Electrical capacitance tomography: principles, techniques and applications

Synopsis:

Electrical capacitance tomography system is useful for obtaining information about spatial distribution of a mixture of dielectric materials inside a vessel. This study is aimed to obtain real-time monitoring of the composition of liquid mixture in conveying pipeline. ECT is a non-invasive, non-intrusive and nondestructive technique that can measure the flow level inside a pipeline. In order to increase the image resolution and produce accurate result of current tomography research, a study on 16-electrodes sensor ECT system has been developed. The developed system has the mobility to be assembled and moved from a pipeline to another. The intelligent on-board mobility sensor technique has never been applied on an ECT system, it is a new technique and investigation of the ECT system. The system however can be assembled in different diameters of pipelines, and the number of the electrodes sensors can be reduced according to the different sizes of the pipelines without the need to redesign the electrodes sensors. In order to reduce the cost of an ECT system, Universal Serial Bus technology (USB) has been used as data transfering method. The final target of a tomography system is to control process and output of the pipeline and therefore a very high speed measurement and data transferring method is required to monitor the materials that flow inside the pipeline. In this case, a high speed data processing rate for data acquisition system and a high speed data reconstruction and image display system have been developed. As a result, a microcontroller that supports full-speed USB data transfer rate has been designed as the central control unit. The reconstruction image process in the PC was written using programming platform Visual Basic 6.0. The information obtained in the PC can be reconstructed using linear back projection algorithm. In order to improve data result, iterative algorithm has been implemented in this system in order to obtain a precise image of the flow in the pipeline.

Electrical capacitance tomography: principles, techniques and applications
Table Of Content:
Preface
CHAPTER 1 PROCESS TOMOGRAPHY SYSTEM
Background of Process Tomography
Types of Tomography Techniques
Electrical Resistance Tomography (ERT)
Positron Emission Tomography (PET)
Electrical Impedance Tomography (EIT)
Optical Tomography
Electrical Charge Tomography
X-Ray Tomography
Nuclear Magnetic Resonance Tomography
Ultrasonic Tomography
CHAPTER 2 ELECTRICAL CAPACITANCE TOMOGRAPHY (ECT)
Capacitance
Dielectric
Principal of Electrical Capacitance Tomography (ECT)
The Reconstruction Technique in ECT
Linear Back Projection Reconstruction Algorithm (LBP)
Iterative Reconstruction Algorithm
The Non-invasive Measurement

Portable/Mobile Sensor Design
Summary
CHAPTER 3 COMPUTER INTERFACING METHOD
Introduction
Universal Serial Bus (USB) Overview
Benefits of Using USB in ECT System
Ease of Use
Reliability
Low Cost
Flexibility
Types of USB Transfer
Summary
CHAPTER 4 ECT HARDWARE DEVELOPMENT
Backgrounds Problems
Mobile/Portable Sensor Design
Sensor Electrodes Design
Driven Guard and Earth Screen
Sensor Arrangement
Pipeline
Sensor Fixture
Sensor Electrodes Configuration
Electrodes Connecting Techniques
Gripper and Handle Model
Electrostatic Charge Precaution

Signal Conditioning System
Signal Switching Circuit

Detector and Amplifier Circuit

Absolute Value Circuit

Low Pass Filter

Programmable Gain Amplifier (PGA)

Analog to Digital Converter (ADC)

Microcontroller PIC16F876

Function Generator

Data Acquisition System

Central Control Unit

Summary

CHAPTER 5 IMPLEMENTATION OF ECT MEASUREMENT

Microcontroller's Firmware Description

Sensing Module's Firmware

Firmware for Central Control Unit

Graphical User Interface (GUI)

Programming Modules

Initialization

Data Retrieving in PC

ECT System Calibration and Normalization Procedure

Image Reconstruction Algorithms in ECT System

Linear Back Projection (LBP) Algorithm

Iterative Image Reconstruction Algorithm

ECT System Concentration Measurement

Error Measurement in ECT System

Summary

CHAPTER 6 APPLICATION OF ECT SYSTEM

Two Phase Flow Visualization Analysis

Sensor on Different Pipeline Analysis

Core Sensitivity Analysis

Three Phase Flow Visualization Analysis

Summary

REFERENCES

INDEX