REAL-TIME BARCODE READER USING ACTIVE VISION

USMAN ULLAH SHEIKH

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical-Electronics & Telecommunication)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > OCTOBER, 2004

Specially dedicated to my family for their support and eternal love.

"If you can dream it, you can do it"

ACKNOWLEDGEMENTS

Praise to Allah, the Most Gracious and Most Merciful, Who has created the mankind with knowledge, wisdom and power.

First of all, the author would like to express his deepest gratitude to Associate Professor Dr. Syed Abd. Rahman Al-Attas for his continuous support, supervision and encouragement during the course of this project. The author would not have completed this project successfully without his assistance.

The author is thankful to Mr. Salman Ullah Sheikh, Mr. Anoop Sehgal, Mr. Jayaseelan Marimuthu, Mr. Mohamad Nansah, Mr. Kamarul Hisham, Mr. Muftah and Ms. Leow Pei Ling for their advice and helpful cooperation during the period of this research. Appreciation is also acknowledged to those who have contributed directly or indirectly in the completion of this project.

The author would also like to extend his appreciation to his family members, for their support, patience and endless love.

ABSTRACT

Barcodes are commonly used with merchandise to speed up product checkout at department stores and to keep inventory. A barcode is a machine readable code consisting of a series of bars and spaces printed in defined ratios. The function of the barcode scanner is to "read" the image presented by the bar code. Common handheld scanning technologies include wands and lasers. They have some limitations such as limited depth of field, limited life span due to mechanical wear and the barcodes must reside on flat surfaces. Besides that, barcodes must be aligned in a proper way for reading thus limiting the robustness of these readers. This project is aimed towards improving these limitations, by using an active vision system. This project is to decode the UPC-A and EAN-13 barcodes using an active vision system, consisting of a camera and user-written software. The camera will feed the software with continuous frames of images from the environment. These images are converted to grayscale and some preprocessing is performed. Image is filtered (such as sharpening and noise reduction) and converted to binary. An adaptive thresholding algorithm is used to reduce the effects of uneven illumination. Image is then scanned horizontally, vertically and diagonally for barcodes, thus enabling it to decode rotated barcodes. Error correction and predictive decoding is implemented to improve the speed and accuracy of the system. Overall system performance is benchmarked with existing commercially available software.

ABSTRAK

Kod bar digunakan secara meluas dalam urusan pembelian di pasar raya dan juga digunakan untuk merekod inventori. Kod bar merupakan sejenis kod yang terdiri daripada lajur and ruang dalam nisbah tertentu, dan kod ini boleh di baca oleh mesin. Fungsi pembaca kod bar adalah untuk membaca imej kod bar yang terpapar. Antara teknologi pembaca yang lazimnya ditemui adalah berasaskan laser dan mempunyai beberapa kelemahan, seperti jarak pembacaan yang rendah, mudah mengalami kerosakan mekanikal dan hanya boleh membaca pada permukaan yang rata. Di samping itu, kod bar mestilah diaturkan dengan betul untuk tujuan pembacaan. Matlamat utama projek ini adalah untuk mengatasi masalah-masalah ini dengan menggunakan teknik penglihatan. Projek ini akan menguraikan kod-kod bar UPC-A dan EAN-13 mengunakan teknik penglihatan yang mana sistem ini terdiri daripada sebuah kamera dan aturcara. Kamera akan menghantar kerangka gambar secara terus-menerus kepada aturcara. Gambar akan ditukar kepada skala kelabu dan beberapa proses awalan akan dilakukan. Gambar akan ditapis untuk ditajamkan atau untuk menghilangkan hingar dan kemudiannya ditukar kepada gambar hitam-putih. Operasi ambang dengan penyesuaian sendiri digunakan untuk mengurangkan kesan pencahayaan tidak sekata. Gambar kemudiannya dibaca melintang, menegak dan menyerong supaya kod bar dalam pelbagai putaran dapat dibaca. Operasi pembetulan kesalahan dan ramalan dalam penguraian dilaksanakan untuk meningkatkan kelajuan dan ketepatan sistem. Prestasi keseluruhan sistem diuji dan dibandingkan dengan aturcara-aturcara komersial.

LIST OF CONTENTS

CHAPTER	CON	ITENT	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	LIST	F OF CONTENTS	vii
	LIST	F OF TABLES	Х
	LIST	FOF FIGURES	xi
	LIST	FOF NOTATIONS	xiv
	LIST	FOF ABBREVIATIONS	XV
	LIST	FOF APPENDICES	xvi
CHAPTER I	INTI	RODUCTION	1
	1.1	Introduction	1
	1.2	Limitations of Conventional Barcode Readers	3
	1.3	Objectives	5
	1.4	Scope of Project	5

Project Outline

1.5

vii

6

CHAPTER II REVIEW OF LITERATURE STUDIES

2.1	Introd	luction	8
2.2	Barco	de Readers	8
2.3	Vision	n Based Barcode Readers	10
	2.3.1	Barcode Localization	10
	2.3.2	Barcode Reading	12
2.4	The A	natomy of EAN-13 and UPC-A	13
	2.4.1	Barcode Size and Color	15
	2.4.2	Barcode Structure	16
	2.4.3	Encoding	18
	2.4.4	Check Digit Calculation	20
	2.5.5	Decoding	21

CHAPTER III THEORETICAL BACKGROUND 22

3.1	Introduction		22
3.2	Imagi	Imaging Devices	
	3.2.1	Field of View & Angle of View	23
	3.2.2	Resolution	28
	3.2.3	Depth of View	29
	3.2.4	Lighting	34
	3.2.5	Distortion	37
	3.2.5	Blurring & Motion Tearing	38

CHAPTER IV ALGORITHMS & IMPLEMENTATIONS 40

4.1	Introduction	40
4.2	Overall System Design	40
4.3	Preprocessing	
	4.3.1 Grayscaling	42
	4.3.2 Filtering	43

8

	4.3.3	Thresholding	44
4.4	Decod	ling	48
	4.4.1	Scanning	48
	4.4.2	Barcode Identification & Extraction	50
	4.4.3	Decoding	54
4.5	Heigh	t Extraction Algorithm	60
4.6	Progra	am Architecture	62

CHAPTER V RESULT

75

5.1	Introduction	75
5.2	Uneven Illumination, Shadow and Glare	75
5.3	Barcode Orientation	78
5.4	Tests on Various Object Shapes	79
5.5	Multiple Barcodes in a Scene	82
5.6	Product Comparison	82
	5.6.1 Recognition Rate/Accuracy	84
	5.6.2 Performance Comparison	86
5.7	Discussion	88

CHAPTER VI CONCLUSION & SUMMARY 90

6.1	Summary	90
6.2	Conclusion	90
6.3	Recommendations for Future Work	91

REFERENCES	93
APPENDIX	97

LIST OF TABLES

TABLE

TITLE

PAGE

2.1	Specification for EAN-13 & UPC-A barcodes	15
2.2	Parity encoding table	20
2.3	Character encoding table	20
3.1	Approximation of FoV for various CCD sizes	27
3.2	Type of illumination for different application requirements	35
4.1	The normalization and rounding process	56
4.2	Normal barcode (left to right)	57
4.3	Flipped or mirrored barcode	57
4.4	Height extraction reference table	61
5.1	Feature comparison	83
5.2	Test of accuracy	84-85

LIST OF FIGURES

FIGURE

TITLE

PAGE

1.1	Common one-dimensional barcodes	2
1.2	Two-dimensional barcodes, (a) 3-DI and (b) Array Tag, (c)	3
	PDF417, (d) Data Matrix, (e) MaxiCode and (f) Aztec Code	
2.1	Shows different types of barcode readers, (a) a Pen-type reader,	9
	(b) a Laser scanner and (c) a CCD scanner	
2.2	(a) UPC-A barcode, (b) equivalent EAN-13 barcode, with the	14
	first character set to zero, and (c) an EAN-13 with an additional	
	digit used	
2.3	Actual sizes of EAN-13/UPC-A barcodes	16
2.4	Encoding the number '5'	19
3.1	Comparison of AoV between a 25mm and a 35mm camera lens	24
3.2	Projection of AoV and FoV in the horizontal and vertical	24
	directions	
3.3	Projection of FoV at a distance of do	25
3.4	FoV for a (a) 35mm lens, (b) 25mm lens shows the amount of	26
	information can be captured	
3.5	Aspect ratio of various industry standard CCD sensors	27
3.6	Nothing smaller than the physical size of two pixels can be	30
	resolved.	
3.7	DoV is larger when the aperture opening is small (large f-stop)	31
3.8	DoV can be increased by adjusting the aperture	32
3.9	Insufficient DoV will cause barcodes with odd placement	33
	unreadable	
3.10	DoV at various object-to-lens distances for 35mm and 25mm	34
	camera lens at $f/1.3$, $f/2$ and $f/4$	

3.11	Barcode inspection under (a) highly directional light source and	36
	(b) diffuse lighting [20]	
3.12	(a) Directional lighting, (b) diffuse lighting, (c) ring guide and	37
	(d) diffuse axial lighting	
3.13	Radial distortion on the KPC-S38CZV camera	38
3.14	Motion tear	39
4.1	Block diagram of project	41
4.2	Spatial filters (a) Gaussian Blur, (b)Laplacian (c) Sharpen (d)	43
	Unsharpen Mask	
4.3	(a) Global, (b) segmented, (c) local (Chow & Kanenko), (d) and	45
	(e) algorithmic adaptive thresholding based on variance [23]	
4.4	(a) Actual gray-level image, (b) manually selected global	47
	threshold of 114, (c) global heuristic threshold, (d) local	
	neighborhood of 5x5 with max-min threshold (e) local	
	neighborhood (max-min) of 5x5 and Tg=3, (f) segment	
	(heuristic) of 10x10 (g) segment (heuristic) of 10x10 with	
	Tg=12 (h) algorithmic adaptive thresholding based on variance	
4.5	Execution time of different thresholding methods on a 512x512	48
	gray-level image	
4.6	Scan directions implemented	49
4.7	Skewed barcodes at different angles, where it is picked up by	50
	several scan lines (a) horizontal and diagonal, (b) diagonal (c)	
	vertical scan lines.	
4.8	Steps to identify and extract the UPC-A and EAN-13 barcodes	51
4.9	Predictive decoding tree for character determination	59
4.10	Predictive tree to determine the symbology and the 1st character	59
4.11	Performance comparison between predictive and exhaustive	60
	decoding	
4.12	Height extraction state machine	61
4.13	Comparison between SISD and SIMD (MMX) architectures	63
4.14	Program screenshot	64
4.15	Program flowchart	66
4.16	Barcode detection process	67

4.17	Scanning algorithm	68
4.18	Quiet zone detection algorithm	69
4.19	Algorithm for guard bars detection	70
4.20	Checking the equality of the guard bars	71
4.21	Algorithm for obtaining the height and width of a bar	71
4.22	Algorithm for obtaining all the remaining bars of the EAN-13	72
	and UPC-A symbologies	
4.23	The normalization process	73
4.24	The error detection and correction process	74
5.1	Shows how adaptive local thresholding is capable of	76
	successfully thresholding an image which is affected by severe	
	uneven illumination; (a) actual image affected by uneven	
	illumination, (b) global thresholding, (c) local thresholding	
5.2	Glare and shadowing on a specular surface	77
5.3	Elimination of glare through local thresholding; (a) glare	78
	affected region of a barcode, (b) missing bars due to global	
	thresholding, (c) local thresholding able to recover missing bars	
	(d) successful decoding process	
5.4	Barcodes at different orientation (angle)	79
5.5	Barcode orientation on (a) flat surfaces, (b) along the	80
	circumference of a cylinder or curved object, (c) along the axis	
	of a cylinder, and (d) on irregular surfaces	
5.6	Barcodes on flat surfaces	80
5.7	Barcodes on the circumference of cylinders	81
5.8	Barcodes along the axis of cylinders	81
5.9	Barcodes on irregular surfaces	81
5.10	Successful detection of multiple barcodes in one scene	82
5.11	Recognition accuracy	86
5.12	Decoding time for a 512x512px color image	87
5.13	The importance of optimal thresholding	89

xiii

LIST OF NOTATIONS

- *a* Lens aperture (f-stop)
- *c* Diameter of circle of confusion.
- d_i Distance from the image plane to the optical center of the lens
- d_o Distance from the object plane to the optical center of the lens
- f Focal length
- *H* Hyperfocal distance
- h_{ccd} Height of CCD in pixels
- h_i Height of image in millimeters
- h_o Height of object in millimeters
- T Threshold value
- T_g Global threshold value
- *T_o* Threshold Convergence factor
- *w_{ccd}* Width of CCD in pixels
- *w_i* Width of image in millimeters
- *w_o* Width of the object in millimeters
- θ_h Vertical angle of view
- θ_w Horizontal angle of view

LIST OF ABREVIATIONS

AoV	Angle of View
BMP	Windows Bitmap
BPNN	Back Propagation Neural Network
CCD	Charge-Coupled Device
CMOS	Complementary Metal Oxide Semi-Conductor
CoC	Circle of Confusion
DoV	Depth of View
EAN	European Article Number
FF	Far-Field
FoV	Field of View
FPS	Frames per Second
ISBN	International Standard Book Number
LUT	Look-up Table
MLP	Multi Layer Perceptron
MMX	MultiMedia eXtension
NF	Near-Field
PCI	Peripheral Component Interface
PDA	Personal Digital Assistant
px	Pixel
RBF	Radial Basis Function
RGBA	Red-Green- Blue-Alpha
SIMD	Single Instruction Multiple Data
SSE	Streaming SIMD Extensions

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	System Specification	97
В	Scan Profiles	99
С	C++ Class Declaration	100
D	Test Images	110
Е	Results	112
F	Screenshots of Commercial Test Programs	117

CHAPTER I

INTRODUCTION

1.1 Introduction

Barcodes are machine readable symbols made of patterns and bars. Barcodes are used for automatic identification and usually are used in conjunction with databases. It is widely used in the retail industry, military, health industry, document imaging environments, automatic storage and retrieval systems [1] and on the factory floor. Barcodes were first introduced about 34 years ago [2]. The main intention is to encode information in a tight place. It is also a very simple method of data entry and data collection and is used for supply monitoring, job control and batch separation [3]. Barcodes are very cost-effective, accurate and can pack great amount of information [2]. The cost of printing and reading is minimal [4] and moreover, the actual labor cost for data entry is reduced.

Different bar and space patterns are used to represent different characters. Sets of these patterns are grouped together to form a "symbology". There are numerous types of barcode symbologies each having their own unique characteristics and features. A majority of symbologies were designed to meet the needs of specific applications or industry. For example the Universal Product Code (UPC) symbology was designed for identifying retail and grocery items, while PostNET was designed to encode postcodes for the US Postal Service. Generally, barcodes can be categorized into two distinct categories;

a. One-Dimensional (1-D) barcodes

These barcodes encode information along one dimension with intervals of alternating black and white color. Information is encoded in bars which represents the barcode. The term bar refers to the rectangles with the foreground color while spaces denote the intervals between the bars. Example of 1-D barcodes are like the Codabar, Code 25, European Article Number (EAN-8, EAN-13), UPC-A and PharmaCODE which are shown in Figure 1.1. 1-D barcodes differ from one another by the way the information in encoded. Some symbologies allow encoding of both numeric and alphanumeric characters.

Imffahluffahlahlahlahlahlahlahlahlah

Figure 1.1: Common one-dimensional barcodes

b. Two-Dimensional (2-D) barcodes

2-D barcodes can represent more information per area and was developed to overcome the restricted amount of information that can be packed in 1-D barcodes [5, 6]. 2-D barcodes represent information in two axes, creating an area of barcode. Examples of 2-D barcodes are such as 3-DI, Array Tag [7, 8], PDF417 [6], Data Matrix, MaxiCode and Aztec Code and are shown in Figure 1.2. Besides that, 2-D barcodes are smaller and have a lower error rate compared to their 1-D counterpart. For instance, the PDF417 barcode has a worst case error rate of 1 error for 10.5M characters, compared to UPC-A which has a higher error rate of 1 error for every 394k characters. However, 2-D barcode requires sophisticated readers making them more costly and unpopular in the retail industry.

Figure 1.2: Two-dimensional barcodes, (a) 3-DI and (b) Array Tag, (c) PDF417, (d) Data Matrix, (e) MaxiCode and (f) Aztec Code

1.2 Limitations of Conventional Barcode Readers

Barcodes are used extensively in many areas especially in the retail industry. Although barcodes provide a fast and accurate method of data entry, the readers used for this purpose have some shortcomings. Laser scanners are far the most commonly used 1-D barcode reader. Laser scanners look at the pattern of dark and light bars and decode a barcode, returning the string contained in them. This string is then used to obtain additional information from a database. Several limitations of conventional scanners are;

a. Limited depth of field

Barcodes must be placed very close to the reader for a successful reading. This is true especially for pen type and laser readers.

b. Limited life span due to mechanical wear

Due to close contact between the reader and the barcode, the barcode reader is likely to have a limited life span due to mechanical wear. This is also due to the way the reader is handled by humans.

c. Barcodes must reside on flat surfaces

One of the biggest limitations is that most readers can only operate with barcodes that reside on flat surfaces. Barcodes placed on curved or irregular surfaces such as on cylinders are difficult to read.

d. Barcode alignment

Conventional barcode readers require that the barcodes are placed in a proper alignment prior to reading. Barcodes cannot be rotated or flipped. The success in reading a barcode depends greatly on how the barcode is aligned. In actual application environment, proper alignment of barcodes means human intervention, thus a fully automated system in not feasible.

e. Cost

Although there are variety of barcode readers available, models that do provide high-end features such as low error rate and high robustness, are often expensive.

f. Laser hazard

Because the eye focuses laser light just as it does other light, the chief danger in working with lasers is eye damage. Therefore, laser light should not be viewed either directly or reflected. Direct exposure to laser light should be avoided. Laser scanners present danger if accidentally pointed into the eye.

The application of vision in many areas is much sought after due to several advantages. Vision based barcode readers can be used when the object is far away or when human intervention is difficult or hazardous such as in the handling of radioactive materials. Vision systems can perform multiple things at the same time, without changing the hardware but just by modifying the software to suit a particular operation. In industries, vision is used to detect production defects, detect missing components and also to obtain barcodes. All of this is performed with one vision without the need for a dedicated hardware for every operation. Besides that, the sources of vision such as digital cameras are becoming more common and economical. With the sudden growth in consumer based digital cameras (such as in mobile phones and Personal Digital Assistants (PDAs)), it becomes even clearer that vision will be available to the masses in the near future, thus there is a strong motivation to develop vision based applications.

1.3 Objectives

The main objective of this project is to develop a system comprising of a camera and software for the purpose of capturing 1-D barcodes and decoding them in real-time. Suitable image processing techniques must be implemented in the software to accommodate inaccuracies or environmental changes during the acquiring process. The project is also aimed at addressing the issues with conventional readers. Lastly, the objective of this project is to compare the performance and robustness of the final system with currently available vision based barcode reader technologies.

1.4 Scope of Project

The project is focused on developing a Windows based software using Microsoft Visual C++ 6 that will perform the image processing and decoding. The scope of the project will cover the following areas;

- The program obtains images or frames from offline Windows
 Bitmap (BMP) files or in real-time from a camera or framegrabber that is interfaced to the system.
- 2. The program developed must be able to decode two 1-D symbologies, the UPC-A and EAN-13.
- It is also the aim of the project that the program is able to decode barcodes in various alignments, on different surfaces and in various environment conditions.

4. Finally, the algorithms must be fast and efficient so that it can be applied in real-time applications. It is the target of the project that the final program is able to perform detection at a rate of 20 frames per second (FPS).

1.5 Project Outline

The project is organized into six chapters. The outline is as follows;

Chapter 1-Introduction

This chapter discusses the objectives and scope of the project and gives a general introduction to barcode technology.

Chapter 2-Review of Literature Studies

This chapter reviews the relevant literature and previous work regarding vision based barcode readers. In addition to that, the anatomy of EAN-13 and UPC-A symbologies are given.

Chapter 3-Theoritical Background

Chapter 3 elaborates on the principles behind good quality image acquisition and the factors that must be taken into consideration to obtain readable barcodes. This includes lens selection, determination of field of view, and depth of view.

Chapter 4- Algorithms & Implementation

All the preprocessing executed prior to detection is explained in this chapter. The algorithms to initiate barcode detection and decoding are also described and justified in this chapter.

Chapter 5-Result

The final results of this project are shown and discussed in this chapter.

Chapter 6-Conclusion

Chapter 6 consists of conclusion and suggestions for future improvement.

REFERENCES

1. Thota Sriram, K. Vishwanata Rao, S. Biswas and Basheer Ahmed. Application of Barcode Technology in Automated Storage and Retrieval Systems. *Industrial Electronics, Control, and Instrumentation, 1996., Proceedings of the 1996 IEEE IECON*: IEEE, 1996. 641-646.

2. Theo Pavlidis, Jerome Swartz and Ynjiun P. Wang. Fundamentals of Bar Code Information Technology. *IEEE (Computer)*: IEEE, 1990. 74-86

3. Larry Krummel. *Bar Codes in Document Imaging* 3^{*rd*} *Edition*. Seaport Imaging Inc. 1996.

 Jonathan Cohen. Automatic Identification and Data Collection Systems. UK.: McGraw Hill International. 1994.

5. Wil. J. Van Gis. Two Dimensional Dot Codes for Product Indentification. *IEEE Transaction on Information Theory, Vol. IT-33, No.5*.Sept 1986. 620-631.

6. E. Ottaviani, A. Pavan, M. Bottazi, E. Brunelli, F. Casseli and M.Guerrero. A Common Image Processing Framework for 2D Barcode Reading. *Image Processing and Its Applications, Seventh International Conference, No. 465*.1999. 652-655.

7. Choe Kok Heng. *Development of PC Based Barcode Recognition*. Undergraduate Thesis. Universiti Teknologi Malaysia. 2001.

8. Hasimi bin. Sallehudin. *Designing a Real-Time Visual Based Barcode System*. Undergraduate Thesis. Universiti Teknologi Malaysia. 2002.

9. S.Arnould, G. J. Awcock and R. Thomas. Remote Barcode Localization using Mathematical Morphology. *Image Processing and Its Applications, 1999. Seventh International Conference, No.* 645: IEEE, 1999. 642-646.

10. Shigeru Ando and Hidekata Hontani. Automatic Visual Searching and Reading of Barcodes in a 3-D Scene. *Vehicle Electronics Conference, 2001. IVEC 2001. Proceedings of the IEEE International*: IEEE, 2001. 49-54.

11. R. J. Howlett, S.Berthier and G. J. Awcock. Determining the Location of Industrial Barcodes using Neural Networks. *Image Processing and Its Applications, 1997., Sixth International Conference*: IPA97-IEE, 1997. 511-515.

12. Anil K. Jain and Yao Chen. Bar code localization using texture analysis. *Document Analysis and Recognition, 1993*.: IEEE, 1993. 41-44.

13. Christian Viard-Gaudin, Nicolas Normand and Dominique Barba. A Barcode Localization Algoritm using a Two-Dimensional Algorithm. *Document Analysis and Recognition, 1993*.: IEEE, 1993. 45-48.

14. Rubin Muniz, Luis Junco and Adolfo Otero. A Robust Software Barcode Reader using Hough Transform. *IEEE*, 1999. 313-319.

15. Shu-Jen Liu, Hong-Yuan Liao, Liang-Hua Chen, Hsia-Rong Tyan and Jun-Wei Hsieh. Camera-Based Bar Code Recognition System using Neural Network. *Neural Networks, 1993.*, *Proceedings of 1993 International Joint Conference on Neural Network.*: IJCNN '93-Nagoya. 1301-1305.

16. N. Normand and C. Viard-Gaudin. A Two-Dimensional Barcode Reader. *Pattern Recognition, 1994. Vol. 3 - Conference C: Computer Vision & Image Processing., Proceedings.*: IEEE, 1994. 201-203.

17. Mikio Kuroki, Takayuki Yoneoka, Tetsua Satou, Yoichi Takagi, Tadaaki Kitamura and Noriaki Kayamori. Barcode Recognition System using Image

Processing. *Emerging Technologies and Factory Automation Proceedings*, 1997.: ETFA '97. 568-572.

18. Michael W. Burke. *Image Acquisition: Handbook of Machine Vision Engineering Volume 1*. London: Chapman & Hall Ltd. 1996.

19. Pulnix. CCD Performance and Pixel Size. Technical Note. 1998.

20. National Instruments. IMAQ Vision Concepts Manual. Manual. 2003.

21. Gernot Hoffmann. *Luminance Models for the Grayscale Conversion*. Technical Note. 2003.

22. Andrew K. C. Wong, P. K. Sahoo. A Gray-Level Threshold Selection Method Based on Maximum Entropy Principle. *IEEE Transaction on Systems, Man and Cybernetics Vol. 19, August 1989*: IEEE,1989. 866-871.

23. Rafael C. Gonzalez and Richard E. Woods. *Digital Image Processing 2nd Edition*. New Jersey, USA: Prentice Hall Inc. 2002.

24. Nir Milstein. *Image Segmentation by Adaptive Thresholding*. Technion – Israel Institute of Technology, The Faculty for Computer Sciences. 2004.

25. Mahboob H. Chowdury and Warren D. Little. Image Thresholding Techniques. *Communications, Computers, and Signal Processing, 1995. Proceedings., IEEE Pacific Rim Conference.*: IEEE, 1995. 585-589.

26. Milan Sonka, Vaclav Hlavac and Roger Boyle. *Image Processing Analysis and Machine Vision*. USA: PWS Publishing. 1999.

27. Haim Barad, Benny Eitan, Koby Gottlieb, Mickey Gutman, Nathaniel Hoffman, Oded Lempel, Alex Peleg and Uri Weser. Intel's Multimedia Architecture Extension. *Electrical and Electronics Engineers in Israel, 1996., Nineteenth Convention.*: IEEE, 1996. 148-151. 28. Oded Lempel, Alex Peleg and Uri Weser. Intel's MMX Technology-A New Instruction Set Extension. *Compcon '97. Proceedings*.: IEEE, 1997. 255-259.

29. Alex Peleg and Uri Weser. MMX Technology Extension to The Intel Architecture. *IEEE Micro*.: IEEE, 1996. 42-50.

30. Edward R. Dougherty and Philip A. Laplante. *Introduction to Real-Time Imaging*. New York: SPIE Optical Engineering Press & IEEE Press. 1995.

31. David Bistry and Carole Delong. *The Complete Guide to MMX Technology*. New York: Intel Corporation, McGraw Hill, Inc. 1997.

32. Ravi Bhargava, Lizy K. John, Brian L. Evans and Ramesh Radhakrishnan.Evaluating MMX Technology Using DSP and Multimedia Applications. *IEEE*, 1998.1-10.

33. G. Conte, S. Tommesani and F. Zanichell. The Long and Winding Road to High Performance Image Processing with MMX/SSE. *Computer Architectures for Machine Perception, 2000. Proceedings.*: IEEE, 2000. 302-310.

34. Jeff Prosise. *Programming Windows with MFC*. Redmond, Washington: Microsoft Press. 1999.

35. Gail Marshall. *Choosing A Frame Grabber for Performance & Profitability*. USA: Imagenation Corporation. 1997.