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ABSTRACT

Shallow water waves have been expressed as a couple of equations by
Whitham (1967). Many researchers have continued studies in this field by deriving
the so-called Boussinesq equations. A straight forward derivation from the
Whithams’ shallow water equations shall immediately produce a coupled form of
Boussihesq equation. In this paper we use the Lagrange coordinates in order to derive
the single Boussinesq equation to represent wave motion on the surface of shallow

water. We shall also discuss its solution by using the Hirota bilinear method and the

KP hierarchy of equations.



iii

ABSTRAK

Gelombang air cetek telah diungkapkan sebagai pasangan persamaan oleh
Witham(1967). Ramai penyelidik telah meneruskan kajian di dalam bidang ini dengan
menerbitkan persamaan yang dikenali sebagai persamaan Boussinesq. Penerbitan secara
langsung daripada persamaan air cetek Witham akan terus menghasilkan Persamaan
Boussinesq dalam bentuk berpasangan. Dalam kertas kerja ini, kita menggunakan
koordinat Lagrange untuk menerbitkan persamaan Boussinesq tunggal yang mewakili
pergerakan gelombang pada permukaan air cetek. Kita juga akan membincangkan

penyelesaiannya dengan menggunakan kaedah bilinear Hirota dan hierarki KP.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Standing on a beach and watching the waves roll in and break, we might guess
that water is moving bodily towards the shore. But no water is pilling up on the beach.
This phenomena has been the subject of study for many researchers since a few centries
ago.

Study of wave propagation in fluids has become very important since a very long
time ago. Witham(1974) has obtained a set of equations which describes a wave
propagation in a shallow fluid. Since the model is a wave propagation in a shallow water,

one would expect soliton solutions for such equations.

Many researchers have shown interest in this field. Among them are Groesen &
Pudjaprasetya(1993), Hirota(1985), Nimmo & Freeman (1983), and others. Most of them

dealt with coupled equations. In this project, we shall try to work with a single equation.

1.2 Objectives

1. To derive the Boussinesq equation from the shallow water wave equations.

2. To obtain the solution of the Boussinesq equation.



1.3  Methodology
1. Derivation of a new equation for waves propagating on surface of shallow

water.
2. To use the obtained equation in order to describe the wave phenomena at the

surface of shallow water.

1.4  Scope
The research will focus on the theoretical computation of the waves propagating

on the surface of shallow fluids. The solution will be expressed in terms of some

wronskian determinants. We shall also examine the properties of the solutions.



CHAPTER I1

LITERATURE REVIEW

Most expositions of soliton theory outline the history of the Korteweg de Vries
(KdV) equation, beginning with the physical observation of Scott Russell of a bow wave
in a canal in 1834. The equations were first written down by Boussinesq in 1871 [Chen
M. (2000)] and in 1895 by Korteweg and de Vries. [n addition to describing water waves,
the KdV equation also arises as a universal limit of lattice vibrations as the spacing goes
to zero. The surprising numerical experiments of Fermi, Pasta and Ulam in 1955 on an
anharmonic lattice and the ingenious explanation by Zabusky and Kruskal in 1965 in
terms of solitons of the KdV equation were quickly followed by a ground-breaking paper
of Gardner, Greene, Kruskal and Miura in 1967, which introduced the method of solving
KdV using the inverse-scattering transform for the Hill’s operator. This brings us into the
modern era.

Several members of the Boussinesq System have been studied in the past,
including the classical Boussinesq System. Peregrine (1972) consider the equations for

water waves and the approximation behind then in wave on beaches and resulting
sediment transport.

Then it followed by Schonbek (1981) , obtains the existence of solutions for the
Boussinesq System of equations. In 1982, the exact solution of the classical Boussinesq
equation was presented by Krishnan.

Manorajan, Mitchell and J. Morris (1984) expressed the numerical solution of the
good Boussinesq equation by using Galerkin Methods. Then it followed quickly by

Amick (1984) which comes out with the regularity and uniqueness of solutions to the

Boussinesq system of equations. In 1999, an overview of the system was presented by



Bona, Chen and Saut, which discussed about Boussinesq equations for small-amplitude
long wavelength water waves.

In 1998, Chen was presents an exact traveling-wave solution of Boussinesq
systems. He obtained it is suffice to find a solution of an ordinary differential equation
and the solution of the ordinary differential equation in a prescribed form can be found by

solving a system of nonlinear algebraic equation.

Prabir Daripa (1999) obtained numerically and theoretically that the regularized
equation admits non-local solitary wave solutions with oscillating tails at infinity by
using dispersive regularization.

The existence of solitary wave solution with any phase speed 4>1 was obtained by
Min Chen (1999). He describe numerical method for searching multi-pulsed solutions
and apply the method to the regularized Boussinesq system.

Yang Lei and Yang Kongqing (1999) obtain two kings of analytic singular
solutions (finite-time and infinite-time singular solutions) of classical Boussinesq
equation by using the improved homogenous balance (HB) method and the invariant-
Backlund Transformation based on a special nonlinear transformation. An particular, a
finite-time singular solution of the Boussinesq equation is obtained, which was produced

from a non-singular physical field in the process of time evolution.

Boussinesq equation as a zero curvature representation of some third order linear
differential equation and factorizing this linear differential equation was shown by M.A
Jafarizadeh et. al (2001). They obtain the hierarchy of solution of the Boussinesq

equation from the eigen spectrum of constant potentials.

S.R Pudjaprasetya et. al (2002) consider Boussinesq equation that describe wave

elevation 77 and horizontal velocity « of the fluid particles at the surface. A comparison is
made between the solitary waves from the two models (Boussinesq equation and KdV
equation). The decoupled equation is used to describe the solitary wave splitting due to
decreasing depth say from %, to &, . By demanding the conserved quantities: mass and
energy to be conserve during evolution, they were found the amplitude of two-soliton

above h, . This result agrees with result obtained using KdV model.



The derivation of four-parameter family of Boussinesq system from the two-
dimension Euler equation for free surface flow was obtained by J.L Bone et. al (2002)
and followed by Clyde M.D (2003) was presents the form of a “near-general” analytic
solution for the Boussinesq equation. Obtained that only one characteristic function that
satisfies the equation when analyticity is required. The solution developed is analytic in

the classical complex variable sense (i.e is continous and single-valued in the region of

interest) and is conservative in physics terminology.

Prabir Daripa et. al (2003) derived a class of model equation that describe the bi-
directional propagation of small amplitude long waves on the surface of shallow water.
The traveling solitary wave solutions are explicitly constructed for a class of lower order

Boussinesq equation of higher-order, the appropriate equation to model solitary waves

; ; b : ; 1
are derived under appropriate scaling in two specific cases : (l)ﬁﬁ(g—fJSg and

(i) (E—TJ = 0(B).
3
The derivation of the Boussinesq equation with the recursion form not only
appearing in the main variables but in the coefficients was shown by C.H Kong and C.M
Liu (2004). Parameters concerning the linear and nonlinear wave are also derived and by
choosing a suitable water depth parameter, m, the optimal wave models are consequently
determined. The model provides and easier and more flexible method to analyze the wave

mechanics than previous studies based on the Pade approximation.

Baldwin et. al (2004) expressed the solutions of Boussinesq equation as
polynomials of the hyperbolic tangent functions. They found that the tanh-method

provides a straightforward algorithm to compute such particular solution for a large class

of nonlinear PDE.

Tzirtzilakis et. al (2004) applied a combination of Fourier Spectral methods in
space and finite difference in time to Boussinesq equation. They showed the interactions
numerically and investigate their stability properties by varying the velocity parameter of

the wave which appears in their analytical form.



CHAPTER III

MATHEMATICAL MODELLING

3.1 Introduction

In this paper, we shall use the coupled shallow water wave equations,
n, +{(1+an)w}, - —)g v, +0(aB, B> =0),
w, +oaow, +1), — gw_m + O(a'ﬂ, Vit ) =0

in order to derive the BE equation

2 -
By =W, = 6(u )n -u_.. =0

()

(2)

(3)

We note that Eq.(1) and Eq.(2) were first derived by Witham (1974). The problem of

finding a solution for Eq.(3) were initiated by Prabir Daripa (1999). He found a solitary

wave solution,
u(x,1) = Asech* {A/6(x - ct)},

(4)

where A is the amplitude of the wave, and ¢ = iJl + 2% is its speed. We shall also

make use of the Hirota’s bilinear method and the KP hierarchy of equations in order to

find a relation between solution parameters p and q.



3.2 The Derivation

By using the chain rule, the x and ¢ derivatives respectively are

d _dX d dT 9

+
ox 81 X  oxor

and

Jd _dX d dT 9

—_——
o ar X o T

For our purpose in this paper, we use the transformation for U, X and T as below:

=n-an’+ 0(&2),
X =x +a.[_i 7 (x, t)dx

and

(5)

T'=1
where X and T are in the form of Lagrangian coordinates.

Based on the chain rule, the derivatives for the last two equations of Eq.(5) are

ai ai[wrcx‘[ ,\,t)deinL—()—a—

0X ox
(l+cm)(_j1 since% =0,

and

d 0 X 0
E—E"[A'f'a'[m?](l,f)a’l:lﬁ "é—'( )—

_ [a ['n (x,r)de% 3 (1)% .



In the following calculation, we shall only keep terms with O(l),O(a), and O(f3).

From Eq. (1),
B

n, = —{(1+omw}, + & O

=-w, +0(x) +0(B)

Hence, we can write,

d ( X J d d
—=|a| —wdi|—+—
or < dX dT
0 d
=—aw—+—
JdX dT
Now, the x and r derivatives are
L3 (1+ cm)i
aiid ox ox | (6)
0 d d
— = — ) —
ot oT oX

Considering Eq,(1), the terms needed are

—a—n—a—n—ama—n=1],.—ocmnx,

M= Tar

[+ om)w] = %[{I +amno]= 1+ an)%[(l +om)o] = (1+ o[+ onw], ,

and

d’w d’w
=——=(+
® ( om)aX3

Xy ax 3

= (14+an)w .y -

Therefore, eq (1) now can be written as

(7, — com, )+ 1+ e+ anw}, —%(1 + 0N Wy = 0.



Note that
{d+amw}l, = +an), 0+1+an)w,
= awiy, + o, +anw,.

Then, Eq. (1) becomes

7, —awn, +(1+an)awn, +w, +ano, )- 6 (1+anw,,., =0,

which then yields

Ty = 0Ny + 0N + Wy + Q1] + O 1]~ Dy olap,a*)=0.
We can also write
, B, .
Ir + @, + 2000, ¢ Vax = 0 (7)
Differentiating Eq.(7) with respect to T gives
d B d
—a—T—[nT (D5 o 200D — Emm, J = 5(0) 5 .
which is
2a( _B =) 8
Mg + Wxr + a’ﬂa)x)r 6wxxxr— . (8)

Now, consider Eq.(2). Listed below are the terms needed

cu —a—m—a—m-ama—m=m — 0w
" oT ox 7 b

00w, = ozcog—m = am[(l + m])g—;)J = o[l +omo, | = aow, +0(?),
X

on an
s 1 _—= 1 ”



and

bo, -32(E0). 83/ ]
2 2 0t | ox? 249 oxX *

B[E)T( Om)mxx ami}((l“"m])@\,\]
pd

= Oy ¥ Of o, o’ )
_B
2

W ey

Therefore Eq.(2) can be written as

- aww, +avw, +(1+an)y, - é(% = aa)aiX)[(I +an)wy |+ 0laB, B )=

or

@ 1, +aniy — [; Wy (a’ﬂ i )

which then reduces to

(94 2 :
W, +17, +5(77")X —gww =) (9)

The derivatives of o are calculated from Eq. (7) and Eq.(9). From Eq.(7),
B

g =~y 20, Ly
= 2t -, 200, + B, )+ -0, ~20m0, + B,
=Ny ZCZT] Ny 20Cnmx+ Wyyy | T Nr 2OCT]CUX+ Dy
6 6 6 Xx
=-Ny —QOLﬂ(_nr)+%(_nr)xx +0(0p, 0, %)

=1, +20mn; —%nm +0(af,0?,B*)

10



11

While from Eq.(9), we have

or =2 + Lo
=-n, —2(n?), +g(m7')m
=-1, ——(ﬂz)x +g( Mx —%(ﬂ )A +gwu1]
XX
=1y _%(ﬂl)x +B( LIES )X.\' +0(af, 0, f%)
=Ny _%(nz)x _gn,\:\:\' +O(GB’U‘2’BZ)

Therefore,

ai ,
Wy = (a)r )x = xx _5(77~)XX _577“”‘”"'

Also note that,

WDyxxr = Nxxxx T+ O(a,ﬂ )

Now, substituting all the required derivatives of @ into Eq.(8), we find

&, ' 2
T — W xx "5(77");0( —gﬁxxxx +2a[77(— Ty )]7 _g(— 7 xxxx )+ 0(“18’/6-): 0.

or
o f 4
Ner "2“(77777“ )7" ~xx “‘5(77"))(,\' _gnxxxx =0. (10)
Next, from Eq.(5)
n=U+an?
=U+alU+an®)’
=U+alU?+0a° (11)

Also from Eq. (5),
i A . —oc(nz).n +O(oc2)

or

N~ e = Unp +0(0?). (12a)



While from Eq.(11), we have
s =l & + a:(U 2)“ + O(crz).

So
(1% gy = (U2 )y +O(),

and
=U ypy +0(22)

M xxxx

Using Eq.(12a), (12b), (12c), and (12d), Eq.(10) becomes

U'.r'r * Ot(ﬂ i )rr - a(,nz )TI‘ - [U xx T C‘"(U : ).\'.\' ]_ % (U ’ )A’A’ - gUxxx.\' =0,

or

Eq.(13) is the required BE equation.

Now, let the linear transformation

U=au, X =bx and T =ct.

. T a a
This transformation implies U, = C—zu”, Uy = b—zuﬂ,

a
Uyixy = -[)_4 My -

Then, Eq.(13) can be shown to be
a a 3a a’ (uz) fa o

- T2 e 3b4 u.l‘.‘r.tt -

W, ——U
I Xy
c? b2 2 bt

U?) =Z—2(uz)“ and

12

(12b)

(12¢)

(12d)

(13)



- . .. a .
If we divide the above equation with —; the above equation can be reduced to

g* 3o ac’ ( 2) Bc?
u, —'_zu_r. - M J— 31)4 ™= 0

< p?

Compare with the BE equation, we choose a, b, ¢ such that

¢y 3ac
T 2 b

Solving this equation will give,

=0, and L e 1.
35

Ea=6, or a=4,

and

Hence ¢ =b = i\/g.

Futhermore, taking o =/g=1, we eventually find the required BE equation

2 —
Wy —U _G(M ).r.\' U T 0.

13
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CHAPTER 1V

SOLUTION

4,1 The Solution

In most of the literature, the form of BE equation considered is always in the form

un’ - u.tx - 6(“ ? ).i;( - u,ct\;\' = O (14)
Without loss of generality and for the purpose of our discussion, here we shall use a more

convenient form of BE equation which is

Uy + 1ty +6(? ), +3u, =0, | (15)

Rl

We note that Eq.(14) is transferred into Eq.(15) by the simple transformation

[
x — xand t—)—Tt.
3

It is very well known that BE equation possess soliton solutions. A common practice in

obtaining exact solutions for soliton equations is to assume

2

g = 8'1 (log F) (16)
ox*

Applying Eq.(16) into Eq.(15), we can get the bilinear equation
(D.*+D.2+3D})F-F=0 a7
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where

Moy 1 d d . d d f v
D"D'"F-F=|—-—||=-—] F(x o
x r (ax E)x') (a[ a[r] (“"I)F(“' 4 4{':*‘

=t
In order to illustrate the use of the above definition of D operator, we shall now

give some examples.
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Similarly we can always calculate

D}F-F =2(FF, -F})

and
D,D,F-F=2(FF, ~F,F,).
The quickest way of solving Eq.(17) and hence the BE equation is to make use of the first

equation in the KP hierarchy of equations [Jimbo & Miwa (1983)] which reads
(D,*-4D,D,+3D)F-F =0 (18)

And its single-soliton solution of the KP Eq.(18) is given by

203 pro
F=Aepx+pf-ipy+Beq.t qttqy (19)

for any non-zero arbitrary values of p and q.
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The bilinear equation of BE Eq.(17) can be manipulated as follows:
(p,*+D2+3D})F-F=(D,"~4D,D, +3D})F-F+(4D,D, +D})F - F (20)
Now, in order that Eq.(19) is to satisfy the BE Eq.(17), we would require

(4D,D, +D2)F-F =0 1)
Eq.(21) is equivalent to
A(FF, - F.F,)+FF, —F*=0 (22)
Upon applying Eq.(19) into Eq.(22), we will find immediately that
dp*+dqt +pP+q’ =4pg+4q’p+2pg,
which can be arranged to give
(ap® + p* - pa—44’p)+(aq" +¢* - pg-4p*q)=0.
Since p and q are arbitrary, they can be choosen such that
4p* +p* - pg-4pg’ =0,
and
4g' +q* — pg—4p’q=0.
The above choice will then yield
pt+ap’=q+dq’. (23)
The relation of Eq.(23), though in a cubic form, will define the solution of the Boussinesq

equation.
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CHAPTER V

DISCUSSION AND CONCLUSION

5.1 Discussion

In this project, we have discussed the Boussinesq (BE) equation. In particular, we
have successfully derived the BE equation
Uy =Wy, = 6(142 )_U -u,...=0

starting with Withams’ coupled shallow water wave equations

7, +{i+anol, -Lo,, +0(as.p* =0),

W, +oww, +1, —ga)w + O(aﬁ,ﬁz): 0.

The derivation was done via the Lagrangian coordinates.
We have also produced the BE equation’s solution. For that purpose, we used

simple transformation and rewrite BE equation in the form of

U+, + 6(1{2 )Lr +3u, =0.
The single BE equation was then written in the form comparable with the standard Jimbo
and Miwa's hierarchy of equations. Using one of those equations, we were able to
produce the so-called reduction formula

p+4p’ =qg+4dq’
for the BE equation. The relationship between p and g enabled us to write down the

required N-soliton solution of the BE equation.
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5.2 Conclusion

We have applied an analytical method to Withams’ coupled equation to derive the
single BE equation. The method consists of the Lagrange coordinates.

The solution of the derived BE equation is

5

u=aaz(logF)

X

where
F o Ae [?.T+ [’2f+jl")' + B(_J {".l'+(]:1 +([“_\' ,

which is similar to the KP solution but different in the exponential conditions that is

p+4p’ =qg+4dq’.

52  Suggestion

In this project, we did not analyse the solution. That was due to our heavy work
load during the duration of the project. We do hope to analyse our result in a future work.
Besides, we plan to proceed this research to obtain the N-soliton solutions using the

numerical methods instead of an analytical method.
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