lubars, M., D. . Reusing Designs for Rapid
Application Development. in ICC'91. 1991.

21. Maßen, T.a.L., H., RequiLine: A
Requirements Engineering Tool for
Software Product Lines. Lecture Notes in
Computer Science, 2004.
3014/2004(Software Product-Family
Engineering): p. 168-180.

22. Moon, M., Yeom, K and Chae, HS, An
Approach to Developing Domain
Requirements as a Core Asset Based on
Commonality and Variability Analysis in
Product Line. IEEE Transactions on
Software Engineering, 2005. 31(7): p. 551-
569.

23. Matinlassi, M. Comparison of Software
Product Line Architecture Design Methods:
COPA, FAST, FORM, KobrA and QADA. in
Proceedings of the International Conference
on Software Engineering (ICSE'04). 2004:
IEEE.

24. Mili, H., Mili, F & Mili, A, Reusing
Software: Issues and Research Directions.
IEEE Transactions on Software
Engineering, 1995. Volume 21.

25. Cleaveland, C., J., Building Aplication
Generators. IEEE Software, 1988: p. 25–33.

26. Anastasopoules, M.a.G., C. . Implementing
Product Line Variabilities. in Symposium on
Software Reusability. Proceedings of the
2001 symposium on Software reusability:
putting software reuse in context . 2001.
Ontario, Canada.

27. Czarnecki, K.a.E., U., Generative
Programming- Methods , Tools and
Applications. 2000, Boston MA: Addison-
Wesley.

28. Jun, Y.a.J., Stan, Applying a Generative
Technique for Enhanced Genericity and
Maintainability on the J2EE Platform. 2005.

29. Cheong, Y.C.a.J., S., Modeling Variant
User Requirements in Domain Engineering
for Reuse. Information Modeling and
Knowledge Bases: p. 220-234.

SPL Phases SPL Processes Application
Generator
Phases

Artefacts Development
Tools/Methods
available

Domain Analysis Identify
requirement
of the
generator.
Refined to
steps:

Table 1. Mapping of Application Generator and SPL Process

-Reconizing
domains
-Defining
domain
boundaries
-Defining
variant and
invariant part
-Defining the
-
Specification
input method
-Defining the
product

Domain model
which contains
 -domain
scoping
-domain
dictionary
 -concept
models
 -commonality
analysis
- feature
models.

RequiLine
DREAM

Domain Design Design an
underlying
model

-Architectural
style
-Core
architecture
with common
feature and
variability
features

Methods for
product line
architectural
design:
COPA, FAST,
FORM, KobrA
and QADA.

Domain
Engineering

(Aims at the
development of
reusable
software)

Domain
implementation

Building the
generator

Implementation
of architecture,
components,
domain specific
languages or
generation
tools.

-Template
metaprogramming
in C++
- XVCL

Application Engineering

(Aims at reusing the reusable assets
developed in Domain Engineering)

Using the
generator

- Composition
of components
for the target
application

	1. Introduction
	2. Overview of Generative Reuse and Application Generator
	
	
	3. Overview of Software Product Line
	4. Systematic Approach to Reuse in SPL
	
	5. Mapping of Application Generator and SPL Process
	7. References

