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ABSTRACT 
 

 

 

 

The purpose of this study is to compare results obtained from three methods of 

assigning letter grades to students’ achievement. The conventional and the most popular 

method to assign grades is the Straight Scale method. Statistical approaches which use 

the Standard Deviation and conditional Bayesian methods are considered to assign the 

grades. In the conditional Bayesian model, we assume the data to follow the Normal 

Mixture distribution where the grades are distinctively separated by the parameters: 

means and proportions of the Normal Mixture distribution. The problem lies in 

estimating the posterior density of the parameters which is analytically intractable. A 

solution to this problem is using the Markov Chain Monte Carlo method namely Gibbs 

sampler algorithm. The Gibbs sampler algorithm is applied using the WinBUGS 

programming package. The Straight Scale, Standard Deviation and Conditional 

Bayesian methods are applied to the examination raw scores of 560 students. The 

performance of these methods are compared using the Neutral Class Loss, Lenient Class 

Loss and Coefficient of Determination. The results showed that Conditional Bayesian 

performed out the Conventional Method of assigning grades.  
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ABSTRAK 
 

 

 

 

Tujuan kajian ini adalah untuk membandingkan keputusan yang didapati 

daripada tiga kaedah memberi gred kepada pencapaian pelajar. Kaedah konvesional 

yang popular adalah kaedah Skala Tegak. Pendekatan statistik yang menggunakan 

kaedah Sisihan Piawai dan kaedah Bayesian bersyarat dipertimbangkan untuk memberi 

gred. Dalam model Bayesian, dianggapkan bahawa data adalah mengikut taburan 

Normal Tergabung dimana setiap gred adalah dipisahkan secara berasingan oleh 

parameter-parameter; min-min dan kadar bandingan dari taburan Normal Tergabung. 

Masalah yang timbul adalah sukar untuk menganggarkan ketumpatan posterior bagi 

parameter-parameter tersebut secara analitik. Satu penyelesaian masalah ini adalah 

dengan menggunakan kaedah Markov Chain Monte Carlo iaitu melalui algorithm 

persampelan Gibbs. Algorithm persampelan Gibbs diapplikasikan dengan menggunakan 

pekej perisian pengaturcaraan WinBUGS. Kaedah Skala Tegak, kaedah Sisihan Piawai 

dan kaedah Bayesian bersyarat dijalankan terhadap markah mentah peperiksaan daripada 

560 orang pelajar. Pencapaian ketiga-tiga kaedah dibandingkan melalui nilai Kehilangan 

Kelas Neutral, Kehilangan Kelas Tidak Tegas dan Pekali Penentuan. Didapati keputusan 

yang diperolehi menunjukkan bahawa kaedah Bayesian Bersyarat menunjukkan 

pencapaian yang lebih baik dibandingkan dengan kaedah Skala Tegak dan kaedah  

Sisihan Piawai. 
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CHAPTER 1 
 

 

 

 

RESEARCH FRAMEWORK 
 

 

 

 

1.1 Introduction 

 
 

At the end of a course, educators intend to convey the level of achievement of 

each student in their classes by assigning grades. Students, university administrators and 

prospective employers use these grades to make a multitude of different decisions. 

Grades cause a lot of stress for student; this exhibits the fact of education life. Grades 

reflect personal philosophy and human psychology, as well as effort, to measure 

intellectual progress with standardized objective criteria.  

 
 
There are many ways to assign student’s grades which all seem to have their 

advantages and disadvantages. The educators or graders are the most proficient persons 

to form a personal grading plan because it incorporates the personal values, beliefs, and 

attitudes of a particular educator. For that reason, a philosophy of grading in establishing 

a grading plan must be shaped and influenced by current research evidence, prevailing 

lore, reasoned judgement and matters of practicality. However, a more professional 

approach should be developed with the ability to be applied at any grade level and in any 
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subject matter area where letter grades are assigned to students at the end of reporting 

period.  

 
 
 
 
1.2 Statement of the Problem 

 
 

Most approaches in grading plan require additional effort and varying degrees of 

mathematical expertise. The educator has to assign a score, which meaningfully assign a 

letter grade, such as A, B- or C, to each student. There is no standard answer to 

questions like: What should an “A” student grade mean? What percent of students in my 

class should received a “C”?. University or faculty regulations encourage a uniform 

grading policy so that grade of A, B, C, D and E will have the same meaning, 

independent of the faculty or university awarding the grade. Other campus units usually 

know the grading standard of a faculty or university.  

 
 
For example, a “B” in a required course given by Faculty X might indicate that 

the student have an ability in developing most of the skills and referred to as 

prerequisites for later learning. A “B” in required course given by Faculty Y might 

indicate that the student is not a qualified candidate for graduate school in the related 

fields. Nevertheless, the faculty and educator may be using different grading standards. 

Course structure may seem to require a grading plan which differs from faculty 

guidelines or the educator and faculty may hold different ideas about a function of 

grading. Therefore a satisfactory grading plan must be worked out in order to meet the 

objective measurement and evaluation in education.  

 
 
Since both philosophies and instructional approaches change as curriculum 

changes, educators need to adjust their grading plans accordingly. In this study, we are 

not comparing faculty regulations on their grading methods but we attempt to 

differentiate each letter grade based on the overall raw score of the student from the 

beginning of a semester to the end of the semester period. Statistically based method is 
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used in this research which takes into account the grading philosophy with respect to 

conditions of measurement and evaluation of students’ achievement. The students’ final 

grades intend to have a norm-referenced meaning. By definition, a norm-reference grade 

does not tell what a student can do; there is no content basis other than the name of the 

subject area associated with the grade. Furthermore, the distinctions and relationship of 

several grading methods; conventional and futuristic are discussed carefully.  

 
 
 

 
1.3 Research Objectives 

 
 

The objectives of this study are to understand the grading philosophy, grading 

policies, grading methods and exploring the appropriate grading methods. The 

philosophy and policy are viewed as educational principles and the grading methods 

were driven by statistical procedures. The primary objectives are to develop 

mathematical models on grading system for both conventional and future approaches 

and finally we carry out the programming method in statistical analysis on Bayesian 

Grading method of assigning grades. The data on the past years record is used in this 

study. 

 
 
 
 
1.4 Scope of the Study 

 
 

Assigning a grade to student can be done in various ways. At present, most 

instructors assign grade conventionally through the raw score from the test given in class 

and final examination raw scores at the end of a semester period. The grades may be 

assigned based on the instructors’ “feel” throughout the instructors experience with their 

students. To avoid the “unfair” judgment on student performance, the new approach in 

grading method which is statistically based is adjusted to the conventional grading plan. 
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This method has a scientific evidence in assigning grade as compared to using only 

instructors’ personal feels.   

 
 
A model called Bayesian Grading (GB) method is developed to assign the 

grades. A Bayesian Inference based on decision making is an important tool to classify 

the letter grade into its particular class or component. The Gibbs Sampler is used in 

estimating the optimal class to the grade when the students’ raw scores are assumed to 

be normal and form a bell-shaped distribution. Adjustments to the raw score which take 

into account the instructor’s leniency factor is to allow the educator to vary the leniency 

of his or her evaluation. Based on the information, we calculate the probability that each 

student’s raw score corresponds to each possible letter grade. The grader’s (or 

instructor’s) degree of leniency is used to specify educators’ loss function which is used 

to assign the most optimal letter grades.  

 
 
These categories of grading are built upon earlier understanding of student raw 

scores, and it combine the raw scores with current data measure in a way that update the 

degree of belief (subjective probability) of the educator. With this principle, the student 

raw scores are assumed to be independent of the other students. 

 
 
 
 
1.5 Significance of the Study 

 
 

In this research, the Bayesian Grading (GB) method of assigning letter grades to 

student based on their whole semester raw score is described. The GB categorize the 

marks into several different classes and each class is assigned a different letter grade. 

The methods take into account the educator degree of leniency in categorizing the raw 

scores into several classes.  
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This instructional statistical designed is to help prospective, intermediate and 

beginning educators to sort out the issues involved in formulating their grading plan and 

to help experienced educators to reexamine the fairness and defensibility of their current 

grading practices. It also can be applied at any level of school, college or university. 

 
 
 
 
1.6 Research Layout 

 
 

Chapter I is intended to introduce basic terminology and a framework of the 

study. Chapter II, include literatures on some basic grading policies and grading plan for 

conventional grading methods and a futuristic grading method that will be used 

throughout the dissertation. 

 
 
Chapter III presents a more specific grading method which is the grading based 

on curve and a introducing the basic Bayesian grading method which include a 

discussion on finding the probability distribution of letter grades. A Bayesian inference 

in setting the prior and estimating the posterior of probability figured theoretically by 

including the proofs for readers understanding.  

 
 
In Chapter IV, we carefully discuss the model parameters estimation that were 

drawn from the mixture models using Gibbs Sampler. In addition, an estimation of the 

letter grades which take into account the instructors’ loss function is shown to find the 

optimal letter grades. The simulation is developing uses the WinBUGS (the recently 

developed software package: the MS Windows operating system version of Bayesian 

Analysis Using Gibbs Sampling). This is a flexible software for the Bayesian analysis in 

analyzed complex statistical models uses Markov chain Monte Carlo (MCMC) methods. 

The URL address to download the free version of the software is www.mrc-

bsu.cam.ac.uk/bugs/. 
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The significance of the results in real life will be judged by several selected 

instructors which uses real raw scores data. Furthermore, the result will be compared 

between the conventional grading methods and the Bayesian Grading method. 

 
 
Finally, Chapter V includes the conclusion and suggestion for further research on 

grading methods.  
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