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Abstract A new 2-step fourth order implicit non-linear multistep method based on

centroidal mean is considered in this paper. The new method is tested on some test

problems; and numerical results show that the new method is able to produce accept-

able numerical solutions for these test problems. Comparisons in terms of numerical

accuracy between the new method and the classical 2-step Adams-Moulton method

are carried out as well. Numerical experiments show that our new method performs

better than the classical 2-step Adams-Moulton method in solving these test problems.
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1 Introduction

Numerical methods from the class of linear multistep methods and the class of Runge-Kutta
methods are defined by [1]
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respectively. These methods are among the most common used numerical methods for the
first order initial value problem of the form

y′ (t) = f (t, y (t)) , y (a) = y0, t ∈ [a, b] . (3)

A new research trend had emerged around the 1990’s where researchers start to incorporate
mean expressions into linear Runge-Kutta method in (2) to form a new kind of Runge-
Kutta method that based on different kinds of means. This special type of Runge-Kutta
method is considered as non-linear method due to the non-linear structures that arise from
the implementation of various mean expressions. Articles which have discussed this type of
method are such as [3] through [28].

In this article, we shall explore the possibility of deriving multistep method based on
mean expressions for the numerical solution of (1). Our study is motivated by the success
of [14] and [22] in deriving several non-linear multistep methods based on different mean
expressions for the numerical solution of second order initial value problem. This article is
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organized as follows: In section 2, we present the procedure for obtaining the new 2-step
implicit non-linear method based on centroidal mean. In Section 3, we present the local
truncation error, consistency, zero-stability and convergence analysis of the new method.
The stability polynomial and the regions of absolute stability for the new method are
presented in Section 4. Section 5 shows the numerical implementations of the new implicit
method to a variety of test problems and compares its performance with the classical 2-
step implicit Adams-Moulton method in terms of numerical accuracy. Some remarks and
conclusions will be given in Section 6.

2 Derivation of the 2-step Implicit Non-linear Method Based on
Centroidal Mean

Firstly, we define the new 2-step implicit method as
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where α0 = 0, α1 = −1, α2 = 1 with c1, c2, c3, c4, c5 and c6 are constants that need to be
determined. Note that fn+2 +fn+1 6= 0, fn+1 +fn 6= 0 and fn+2 +fn 6= 0. On using Taylor
series to expand both sides of equation (4) up to O
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, and compare each coefficient, we
obtain the following equations:
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Using MATHEMATICA 5.0 in solving the system of equations given in (5) – (10), we obtain
a set of solutions in terms of a free parameter c6 shown as follows:
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On substituting these ci, i = 1, 2, . . . , 6 and α0 = 0, α1 = −1, α2 = 1 into equation (4), the
resulting method is a 2-step implicit non-linear method based on centroidal mean:
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Method (11) is named Non-linear Multistep method based on centroidal mean of two steps
and fourth order or shortly NLMMCeM(2,4). The local truncation error in terms of c6 for
NLMMCeM(2,4) is given by
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Since there is a free parameter c6, we choose this parameter so that the local truncation
error shown in (12) is in O

(
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)

. From (12), we force the first two terms to zero that is
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After some algebraic manipulations, c6 is obtained as follows:
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3 Consistency, Stability and Convergence Analysis for NLMM-
CeM(2,4)

We extend the theory of consistency, zero-stability and convergence for the linear multistep
method to the new method NLMMCeM(2,4). As usual, the first characteristic polynomial,
ρ (ζ) and the second characteristic polynomial of NLMMCeM(2,4), σ (ζ) can be obtained
from the left-hand side and right-hand side of equation (11) respectively; with the substi-

tution of yn+j = fn+j = ζj and f
(i)
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From the assumption f
(i)
n+j = ζj for i = 0, 1, 2, 3, 4, 5, we note that c6 in (14) is evaluated

at the point tn and therefore we have f
(i)
n = ζ0 = 1 for i = 0, 1, 2, 3, 4, 5. On substituting

f
(i)
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The first derivative of equation (16) is

ρ′ (ζ) = 2ζ − 1. (18)

On substituting ζ = 1 into equations (16), (17) and (18) we obtain the following results:

ρ (1) = 0, σ (1) = 1 and ρ′ (1) = 1. (19)

Since conditions in (19) hold for NLMMCeM(2,4), then we can say that it is consistent.

To determine the zero-stability of NLMMCeM(2,4), we must make sure that no root of
ρ (ζ) has modulus greater than one, and every root with modulus one is simple. Therefore,
from (16), the roots of

ζ2 − ζ = 0

are ζ1 = 1 and ζ2 = 0. Consequently, we have |ζ1| = 1 and |ζ2| = 0 which are not greater
than one and simple. In view of this, we can say that NLMMCeM(2,4) is zero-stable.

Finally, we can claim that NLMMCeM(2,4) is convergent because it is shown to be
consistent and zero-stable.

4 Absolute Stability of NLMMCeM(2,4)

In order to carry out the stability analysis for NLMMCeM(2,4), we must obtain the stability
polynomial and its corresponding regions of absolute stability. We can obtain the stabil-
ity polynomial of NLMMCeM(2,4) by applying the Dahlquist’s test equation y′ = λy to
equations (11) and (14) [2]. Note that λ is a complex constant with negative real part. On
substituting (14) into (11) and then substituting fn+2 = λyn+2, fn+1 = λyn+1, fn = λyn,

f ′
n = λ2yn, f ′′

n = λ3yn, f ′′′
n = λ4yn, f

(4)
n = λ5yn, yn+2 = ζ2, yn+1 = ζ and yn = 1 into (11),

we obtain the following stability polynomial for NLMMCeM(2,4) as follows:

(195 − 58z) ζ4 − (240 + 188z) ζ3 + (270 + 42z) ζ2 − (240 + 188z) ζ + (15 + 32z) = 0 (20)

where z = hλ. Here, ζ can be interpreted as the characteristic roots of the difference
equation (11). The condition for the stability is that the roots of (20) i.e. ζ are all of
absolute value less than 1. By taking z as complex number i.e. z = x + iy, we plot the
region which satisfies the condition that all roots of (20) are of absolute value less than 1
in Figure 1. The shaded region in Figure 1 is the region which satisfies the condition that
all roots of (20) are of absolute value less than 1. Consequently, the shaded region is the
region of absolute stability of NLMMCeM(2,4).
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Figure 1: Stability Region of NLMMCeM(2,4)

5 Numerical Experiments and Comparisons

In this section, NLMMCeM(2,4) is used to solve some test problems in order to check its
reliability and accuracy. We present i) the maximum absolute error over the integration
interval given by

max
0≤n≤N

{|y (tn) − yn|}

where N is the number of integration steps; and ii) the absolute error at the end-point of
integration interval given by |y (tn) − yN | for each test problem. Note that y (tn) represents
the exact solution of a test problem at point tn, while yn is the approximations of the exact
solution at point tn of a test problem. The notation 1.26681(-5) indicates 1.26681× 10−5.
Numerical results obtained using NLMMCeM(2,4) is compared with the numerical results
obtained using the classical 2-step implicit Adams-Moulton method given by [29]
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The starting values y1 for NLMMCeM(2,4) and 2-step Adams-Moulton are computed via
the 3-stage fourth order Lobatto IIIC method shown in the following Butcher tableau [30]:
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Problem 1: [17]

y′ (t) = y (t) − t2 + 1, y (0) =
1

2
, t ∈ [0, 1] .

The exact solution for Problem 1 is given by y (t) = (t + 1)
2
− 1

2et.

Problem 2: [24]

y′ (t) = y (t) cos t, y (0) = 1, t ∈ [0, 1] .

The exact solution for Problem 2 is given by y (t) = esin(t).

Problem 3: [31]

y′1 (t) = 0.2y2 (t) , y1 (0) = 1,

y′2 (t) = −0.2y1 (t) , y2 (0) = 1.

Problem 3 is solved numerically over the integration interval t ∈ [0, 1] and the exact solutions
for Problem 3 are given by y1 (t) = cos 0.2t + sin 0.2t and y2 (t) = − sin 0.2t + cos 0.2t.

Table 1 to Table 8 show that NLMMCeM(2,4) has no difficulty in solving all the test
problems mentioned above; and it performs better than 2-step Adams-Moulton for different
step length for Problem 1 and Problem 2. On the other hand, NLMMCeM(2,4) gives
comparable accuracy to 2-step Adams-Moulton method in solving Problem 3 which is a
system of first order differential equations.

Table 1: Maximum Absolute Error for Problem 1
With Respect to Step Length, h

h Adams-Moulton NLMMCeM(2,4)

1/16 1.26681(−05) 8.64014(−07)
1/32 1.65514(−06) 5.55726(−08)

1/64 2.11439(−07) 5.17533(−09)
1/128 2.67161(−08) 4.32471(−10)
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Table 2: Error at the End-point for Problem 1
With Respect to Step Length, h

h Adams-Moulton NLMMCeM(2,4)

1/16 1.26681(−05) 8.64014(−07)
1/32 1.65514(−06) 5.55726(−08)

1/64 2.11439(−07) 5.17533(−09)
1/128 2.67161(−08) 4.32471(−10)

Table 3: Maximum Absolute Error for Problem 2
With Respect to Step Length, h

h Adams-Moulton NLMMCeM(2,4)

1/16 6.12206(-05) 1.36354(-05)
1/32 7.90321(-06) 9.23572(-07)

1/64 9.98723(-07) 9.06451(-08)
1/128 1.24430(-07) 9.36788(-09)

Table 4: Error at the End-point for Problem 2
With Respect to Step Length, h

h Adams-Moulton NLMMCeM(2,4)

1/16 6.12206(−05) 1.36354(−05)
1/32 7.90321(−06) 9.23572(−07)

1/64 9.98723(−07) 9.06451(−08)
1/128 1.24430(−07) 9.36788(−09)

Table 5: Maximum Absolute Error for Problem 3
With Respect to Step Length, h(y1(t))

h Adams-Moulton NLMMCeM(2,4)

1/16 4.63483(−06) 4.63637(−06)
1/32 1.15738(−06) 1.15747(−06)
1/64 2.89350(−07) 2.89355(−07)

1/128 7.23379(−08) 7.23382(−08)

Table 6: Error at the End-point for Problem 3
With Respect to Step Length, h(y1(t))

h Adams-Moulton NLMMCeM(2,4)
1/16 4.52400(−06) 4.59524(−06)

1/32 1.13190(−06) 1.14109(−06)
1/64 2.83275(−07) 2.8444(−07)

1/128 7.08570(−08) 7.10037(−08)
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Table 7: Maximum Absolute Error for Problem 3
With Respect to Step Length, h(y2(t))

h Adams-Moulton NLMMCeM(2,4)

1/16 9.37627(−07) 9.08091(−07)
1/32 2.32079(−07) 2.28239(−07)
1/64 5.77552(−08) 5.72659(−08)

1/128 1.44052(−08) 1.43435(−08)

Table 8: Error at the End-point for Problem 3
With Respect to Step Length, h(y2(t))

h Adams-Moulton NLMMCeM(2,4)

1/16 9.37627(−07) 9.08091(−07)
1/32 2.32079(−07) 2.28239(−07)

1/64 5.77552(−08) 5.72659(−08)
1/128 1.44052(−08) 1.43435(−08)

6 Conclusions

We have presented a new 2-step fourth order non-linear multistep method based on cen-
troidal mean (NLMMCeM(2,4)), that is suitable to solve first order initial value problems.
Classical 2-step Adams-Moulton method is a third order method, but NLMMCeM(2,4) can
achieved fourth order of accuracy by choosing the appropriate parameter c6. This new
method is shown to be consistent, zero-stable and convergent. Numerical results presented
in Section 5 also suggest that NLMMCeM(2,4) is suitable to solve both single differential
equation and systems of first order differential equations.
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