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Abstract 
 
Compound selection algorithm has become a need to pharmaceutical industry due to the 
increasing number of chemical compounds to be screened. One of the widely used methods 
in compound selection is cluster-based selection where the compound datasets are grouped 
into clusters and representative compounds are selected from each cluster. This paper 
proposes the use subtractive clustering in compound clustering by finding the optimal data 
points to be defined as a cluster centers based on the density of surrounding data points. The 
technique resolves the problem of determining the suitable number of clusters for the data. 
Different values of cluster radii and inter-cluster squash factor have been evaluated. For 
subtractive clustering, good values of squash factor are between 0.375 and 0.45 and the 
cluster radii from 0.35 to 0.45 because they always give the highest proportion of active 
structures in active cluster datasets. The results obtained from subtractive clustering has also 
been used in fuzzy c-mean (FCM) and K-means. We found that the proportion of actives in 
active cluster subsets are better when FCM and K-means are based on the results produced by 
subtractive clustering compared to results from subtractive clustering.  K-means produced the 
best results among the three clustering methods.  
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1.0 Introduction 
 
The drug design technologies have already produced a tremendous amount of data that 
requires proper methods of data analyzing. The dramatic increase of resulting compound data 
has encouraged researchers in the field to look at ways of applying various machine learning 
techniques for data analysis. In the early stages of a drug discovery project, the emphasis is 
on lead generation process, in which an attempt is made to optimize the molecular diversity 
of the initial library produced for compound screening.  Due to the similar property principle 
[1], structurally similar compounds can be expected to exhibit similar properties and 
biological activities.  It is thus undesirable to test a large number of structurally similar 
compounds for many reasons.  Maximizing the diversity of a subset is assumed to enhance 
the chances of finding active compounds of various structural types in screening experiments 
[2]. 
   
There are many approaches for compound selection such as cluster-based compound 
selection, dissimilarity-based compound selection, partition-based compound selection and 
optimization-based compound selection [2]. Among these different approaches, cluster-based 
or clustering has become the most commonly used in compound selection. Clustering is an 
unsupervised learning problem, where only inputs are available and no target outputs are 
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predefined by the users. The main objective of clustering is to organize a collection of data 
items into some meaningful clusters, so that items within a cluster are more similar to each 
other than they are to items in the other clusters. Apart from compound selection, compound 
clustering can also be used to predict certain properties of the chemical compounds by 
looking at properties of compounds in the same clusters and summarizing contents of 
chemical databases [3].  

 
In this work, we study the performance of subtractive clustering for clustering of chemical 
compounds and compare the result from subtractive clustering with fuzzy c-means (FCM) 
and K-means clustering.   
 
 
2.0 Experimental Design 
 
2.1 Dataset 
 
This experiment uses 1000 compounds from the MDL Drug Data Report (MDDR) database, 
containing molecules of drugs launched or under development, as referenced in the patent 
literature, conference proceedings, and other sources [5].   These molecules were represented 
by topological indices generated using the Dragon software.  The topological indices are a set 
of features that characterize the arrangement and composition of the vertices, edges and their 
interconnections in a molecular bonding topology. These indices are calculated from the 
matrix information of the molecular structure using some mathematical formula. These are 
real numbers and possess highly discriminative power and so are able to distinguish slight 
variations in molecular structure. 99 topological indices which includes Zagreb index, 
quadratic index, Narumi simple topological index, total structure connectivity index, Wiener 
index and Balaban index have been used in the experiment. For every bioactivity considered, 
a particular compound can be regarded as either active or inactive.  The effectiveness of the 
clusters produced will be tested based on the clusters ability to separate actives and inactive 
compound into different set of clusters.  
 
Although subtractive clustering will determine the clusters to be produced, the radius of the 
cluster is critical for the subtractive clustering to work effectively.  To estimate the optimum 
values for the radius ra of the clusters,  we have used some training data to learn the optimum 
value of radius ra based on the proportion actives inside a clusters (Pa).   We used a 5-fold 
cross-validation in which the dataset is partitioned into 5 subsets to estimate the optimum 
value for the radius ra. 
 
2.2 Algorithms 
 
2.2.1 Subtractive clustering 
 
Subtractive clustering operates by finding the optimal data point to be defined as a cluster 
center, based on the density of surrounding data points. All data points within the radius 
distance of these points are then removed, in order to determine the next data cluster and its 
center. This process is repeated until all of the data is within the radius distance of a cluster 
center. To avoid obtaining closely spaced cluster centers, we set rb to be somewhat greater 
than ra.  
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Consider a collection of n data points (x1,x2 ...,xn) in an m dimensional space. In our case of 
topological indices, we have normalized the topological values in each dimension so that 
their coordinate ranges in each dimension are equal; i.e., the data points are bounded by a 
hypercube. We consider each data point as a potential cluster center and define a measure of 
the potential of data point xi as 

)exp(
2

1
xxP ji

n

j
i −−= ∑

=

α
     ----------------- (1) 

, where   
2

4

ar
=α

                                                       
 
Pi  = Potential value of data point i 
xi  = ith data points  
n = total number data points 
exp = exponent  
ra =  Radii or radius defining a neighborhood 
 
Thus, the measure of potential for a data point is a function of its distances to all other data 
points [6]. A data point with many neighboring data points will have a high potential value. 
The constant ra is the effective radius defining a neighborhood; data points outside this radius 
has little influence on the potential. Using the square of the distance eliminates the square 
root operation that otherwise would be needed to determine the distance itself. After the 
potential of every data point has been computed, we select the data point with the highest 
potential as the first cluster center. Let ∗x1  be the location of the first cluster center and ∗P 1  
be its potential value. We then revise the potential of each data point xi by the formula 
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 rb   = Squash value 

∗x1  = first cluster center point 
 
Thus, we subtract an amount of potential from each data point as a function of its distance 
from the first cluster center. The data points near the first cluster center will have greatly 
reduced potential, and therefore will unlikely be selected as the next cluster center. The 
constant rb is the effective radius to define the neighborhood which will have measurable 
reductions in potential. To avoid obtaining closely spaced cluster centers, we set rb to be 
somewhat greater than ra ; a good choice is rb = 1.5 ra [6]. 
 
When the potential of all data points has been revised according to Eq. (2). We select the data 
point with the highest remaining potential as the second cluster center. We then further 
reduce the potential of each data point according to its distance to the second cluster center. 
In general, after the k'th cluster center has been obtained, we revise the potential of each data 
point by the formula 
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∗xk  =  k'th cluster center point 
∗Pk  = Potential value of ∗xk  

 
where ∗xk  is the location of the k'th cluster center and ∗Pk  is its potential value. The process 
of acquiring new cluster centers and revising potentials repeats until the potential value is 
below the acceptance value deemed as important in affecting the final clustering results. 
 
The algorithm for subtractive clustering is as below 
START  

Step 1 : Select the parameters values:     
          ra : radius   

                        rb : Squash factor  
                        ε  : Accept Ratio  
                        ε  : Reject Ratio 

Step 2  : Normalize the data into a unit hyperbox  
Step 3 : Compute the initial potentials for each data points using Eq. 1 
Step 4: Find the data point with highest potential value to be the first cluster center ∗P1 . 
Step 5 : Revise the potential of all data points using  Eq. 3 until criteria below: 
 

if ∗Pk  > ε  ∗P1  ; 
 Accept ∗xk   as a cluster center and continue. 

else if ∗Pk  < ε  ∗P1  ; 
 Reject ∗xk  and end the clustering process 
else 

Let dmin = shortest of the distances between ∗xk  and all previously found  
cluster centers. 
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  Accept ∗xk  as a cluster center and continue. 
 else 

 Reject ∗xk  and set the potential at ∗xk  to 0. 
                Select the data point with the next highest potential as the new ∗xk , re-

test and calculate its potential value using Eq. 3. 
 endif 
endif 

 

Here ε  specifies a threshold for the potential above which we will definitely accept the data 

point as a cluster center; ε   specifies a threshold below which we will definitely reject the 
data point. We use ε  = 0.5 and ε  = 0.15. If the potential falls in the gray region, we check if 
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the data point provides a good trade-off between having a reasonable potential and being 
sufficiently far from existing cluster centers [6]. 
 
 
3.0 Results and Discussion 
 
The result from the subtractive clustering is evaluated based on their ability to separate 
active/inactive structures into different clusters. This criterion will allow sampling of the 
range of activities in the datasets and minimize the chances that any activity is missed when 
an inactive compounds is selected as the representative of a cluster containing actives [2].  
The more active structures are in a cluster, the higher possibility that an active structure will 
be selected as a representative for further analysis. For both of the analyses, different cluster 
radius in the range of 0.2 to 0.5 and squash factor in the range of 0.3 to 0.75 are used. This is 
done to see the effect of different radius cluster (ra) and squash factor (rb) to the clusters 
produced.  
 
Figure 1 shows the comparison of proportion of active structures in active clusters, defined as 
clusters with at least one active structure, with different cluster radius from 0.2 to 0.5 when 
different training data sets are used. Radius value from 0.2 to 0.5 has been chosen because 
good values for radii are usually between 0.2 and 0.5 [6] and small radii values generally 
result in a few large clusters. From Figure 1, we can see that the highest proportion of actives 
(Pa) are obtained with cluster radius from 0.35 to 0.45. Thus, we can conclude that the best 
cluster radius is from 0.35 to 0.45 in modeling subtractive clustering for chemical compound 
clustering. 
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Figure 1 Results from subtractive clustering based on their proportion of actives in active 

clusters (Pa)  for 5 experiments. 
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Another analysis is based on the squash factor used in subtractive clustering. Figure 2 shows 
the proportion of active structures which have been produced using squash factor from 0.3 to 
0.75. The reason that we chose the rank between 0.3 and 0.75 is to avoid obtaining closely 
spaced cluster centers. We set rb to be somewhat greater than ra and the good choice is rb ≈ 
1.5 ra [6]. From the graph, we can conclude that good values of squash factor are between 
0.375 and 0.45 for subtractive clustering in training data sets. 
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Figure 2 Results from subtractive clustering based on their proportion of actives in active 

clusters (Pa) for 5 experiments. 
 
From the results, it is clear that choosing very small ra or very large ra will result in poor 
accuracy because when a very small ra is chosen the density function will not take into 
account the effect of neighboring data points; while if a very large ra is taken, the density 
function will include most data points in the data space. The squash factor rb is used to 
determine the neighborhood of a cluster center within which the existence of other cluster 
centers is discouraged so as to quash the potential for outlying points is to be considered as 
part of that cluster. This is the reason that the number clusters produced decreased when the 
squash factor increased although the same radii have been used in model. 
 
The results obtained from subtractive clustering have also been used in fuzzy c-mean (FCM) 
and K-means. The number cluster produced from subtractive will be used in FCM with 
fuzziness index = 2.0 and no. iteration = 100. The reason for choosing the fuzziness index = 2 
is because it has been found that FCM produced high proportion of actives using this value 
[7]. For K-means method, again the number cluster produced from subtractive clustering is 
used. Subtractive clustering is calculated only at every data point with the difference of a 
density function, instead of at every grid point. So the data points themselves are the 
candidates for cluster centers. This will reduce the number of computations significantly, and 
making it linearly proportional to the number of input data instead of being exponentially 
proportional to its dimension. Although the ra and rb of subtractive clustering are optimized 
from training data sets but the Pa proceeded from FCM is still higher than subtractive 
clustering. From Figure 3, we found that the proportion of actives in active cluster subsets 
are better when FCM and K-means are based on the results produced by subtractive 
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clustering compared to the use of subtractive clustering by itself.  K-means produced the best 
results among the three clustering methods.  
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Figure 3 Results of comparison based on Proportion of actives in active clusters (Pa) for 5 

experiments using different data sets. 
 
K-means clustering works on finding the cluster centers by trying to minimize a cost 
function. It alternates between updating the membership matrix and updating the cluster 
centers respectively, until no further improvement in the cost function is noticed. Since the 
algorithm initializes the cluster centers randomly, its performance is affected by those initial 
cluster centers. It is therefore understandable that a good approximation of the number of 
clusters can improve the results. 
 
 
4.0 Conclusion 
 
The study presents the potential use of subtractive clustering for clustering chemical 
compound databases.  Based on our results, the cluster radius to use for optimum separation 
between actives and inactives are between 0.35 with 0.45 whilst good squash factor are 
between 0.375 with 0.45.  We have also shown that the results are even better if the number 
of clusters obtained is used for FCM and K-means clustering.  However, we are yet to 
combine the idea from subtractive clustering directly into FCM and K-means algorithms. 
 
For this study, the dataset used for the experiment was represented by topological descriptors. 
Experiments should also be conducted using other descriptors to see if the possibility of using 
subtractive clustering for other molecular descriptors.  Apart from subtractive clustering, 
other density search clustering methods approaches can also be used, such as the Mountain 
clustering and the Taxmap methods. 
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