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ABSTRACT 

 

 

 

Recent studies undertaken in the United States and Europe have shown that 

there are many highway bridges rated as structurally deficient requiring 

rehabilitation or replacement due to the increase traffic flow and modern 

truck loads. The objective of this dissertation is to compare the reliability 

based load factor for prestressed bridge girders against the deterministic load 

factor given in six (6) codes namely; BS5400 Pt.2, AASHTO, Canadian 

Code (OHBDC), Eurocode, Australian Code (Austroads) and JKR 

specifications. ‘Y5’ prestressed bridge girder with a resistance of 4192kNm 

assumed to be a constant are considered. The load parameters and the bridge 

spans are treated as random variables. The statistical parameters are based on 

available literature and test data. The reliability indices for load factor are 

calculated by iteration utilizing Monte Carlo simulation. Based upon the 

results obtained it can be concluded with confidence that in the design of 

primary highway loads, the load factor given in the codes can be reduced by 

approximately 10 to 13%. The results also indicate that AASHTO is the most 

conservative code while BS5400 Pt.2 and Eurocode are the most permissive. 

This would mean that using BS5400 Pt.2 or Eurocode will result in a cost 

effective bridge girder beam. 
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ABSTRAK 

 

 

Objektif dissertasi ini adalah untuk memperbandingkan prinsip 

keboleharapan rasuk jambatan prategangan berdasarkan kepada faktor beban 

hidup keboleharapan dengan faktor beban hidup konvensional 

(deterministik) yang diberikan dalam enam (6) piawai-piawai rekabentuk 

iaitu; BS5400 Pt.2, AASHTO, Piawaian Kanada (OHBDC), Eurocode, 

Piawaian Australia (Austroads) dan spesifikasi JKR. Rasuk jambatan 

prategasan ‘Y5’ dengan nilai keupayaan masimum 4192kNm adalah 

dianggap tetap ataupun sebagai satu konstan. Parameter beban dan panjang 

rasuk jambatan adalah dianggap sebagai pembolehubah rawak. Parameter 

statistik beban dengan panjang rasuk jambatan adalah berdasarkan kepada 

kajian literatur sediada serta kajian makmal. Prinsip keboleharapan rasuk 

jambatan berdasarkan kepada faktor beban hidup adalah dijalankan dengan 

kaedah simulasi Monte Carlo secara berulang. Melalui kajian keboleharapan 

dengan simulasi Monte Carlo, keputusan yang didapati menunjukan bahawa 

faktor beban hidup yang diberikan dalam piawaian rekabentuk boleh 

dikurangkan sebanyak 10% hingga 13%. Keputusan kajian ini mendapati 

bahawa piawan ASSHTO merupakan satu piawan yang paling konservatif 

manakala piawaian BS5400 Pt.2 dan Eurocode adalah piawaian-piawaian 

yang paling permisif. Ini bermakna dengan menggunakan piawaian BS5400 

Pt.2 atau Eurocode akan memberikan satu rekabentuk rasuk jambatan yang 

kos effektif. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 General Introduction 

 

Highway bridges and associated structures in some ways influence the visual 

quality of our surroundings with their sophisticated appearance and they are in fact 

highly functional artifacts with long service life which, is regularly used and seen by 

the masses. Highway bridges are critical link and form a considerable investment in 

infrastructure that should be kept safe and serviceable. The design aspects of 

highway bridges on the other hand are influenced by the application of loads and 

these form the fundamental data in designing the bridge. The basic philosophy of the 

application of loads is that the worst case scenario of the loads is taken as the basis 

of the bridge design.  

 

The last ten (10) years has seen the rapid development of reliability based 

assessment methods to help engineers tackle the analysis, quantification, monitoring 

and assessment of structural risks, undertake sensitivity analysis of inherent 

uncertainties and make the appropriate decisions about the performance of a 

structure.  
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The structure maybe at the design stage, under construction or in actual use. 

Highway bridge damage or failure especially those involving the loss of life, are 

very rare and usually have causes outside the realm of typical design specifications. 

The primary emphasis in bride design is the application on live loading effects and 

in this instance the reliability with respects to live loadings due to HA and HB loads 

(Frangopol, 1999). Highway bridges assessed with the reliability methods have been 

found to be structurally deficient and required replacement to allow them to carry 

modern truck traffic and the increase in annual traffic (Ibid). The cost to the relevant 

infrastructure agencies to rehabilitate these bridges is enormous. In short, reliability 

methods used in highway bridge design can be an effective method in producing a 

high degree of performance structure which is cost effective. This forms the 

quintessential requirement of awareness in using the reliability methodology to 

highway bridge design. 

 

1.2 Background of The Problem 

 

Recent studies undertaken in the United States and Europe have shown that 

there are many highway bridges rated as structurally deficient requiring 

rehabilitation or replacement to allow them to carry increased traffic flow and 

modern trucks loads (Nowak, 2000). The deficiency of these highway bridges are 

primarily from the live loading effect and not from the threats like corrosion, 

collision, wind and scouring. There is now an underlying realization that the 

analytical techniques developed for the bridge design are in many cases unable to 

accurately model the structural behavior of highway bridges.  
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This has resulted in underestimating the actual load capacity of bridge girders in the 

design assessments. In the design of highway bridges the designer must have an 

understanding of the types and magnitude of the loads that are expected to act on the 

bridge during its lifetime. It has been expounded earlier that the basis of bridge 

design relies on the worst case loading scenario or in other words, load combinations 

giving the worst bending moments and stresses. The HA and HB loads used in 

combinations are derived from the British Standard 5400 (Part 2) or from local 

specification such as JKR which uses LTAL and SV loadings in lieu of HA and HB 

loads although both uses the same methodology to derive the ultimate and 

serviceability limits. There are five (5) load combinations and combinations one (1) 

to three (3) are called the principle combinations while combinations four (4) and 

five (5) are called the secondary combination. These formed the basic data to assess 

the bridge comparing it to the ultimate or the serviceability limit state. This method 

of analysis can be described as deterministic, resulting in bridges that are an 

underestimation of the actual load carrying capacity. The fact that the loading 

combinations are random variables and thus absolute safety or zero probability of 

failure cannot be achieved. Vehicle comes in various shapes and sizes, traffic 

passing over a bridge fluctuates with time and at any given time it is impossible to 

quantify the number of vehicles and its specifications passing over a bridge. This 

makes the load a random variable. 

 

The loading on a highway bridge is further compounded by the issue of 

heavy vehicles being modified to carry heavier loads either legally or illegally (lorry 

hantu, overloading of lorries etc.).  
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The HB or SV loads are thus constantly changing compared to what is given in the 

codes and specifications. This uncertainty in the context of codes and specification is 

taken care by the “safety factor” however; the accuracy of using this safety factor is 

subjective and cannot be taken as the absolute although engineers design with the 

later in mind. 

 

In many cases, the bridges will exhibit no outward signs of distress. 

Although this does not, in itself, imply that failure may not be imminent; it is likely 

that some form of damage or significant deformation will precede collapse in cases 

of ductile failures of concrete bridge girders. This brings into question the 

appropriateness of using elastic analysis for the determination of ultimate strength 

for many types of bridges; and in particular short span concrete bridge girders which 

have been found to be deficient in flexure (Thoft-Christensen, 1999). 

 

Clearly there is a need to review and refine the existing methods and to 

develop improved techniques which can more realistically model the ultimate load 

capacity of bridges. Current codes of practice are written with the implicit 

assumption that the design and assessment of bridges will usually be undertaken 

using linear elastic analysis techniques. Elastic theory is well established and is 

supported by many computer software packages, and has been found most 

satisfactory for the design of bridges. As a lower bound method the engineer can be 

confident that the analysis method should be conservative and hence safe. 
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The questions that are glaringly unanswered are what does “failure” actually mean 

in an elastic analysis and what are the consequences of such failure in terms of both 

risks to life and economic terms? The conventional approach to the assessment of 

concrete bridge deck is to initially perform a simple elastic beam analysis using a 

representative strip of the bridge girder.  

 

If this “quick” check shows that the structure to be inadequate, a more 

detailed linear elastic analysis allowing for transverse distribution of loads would 

probably be performed using either a grillage or finite-element analysis. These 

results are then examined to identify individual locations at which the maximum 

calculated moments or shears exceed the estimated ultimate capacity of the section. 

The decision to strengthen or replace a structure is commonly made on the basis of 

these results. Transverse steel bars, shear bars are added to the bridge girder to 

supplement this deficiency.  

 

In reality concrete structures will crack under heavy loads resulting in a 

change in stiffness of the bridge girder. Even when the ultimate moment capacity of 

a section of the bridge girder is exceeded, loads will be redistributed elsewhere in 

the deck slab provided that the deck possesses sufficient ductility and it does not fail 

prematurely in shear. As a result, linear elastic analysis will not accurately model the 

distribution of stresses or the actual behavior in the post-elastic range where non-

linear effects dominate. Elastic methods can be very conservative since failure of 

one element in the structure is typically used to define failure of the structure as a 

whole. In the cases of flexural failure, the consequences are likely to be small and 

only may affect the serviceability of the structure.  
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If one accepts the that serviceability criteria does not govern and collapse is a 

criterion on which to base the assessment, such conservativeness is not warranted for 

concrete  bridge girder for which ductile flexural failure is the critical mechanism of 

failure. Once an individual section has reached ultimate or yield capacity, the failure 

must develop into full collapse mechanism before the structure will actually fall 

down (Melchers, 1987). Elastic models are still relied upon as the primary analyses 

tool for assessing concrete bridge girder and full scale loads tests conducted shows 

that concrete bridges are often able to carry loads well in excess of the “theoretical” 

capacity calculated using this technique (Ibid). 

 

It is thus important to investigate the options available to an engineer if some 

form of alternative assessment can be carried out in tandem with his elastic models. 

Reliability modeling and assessment is an appropriate solution to the problem of 

quantifying the variables (loading in this case) and providing an accurate range of 

limit states based on primary highway loadings. The probability of failure of bridge 

decks can be predicted with high accuracy using the reliability based assessment.  

 

The research problems can be summarized as follows; 

 

i) The primary highway loadings (HA loads) given in the relevant codes 

are random variables and thus cannot be quantified in a deterministic 

manner. What is the best approach in modeling this variable? 

ii) How do we evaluate the load models that has been developed in (i) 

above? 
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iii) How do we measure the probability of failure of the bridge girder 

arising from primary highway loadings (HA loads)? 

iv) Are there any difference between the various codified approach to 

bridge girder analysis (ULS and SLS methods) and the reliability 

based approach to analyze a bridge girder? If there are, what are the 

major differences? 

v) How the implementation of reliability based modeling and evaluation 

of bridge girder based on primary highway loading can enhance the 

overall safety level of a bridge girder?  

vi) Are there any imminent cost saving arising from using reliability 

based assessment in bridge girder analysis? 

 

1.3 Objectives of Study 

 

  The objectives of this study are to; 

 

i) Conduct an investigation approach to formulate the various load 

factor models from various codes which can be used to analyze 

maximum mid span moment effects on a standard prestressed bridge 

girder beam. 

ii) Assess the reliability of the standard bridge girder based upon the 

load models and load factors given by various codes and 

specifications namely JKR, BS 5400 Part 2, AASHTO, Eurocode, 

Austroads (Australian Highway Code) and Canadian Code 

(OHBDC). 
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1.4 Scope of Study 

 

The scope of study covered literature review from various sources and codes 

of practice namely BS 5400 Part 2, JKR specifications, AASHTO, Eurocode, 

Austroads (Australian Highway Code) and Canadian Codes specification on primary 

loadings (HA loads) and their respective load factors. This study carried out a 

statistical approach to model primary loadings (HA loadings) to highway bridge 

girders and evaluate the result with the conventional elastic analysis approach to 

bridge girder designs. The data for the conventional and reliability based method of 

analysis are based on an arbitrary data as follows; 

 

1) Bridge Span = 42 meters. 

2) Carriageway Width = 12 meters 

3) Footway width at both shoulders = 2 meters. 

4) Bridge Girder = Standard Prestressed Girder Beam. 

 

Computer software namely MATLAB Ver. 6.5.1 was utilized to run statistical 

process (probabilities) approach to model the maximum moments at mid span 

arising from primary highway loadings (HA & KEL loads). The results from 

utilizing various load factors from the codes will then be compared to the 

conventional elastic model analysis of the bridge girder. This would result in some 

difference which then can be used to evaluate which codes gives rise to a 

conservative design and which codes give rise to a permissible design. 
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 The reliability based assessment of bridge girder data would be crossed referenced 

with the most permissive code to check if there are can be any significant reduction 

in member size and subsequent cost savings. 

 

Finally the scope of study demonstrated that by using the reliability based 

assessment of highway bridge decks, can supplement if not enhance the final 

analysis for any bridge girder. 

 

1.5 Importance of Study 

 

This study basically showed on how to model primary highway loads (HA 

loadings) to bridge girder using reliability approach (probability approach) and how 

to evaluate the models based on the load factors given in various codes mentioned 

above. The data from reliability analysis could perhaps be used to develop reliability 

based design codes or it can be used to supplement the load factors used in the 

various codes.  

 

The result data from the reliability analysis can be used by design engineers to 

enhance their decision making in analyzing highway bridge girders. This would in 

some parameters benefit engineers to improve their accuracy and reduce some 

uncertainties in the design of highway bridges. Lastly on the whole the design would 

be envisaged to be safe for its lifetime and cost effective. 
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1.6 Limitations of Study 

 

The limitation of this study is that other loads such as transient highway 

loadings such as wind loads, collision loads, dynamic effects, scouring, braking and 

centrifugal loads, shrinkage and thermal effects are not considered in this study. This 

is primarily due to the fact that modeling these loads would be too large an endeavor 

to undertake. Therefore only primary highway loading namely HA, KEL and 

Footway Loading are taken into account to demonstrate highway bridge load 

modeling.    

 

1.7 Thesis Organization 

 

This thesis is organized into six (6) chapters. Chapter one (1) will consist of 

the problem background, research objectives, scope and importance of the study and 

the limitations. Chapter two (2) covers literature review which, discusses the topic of 

reliability assessment methods, primary bridge loadings , elastic analysis of bridge 

deck using ULS (Ultimate Limit State) and SLS (Serviceability Limit State) and the 

current practice of reliability analysis on bridge decks. Chapter three (3) presents the 

methodology in basic theory of reliability engineering on modeling of primary loads 

(HA loads) for an arbitrary bridge. Chapter four (4) would present the comparison 

data from reliability assessment derived from the load factor from various codes on 

bridge girders. The data would be tabulated and the major differences identified. The 

differences in result would then be related to the design aspects to ascertain which 

codes are permissible and which are deemed conservative.  
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Chapter five (5) would consist of the discussion of the results. Chapter six (6) will 

consist of the conclusions and appropriate recommendations.  
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