A NUMERICAL ANALYSIS OF FIXED OFFSHORE STRUCTURE SUBJECTED TO ENVIRONMENTAL LOADING IN MALAYSIAN WATER

TAN CHUN CHAI

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

DECEMBER 2005

ACKNOWLEDGEMENT

While the motivation and hard work in pursuing a master degree must come from within, interactions with others have stimulated and sustained me both professionally and personally during my research career. I want to acknowledge many people whose professional help and personal support has made it possible for me to complete this research work. I wish to express my sincere appreciation to my thesis supervisor, Associate Professor Dr. Iberahin Jusoh for his encouragement, guidance, critics and friendship.

My special thanks to Mr. Ahmad Jafri for his assistant and guidance on finite element of tubular joint. Appreciation is extended to my sponsor, Ministry of Science, Technology and Innovation for providing scholarship to my study. My fellow postgraduate students should also be recognised for their support especially Miss Doris Chin Chong Leng. I would like to express my gratefulness to my family for their continuous love and support throughout my life.

ABSTRACT

This research focused on the response of the jacket structure to environmental loading. The jacket was modelled as a space frame using ANSYS finite element package. Meanwhile, the estimation of extreme value of environmental parameters based on data on Malaysia waters was carried out using MINITAB. Response of the structure under environmental loading was performed using static analysis. Interaction ratios of the members are computed based on API RP2A–WSD (1993) using MATLAB. The sensitivity of the jacket structure to variation in design parameters was investigated. From global stress analysis, one of the structure's member on a complex multiplanar leg joint, appeared to have a high utilisation of stress when assessed using API RP2A-WSD (1993). Therefore, a nonlinear finite element analysis of the multiplanar joint has been carried out to determine both the absolute load capacity of the joint, the effect of the out-of-plane loads and braces and relate these back to the strength of the critical brace acting as a Y joint. This study presents the analytical methods and results together with a calibration of the analysis against test data for Y joints. A systematic study of stresses in tubular Y joints has also been conducted using finite element analysis which covers axial loading, in-plane bending and out-of-plane bending. For each mode of loading, and for both chord and brace sides of the intersection, stress concentration factors and its distributions are calculated for selected locations. The validity of this approach is demonstrated by comparing the finite element results with the predictions of other previously published parametric equations.

ABSTRAK

Penyelidikan ini bertumpu kepada tindak balas struktur luar pantai terhadap beban persekitaran. Permodelan struktur luar pantai yang terdiri daripada kerangka dilakukan dengan menggunakan kaedah unsur terhingga ANSYS. Selain itu, anggaran nilai parameter persekitaran yang ekstrim berdasarkan data di perairan Malaysia dilakukan dengan menggunakan MINITAB. Tindak balas struktur luar pantai terhadap beban persekitaran dianalisis secara statik. Nisbah beban terhadap kapasiti elemen dikira berdasarkan API RP2A-WSD (1993) dengan MATLAB. Kepekaan struktur luar pantai terhadap parameter yang digunakan dalam rekabentuk dikaji. Daripada analisis tegasan, salah satu elemen yang terdapat pada sambungan kaki struktur didapati mempunyai nilai nisbah penggunaan tegasan yang tinggi apabila disemak dengan API RP2A–WSD (1993). Oleh itu, analisis kaedah unsur terhingga tak linear sambungan multiplanar dijalankan untuk menentukan kedua-dua nilai mutlak kapasiti beban pada sambungan, kesan beban dan cabang luar planar dan mengaitkan semula kepada kekuatan elemen kritikal yang berfungsi sebagai sambungan Y. Kajian ini mempersembahkan kaedah analitikal dan output bersama dengan kalibrasi yang dilakukan terhadap data ujikaji sambungan Y. Kajian tegasan vang sistematik juga dilakukan ke atas sambungan Y dengan menggunakan analisis kaedah unsur terhingga yang meliputi beban paksi, momen dalam planar dan momen luar planar. Bagi setiap jenis beban, dan untuk kedua–dua belah pertemuan sambungan, faktor penumpuan tegasan dikira untuk lokasi yang tertentu. Kesahan metodologi ini dipersembahkan dengan membuat perbandingan di antara output daripada analisis kaedah unsur terhingga dengan persamaan parametrik yang diterbitkan oleh penyelidik lain.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
ABSTRAK	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xii
LIST OF FIGURES	xv
LIST OF SYMBOLS	xxi
LIST OF APPENDICES	xxv

1 INTRODUCTION 1

1.1	Research Significance	1
1.2	Research Objectives	2
1.3	Outline of Thesis	3

2 LITERATURE REVIEW PART I: ENVIRONMENTAL LOADING ON FIXED OFFSHORE STRUCTURES

2.1	Introd	troduction		
2.2	Historical Development of Oil and Gas in			
	Malay	sia		7
2.3	Histor	ical Deve	elopment of Offshore	
	Struct	ures		8
2.4	Classification of Offshore Structures			9
	2.4.1	Fixed S	tructures	10
	2.4.2	Mobile	Structures	11
	2.4.3	Complia	ant Structures	12
2.5	Туре	of Loadin	g on Offshore Structures	13
2.6	Environmental Loading			14
	2.6.1	Design	Environmental Conditions	16
		2.6.1.1	Oceanographic Conditions	17
		2.6.1.2	Wind Conditions	18
		2.6.1.3	Estimation of Extreme Values	19
	2.6.2	Evaluat	ion of Water Particle Motion	26
		2.6.2.1	Wave Theories	27
		2.6.2.2	Wave-Current Interaction	38
	2.6.3	Evaluat	ion of External Loads	41
		2.6.3.1	Wave Force	41
		2.6.3.2	Transverse Force	44
		2.6.3.3	Wind Force	46
2.7	Summ	nary		48

6

3 LITERATURE PART II: TUBULAR JOINTS **68**

3.1	Introduction	68
3.2	Brief History of Tubular Joints	69
3.3	Classification of Tubular Joints	70

3.4	Joint Types		
3.5	Behav		
	Loads		72
3.6	Stress	Analysis of Tubular Joints	75
	3.6.1	Thin–Shell Finite Elements	76
	3.6.2	Three–Dimensional Isoparametric	
		Finite Elements	78
	3.6.3	Nonlinear Analysis	79
3.7	Behav	viour of Tubular Joint under Static Loads	80
3.8	Fatigue Performance of Tubular Joints		
	3.8.1	Stress Concentration Factor Equations	83
	3.8.2	S–N Curves	91
	3.8.3	Palmgren–Miner Cumulative Damage	
		Rule	92
3.9	Summary		

4	STRUCTURAL MODEL AND
	ENVIRONMENTAL CONDITIONS AT
	SOTONG FIELD

4.1	Introd	Introduction			
4.2	Model	t Structure	101		
	4.2.1	Descript	tion of the Structure	102	
	4.2.2	Element	of Jacket Structure	103	
4.3	Enviro	onmental	Conditions at Sotong Field	105	
	4.3.1	Estimati	on of Extreme Wave and		
		Associa	ted Period	105	
		4.3.1.1	Basic Data	106	
		4.3.1.2	Statistical Analysis of		
			Extreme Significant Wave		
			Height	106	
		4.3.1.3	Maximum Individual Wave		
			Height and Associated Period	108	

101

	4.3.2	Wind Loads	110
	4.3.3	Current and Its Profile	112
4.4	Conclu	uding Remarks	112

5 STRUCTURAL ANALYSIS

5.1	Intro	oduction	122
5.2	Ana	lysis Procedure	122
5.3	Rest	ilts of Structural Analysis	123
4	5.3.1	In–Place Analysis	124
4	5.3.2	Base Case Analysis	125
4	5.3.3	Extreme Case Analysis	127
5.4	Con	cluding Remarks	128

6 SENSITIVITY STUDY IN STRUCTURAL RESPONSE

122

Introd	Introduction				
Base I	Base Design Criteria				
Select	ion of Par	rameters	157		
6.3.1	Wave T	heory	158		
6.3.2	Force C	oefficients	159		
	6.3.2.1	Drag Coefficient	159		
	6.3.2.2 Inertia Coefficient				
6.3.3	Environ	161			
	6.3.3.1	Wave	161		
	6.3.3.2	Current and Its Profile	162		
	6.3.3.3	163			
	6.3.3.4	Wind	163		
Result	Result of Sensitivity Studies				
6.4.1	1 Wave Theory Sensitivity				
6.4.2	5.4.2 Wave Force Coefficients Sensitivity				
	Introd Base I Select 6.3.1 6.3.2 6.3.3 Result 6.4.1 6.4.2	Introduction Base Design Cr Selection of Par 6.3.1 Wave T 6.3.2 Force C 6.3.2.1 6.3.2.1 6.3.2 Environ 6.3.3 Environ 6.3.3.1 6.3.3.2 6.3.3.3 6.3.3.4 Result of Sensiti 6.4.1 Wave F 6.4.2	IntroductionBase Design CriteriaSelection of Parameters6.3.1Wave Theory6.3.2Force Coefficients6.3.2.1Drag Coefficient6.3.2.2Inertia Coefficient6.3.3Environmental Parameters6.3.3.1Wave6.3.3.2Current and Its Profile6.3.3.3Wave-Current Interaction6.3.4WindResult of Sensitivity Studies6.4.1Wave Theory Sensitivity6.4.2Wave Force Coefficients Sensitivity		

	6.4.3	Wave Height Sensitivity	165
	6.4.4	Wave Period Sensitivity	166
	6.4.5	Current Velocity Sensitivity	166
	6.4.6	Wave-Current Interaction Sensitivity	167
	6.4.7	Wind Load Sensitivity	167
6.5	Concl	167	

7 ULTIMATE STRENGTH ASSESSMENT OF A MULTIPLANAR JOINT

7.1	Introd	luction	179
7.2	Joint (Configuration, Loading and Strength	
	Defin	itions	180
7.3	Scope	of the Analytical Investigation	180
7.4	Finite	Element Model of Multiplanar Joint	181
7.5	Analy	rsis of Results	184
	7.5.1	Complete Joint-All Braces Loaded	185
	7.5.2	Complete Joint-Only Brace 251 Loaded	186
	7.5.3	Y Joint-Brace 251 Subjected to All	
		Six Load Components	187
	7.5.4	Y Joint-Brace 251 Subjected to	
		Axial Load Only	187
7.6	Comp	arison of Results	188
7.7	Concl	uding Remarks	189

8 STRESS CONCENTRATION FACTORS FOR Y JOINT

8.1	Introduction	202
8.2	Joint Configuration	203
8.3	Finite Element Model of Y Joint	203
8.4	Results of Stress Analysis	205

8.5	Comparison of Results	207
8.6	Concluding Remarks	209

9 DISCUSSIONS

219

9.1	Introduction	219
9.2	Environment Modelling	219
9.3	Structural Analysis	221
9.4	Sensitivity of Jacket Structure	222
9.5	Strength Assessment of a Multiplanar Joint	223
9.6	Stress Concentration Factors for Y Joint	224

10CONCLUSIONS AND SUGGESTIONS FORFUTURE RESEARCH226

10.1	Introduction	226
10.2	Conclusions	226
10.3	Suggestions for Future Research	228

REFERENCES	230
APPENDIX A – Structural Model	238
APPENDIX B – Structural Configuration	247

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Existing platforms water depth distribution	49
2.2	Planned platforms water depth distribution	49
2.3	Selected probability distributions	50
2.4	Results of linear wave theory	51
2.5	Shallow and deep water approximation to	
	linear wave theory	52
2.6	Results of Stokes fifth-order wave theory	53
2.7	The coefficients for Stokes fifth-order	
	wave theory	54
2.8	Values of hydrodynamic coefficient for	
	circular cylinders	55
3.1	Basic dimensions for simple joint	94
3.2	Non-dimensional geometric parameter for	
	tubular joint	94
4.1	Data on significant wave height at the Sotong	
	field for the years 1941–1990	113
4.2	Comparison of goodness of fit test for various	
	distributions (significant wave height)	113
4.3	Data on wind speed at the Sotong field for the	
	years 1941–1990	114
4.4	Comparison of goodness of fit test for various	
	distributions (wind speed)	114

4.5	Design specification applied for the base case	
	and extreme case model	115
5.1	Base shear and overturning moment for	
	in-place analysis	129
5.2	Base shear and overturning moment for base	
	case analysis	129
5.3	Selected structural elements for ultimate strength	
	analysis	129
5.4	Stress utilisation ratio for selected element at	
	node I and node J (base case)	130
5.5	Base shear and overturning moment for extreme	
	case analysis	131
5.6	Stress utilisation ratio for selected element at	
	node I and node J (extreme case)	132
6.1	Base design criteria	169
6.2(a)	Static strength sensitivity studies (base case)	170
6.2(b)	Static strength sensitivity studies (extreme case)	171
6.3	Normalised maximum base shear	172
6.4	Normalised maximum overturning moment	173
7.1	Geometry of the multiplanar joint	190
7.2	Loads in member local axis system extracted	
	from global analysis of jacket structure	190
7.3	Ratio of ultimate axial load to ultimate load	
	capacity of analysis 4	191
8.1	Stress concentration factors values at crowns,	
	saddle and hot-spot on brace and chord	210
8.2	Comparison between results of meshes to	
	show extent of convergence	210
8.3	Comparison of predicted stress concentration	
	factors for axial loading	211
8.4	Comparison of predicted stress concentration	
	factors for in-plane bending	211
8.5	Comparison of predicted stress concentration	
	factors for out-of-plane bending	212

9.1	Comparison of typical design wave parameter	
	for Malaysia's water (100-year return period)	220

LIST OF FIGURES

TITLE

PAGE

2.1	Jacket platform	56
2.2	Gravity platform	57
2.3	Typical jack–up rig	58
2.4	Typical semi-submersible vessel	59
2.5	Guyed tower	60
2.6	Tension leg platform (TLP)	61
2.7	Articulated tower	62
2.8	Definition sketch for a progressive wave train	62
2.9	Range of wave theories giving the best fit to	
	the dynamic free surface boundary condition	63
2.10	Ranges of suitability for various wave theories	
	as suggested by Le Mehaute	63
2.11	Various methods of combining a current profile	
	with the variation in instantaneous water depth	
	due to wave action	64
2.12	Classification of wave force calculation methods	65
2.13	Definition sketch for wave forces on cylinder	65
2.14	$C_{\rm D}$ versus KC number for various values of Re	
	and frequency parameter ($\beta = \text{Re}/\text{KC}$)	66
2.15	C_{M} versus KC number for various values of Re	
	and frequency parameter ($\beta = \text{Re}/\text{KC}$)	66
2.16	Flow patterns at various values of KC	67

3.1	Typical tubular joints	95
3.2	Stiffened joint	96
3.3	Typical jacket framing configurations	97
3.4	Notation for joint configurations	97
3.5	Weld defects	98
3.6	Punching shear concept	98
3.7	Finite element mesh and stress contours for a	
	K joint	99
3.8	Reserve strength of a tubular connection	99
3.9	Empirical design curve for punching shear	100
3.10	Fatigue S–N curve	100
4.1	Structural model	116
4.2	PIPE 59 immersed pipe	116
4.3	PIPE 59 velocity profile for wave-current	
	interaction	117
4.4	Element load vector effects	117
4.5	Extreme Value distribution for significant	
	wave height	118
4.6	Log-Normal distribution for significant	
	wave height	118
4.7	Weibull 2–Parameter distribution for	
	significant wave height	119
4.8	Extreme Value distribution for wind speed	119
4.9	Log-Normal distribution for wind speed	120
4.10	Weibull 2-Parameter distribution for wind	
	speed	120
4.11	Current velocity profile	121
5.1	Environmental load on offshore structure	133
5.2	Global coordinate system of the structure	133
5.3	Stress utilisation ratio for in-place analysis	
	(nodes I and J)	134
5.4	Variation of base shear and overturning moment	
	with wave phase angle for base case	135

5.5(a)	Stress utilisation ratio at nodes I and J for base	
	case (wave phase angle: 0, 360)	136
5.5(b)	Stress utilisation ratio at nodes I and J for base	
	case (wave phase angle: 45)	137
5.5(c)	Stress utilisation ratio at nodes I and J for base	
	case (wave phase angle: 90)	138
5.5(d)	Stress utilisation ratio at nodes I and J for base	
	case (wave phase angle: 135)	139
5.5(e)	Stress utilisation ratio at nodes I and J for base	
	case (wave phase angle: 180)	140
5.5(f)	Stress utilisation ratio at nodes I and J for base	
	case (wave phase angle: 225)	141
5.5(g)	Stress utilisation ratio at nodes I and J for base	
	case (wave phase angle: 270)	142
5.5(h)	Stress utilisation ratio at nodes I and J for base	
	case (wave phase angle: 315)	143
5.6	Variation of stress utilisation ratio at nodes I	
	and J for selected elements with wave phase	
	angle (base case)	144
5.7	Variation of base shear and overturning moment	
	with wave phase angle for extreme case	145
5.8(a)	Stress utilisation ratio at nodes I and J for	
	extreme case (wave phase angle: 0, 360)	146
5.8(b)	Stress utilisation ratio at nodes I and J for	
	extreme case (wave phase angle: 45)	147
5.8(c)	Stress utilisation ratio at nodes I and J for	
	extreme case (wave phase angle: 90)	148
5.8(d)	Stress utilisation ratio at nodes I and J for	
	extreme case (wave phase angle: 135)	149
5.8(e)	Stress utilisation ratio at nodes I and J for	
	extreme case (wave phase angle: 180)	150
5.8(f)	Stress utilisation ratio at nodes I and J for	
	extreme case (wave phase angle: 225)	151

5.8(g)	Stress utilisation ratio at nodes I and J for	
	extreme case (wave phase angle: 270)	152
5.8(h)	Stress utilisation ratio at nodes I and J for	
	extreme case (wave phase angle: 315)	153
5.9	Variation of stress utilisation ratio at nodes I	
	and J for selected elements with wave phase	
	angle (extreme case)	154
5.10	Percentage difference in stress utilisation ratio	
	at nodes I and J for extreme case compared to	
	the base case (wave phase angle: 45)	155
6.1	Variation of base shear and overturning moment	
	with wave height for base case and extreme case	174
6.2	Variation of base shear and overturning moment	
	with wave period for base case and extreme case	175
6.3	Variation of base shear and overturning moment	
	with depth average current for base case and	
	extreme case	176
6.4	Base shear and overturning moment sensitivity	
	for base case	177
6.5	Base shear and overturning moment sensitivity	
	for extreme case	178
7.1	Configuration of a typical multiplanar joint on	
	jacket structure	192
7.2	General loading of structural element	193
7.3	Finite element mesh of multiplanar joint	193
7.4	Finite element model of multiplanar joint	194
7.5	Stress/strain relationship	194
7.6	Nodes at intersection of chord and brace 251	195
7.7	Location of elements on chord and brace 251	195
7.8	Elements on chord (only brace 251 shown)	196
7.9	Elements on chord (only brace 251 shown)	196
7.10(a)	Development of stresses around chord (joint	
	with all braces loaded)	197

7.10(b)	Deformation of chord below brace 251 (joint	
	with all braces loaded)	197
7.11(a)	Development of stresses around chord (joint	
	with only brace 251 loaded)	198
7.11(b)	Deformation of chord below brace 251 (joint	
	with only brace 251 loaded)	198
7.12(a)	Displacement at node 5478 (Y joint with brace	
	251 subjected to all load components)	199
7.12(b)	Deformation of chord below brace 251 (Y joint	
	with brace 251 subjected to all load components)	199
7.13(a)	Displacement at node 5478 (Y joint with brace	
	subjected to axial load)	200
7.13(b)	Deformation of chord below brace 251 (Y joint	
	with brace subjected to axial load)	200
7.14	Comparison of Y joint finite element (FE) result	
	with test database	201
8.1	Subdivision of the tubular joint into a number of	
	regions suitable for mesh generation	213
8.2	Typical example of finite element mesh used to	
	model tubular joint	213
8.3	Details of modes of loading used for finite	
	element joint analyses	213
8.4	Comparison of SCFs distribution between chord	
	and brace under axial loading	214
8.5	Comparison of SCFs distribution between chord	
	and brace under in-plane bending	214
8.6	Comparison of SCFs distribution between chord	
	and brace under out-of-plane bending	215
8.7	Comparison of SCFs distribution between UCL	
	equations and FE data for axial loading (chord)	215
8.8	Comparison of SCFs distribution between UCL	
	equations and FE data for axial loading (brace)	216

8.9	Comparison of SCFs distribution between UCL		
	equations and FE data for in-plane bending		
	(chord)	216	
8.10	Comparison of SCFs distribution between UCL		
	equations and FE data for in-plane bending		
	(brace)	217	
8.11	Comparison of SCFs distribution between UCL		
	equations and FE data for out-of-plane bending		
	(chord)	217	
8.12	Comparison of SCFs distribution between UCL		
	equations and FE data for out-of-plane bending		
	(brace)	218	

LIST OF SYMBOLS

a _n	_	Normal particle acceleration vector
AM	_	Annual maxima
BS	_	Base shear
c	-	Wave celerity
C _b	_	Buoyancy coefficient
C _D	_	Drag coefficient
C _L	_	Lift coefficient
C _M	_	Inertia coefficient
Cw	_	Wind drag coefficient
C_{WL}	_	Wind drag coefficient for long member
C _{ws}	_	Wind drag coefficient for short member
d	_	Water depth
D	_	Diameter
D D _B	_	Diameter Brace outer diameter
D D _B D _C	- - -	Diameter Brace outer diameter Chord outer diameter
D D _B D _C D _e	- - -	Diameter Brace outer diameter Chord outer diameter Outside diameter of the pipe with insulation
D D _B D _C D _e D _{PM}	- - -	Diameter Brace outer diameter Chord outer diameter Outside diameter of the pipe with insulation Cumulative damage ratio
D D _B D _C D _e D _{PM} E	- - - -	Diameter Brace outer diameter Chord outer diameter Outside diameter of the pipe with insulation Cumulative damage ratio Young's modulus of steel
D D_{B} D_{C} D_{e} D_{PM} E \overline{E}	- - - -	Diameter Brace outer diameter Chord outer diameter Outside diameter of the pipe with insulation Cumulative damage ratio Young's modulus of steel Mean square
D D_{B} D_{C} D_{e} D_{PM} E \overline{E} \overline{E} E_{p}	 	Diameter Brace outer diameter Chord outer diameter Outside diameter of the pipe with insulation Cumulative damage ratio Young's modulus of steel Mean square Encounter probability
D D_{B} D_{C} D_{e} D_{PM} E \overline{E} E_{p} EDF		Diameter Diameter Brace outer diameter Chord outer diameter Outside diameter of the pipe with insulation Cumulative damage ratio Young's modulus of steel Mean square Encounter probability Empirical distribution function

\mathbf{f}_{b}	_	Nominal bending stress
\mathbf{f}_{D}	_	Drag force
\mathbf{f}_{I}	_	Inertia force
\mathbf{f}_{L}	_	Lift force
\mathbf{f}_{s}	_	Frequency of vortex
F	_	Forces
FE	_	Finite element
FT–I	_	Fisher-Tippett Type I
FT–II	_	Fisher-Tippett Type II
FT–III	_	Fisher-Tippett Type III
F(x)	_	Cumulative probability distribution
F _b	_	Allowable bending stress
F_w	_	Wind force
F_y	_	Yield stress
g	_	Gravity
G	_	Gust factor
Н	_	Wave height
H _s	_	Significant wave height
H _{max}	_	Maximum individual wave height
Ι	_	Turbulence intensity
IPB	_	In-plane bending
ID	_	Initial distribution
k	_	Wave number
KC	_	Keulegan–Carpenter number
L	_	Wave length
L _c	_	Chord length
L_{f}	_	Design lifetime of a structure
L _M	_	Member length
М	_	Moments
OPB	_	Out-of-plane bending
OTM	_	Overturning moment

РОТ	_	Peak over threshold
P(X)	_	Probability of non-exceedance
P(X < x)	-	Probability that a randomly chosen observation X will
		be below x
Q	_	Bernoulli constant
Q(X)	_	Probability of exceedance
Re	_	Reynolds number
S	_	Strouhal number
S _s	_	Wave steepness
\mathbf{S}_{W}	-	Frontal area (facing the wind)
SCFs	_	Stress concentration factors
SWL	_	Still water level
t	_	Time
Т	-	Wave period
T _R	-	Return period
T _z	-	Mean zero-crossing period associated with the extreme
		storm
T _{ass}	_	Period associated with the design wave
u	_	Horizontal water particle velocity
u _n	_	Normal relative particle velocity
u _t	-	Tangential relative particle velocity
U	_	Steady velocity
U _c	_	Current velocity
U _G	_	Gust wind
U_{W}	_	Wind speed
V_p	_	Punching shear stress
W	_	Vertical water particle velocity
WT_B	_	Brace wall thickness
WT _c	_	Chord wall thickness
Ζ	_	Statistical constant
		Patia of abord langth to abord radius

β	_	Frequency parameter
δ	_	Ratio of the brace diameter to chord diameter
ε	_	Perturbation parameter
ϕ	_	Velocity potential
φ	_	Angle between brace and chord
γ	_	Ratio of chord radius to the chord wall thickness
η	_	Free surface elevation
π	_	Pi
θ	-	Wave phase angle
θ	-	Angle around the intersection of joint
ρ	_	Density of steel
$ ho_{a}$	_	Air density
$ ho_{ m w}$	_	Water density
σ	_	Standard deviation
τ	-	Ratio of the wall thickness of the brace to that of the
		chord
ω	_	Angular frequency
ω_{a}	_	Apparent angular frequency
$\omega_{\rm r}$	_	Relative angular frequency
ψ	_	Stream function

LIST OF APPENDICES

APPEND	DIX TITLE	PAGE
А	Structural Model	238
В	Structural Configuration	247

CHAPTER 1

INTRODUCTION

1.1 Research Significance

The demand for exploration and production of oil and gas has grown worldwide during the past few decades in spite of its periodic down turns. As a consequence of this general search to explore and exploit offshore energy resources, new innovations and developments have taken place in structural form, equipment technology, inspection, repair methodologies and economic field utilisation. Oil and gas will continue as the most important source of energy remainder of this century and well into the next century.

With reference to offshore production facilities, any structures employed must perform satisfactorily under service conditions while safely enduring extreme environmental events. Environmental loads such as wind, wave, tide, current and marine fouling are well known to be major contributor to the loading experienced by any offshore structures. In addition, ice and earthquake are important in some geographical location. Being of random in nature, the environmental loads chosen as design loads must not less than the most probable severest load in a time period of 100 years. The ability to predict accurately the extreme environmental loading remains an important factor in the continued safe and economic exploitation of the hydrocarbon reserves.

Secondly, the sensitivity of the structural response due to the changes in design parameters is still not well understood. The effect of variations in the design parameters is dependent on both the range of values considered and sensitivity of structural design to such variations. In this study, analyses are carried out to investigate the sensitivity of the structure response to the variations in design parameters.

One of the features of fixed offshore structures is the problem of tubular joint design. A global stress analysis of the overall structure resolves applied gravity loads and environmental loads into nominal axial and bending stresses in the various members. If local scale stress analysis is performed on tubular connection, the hot–spot stresses near the welded intersection are found several times higher than nominal, often exceeding yield and may cause it to collapse. The local analysis may involve rigorous shell theory, finite element analysis or experimental stress analysis. In this study, finite element analysis has been used to investigate local stress and ultimate static strength of tubular joint.

1.2 Research Objectives

The main objectives of the research presented in this thesis are:

 To develop an environmental loading model for typical jacket structure in Malaysia's water.

- b) To study the effects of variations in design parameters on the jacket structure.
- c) To determine the load capacity of a multiplanar joint.
- d) To perform stress analysis on Y joint.

1.3 Outline of Thesis

This thesis consists of nine chapters begin with the introductory chapter. The literature reviews are divided into two chapters, which is Chapter Two and Chapter Three. The division of the literature review is essential to give the readers a better understanding of the research topic as both chapters discuss two different topics in depth.

Chapter Two describes in detail the methods which are available to translate a definition of environmental conditions into the resultant steady and time dependent forces on the structure. This chapter is concerned with describing and developing methods of calculating these forces for fixed offshore structures.

Chapter Three discusses the behaviour of tubular joints under operating loads and static loads. The punching shear is used as a viewpoint from which to examine various approaches to stress analysis of tubular joints, such as thin–shell finite elements and three dimensional isoparametric finite elements.

Chapter Four describes the structural model of a typical four legged jacket structure and the modelling of the environmental parameters where the structure is

situated. The statistical analysis of extreme is used to estimate extreme environmental loading experienced by the structure.

Chapter Five studies the response of the jacket structure under extreme environmental loading conditions. Analysis procedures are discussed and the selections of critical member for further analysis are also discussed. Results from the structural simulation studies in term of base shear and overturning moment, and the utilisation ratio of structural members are presented.

Chapter Six investigates the sensitivity of jacket structure to uncertainties in parameters used in design. The parameters which considered in this study are wave theory, force coefficients, wave height and period, current and its profile, wave– current interaction and wind. The design parameters were varied one at a time, within appropriate ranges, and the effects of parameters which were considered to be the measures of static strength was calculated.

In Chapter Seven, a series of nonlinear finite element analysis was carried out to determine both the absolute load capacity of the joint, the effect of the out–of– plane loads and braces and relate these back to the strength of the critical brace acting as Y joint. This study presents the analytical methods and results together with a calibration of the analysis against test data for Y joints.

Chapter Eight describes the modelling of Y joint using finite element and is subjected to simple loadings of the axial, in–plane bending and out–of–plane bending types, applied separately to the joints. The stress concentration factors and its distributions obtained from the analyses were compared with the predictions of other previously published parametric equations. Chapter Nine presents the overall discussion on the research works which emphasises on the environmental modelling, structural analysis, sensitivity of jacket structure, strength assessment of a multiplanar joint and stress concentration factor for Y joint.

The thesis is concluded in Chapter Ten, which comprises of the summary of the works and recommendations for further research.

REFERENCES

- Allender, J.H. and Petrauskas, C. (1987). Measured and Predicted Wave Plus Current Loading on a Laboratory–Scale, Space Frame Structure. *Proceedings of the 19th Annual Offshore Technology Conference*. April 27–30. Houston: OTC, 143–151.
- American Petroleum Institute (1993). Recommended Practice for Planning,
 Designing and Constructing Fixed Offshore Platforms-Working Stress Design.
 20th ed. Washington: API.
- American Welding Society D1.1–86 (1986). *Structural Welding Code*. 10th ed. Miami: AWS.
- Arief, S. and Wells, R. (1985). *Report on the Malaysian Petroleum Industry*. Australia: Rosecons.
- Atkins Oil and Gas Engineering Ltd. (1988). Sensitivity of Shallow Water Jacket Structures to Uncertainties in Environmental Loading. London: HMSO.
- Barltrop, N. P. D., Mitchell, G. M. and Attkins, J. B. (1990). Fluid Loading on Fixed Offshore Structures. London: Department of Energy.
- Bea, R.G. and Lai, N.W. (1978). Hydrodynamic Loadings on Offshore Structures. Proceedings of the 10th Annual Offshore Technology Conference. May 8–11. Houston: OTC, 155–168.
- Borgman, L.E. (1963). Risk Criteria. *Journal of Waterways and Harbors Division*. 89(WW3): 1–35.

- Carter, D. J. T. and Challenor, P. G. (1983). Methods of Fitting the Fisher–Tippett Type 1 Extreme Value Distribution. *Ocean Engineering*. 10(3): 191–199.
- Chakrabarti S.K. (1987). *Hydrodynamics of Offshore Structures*. Boston: Computational Mechanics Publications.
- Chakrabarti, S. K. (1990). *Nonlinear Methods in Offshore Engineering*. New York: Elsevier.
- Dalrymple, R. A. (1974). Models for Nonlinear Water Waves on Shear Currents.
 Proceedings of the 6th Annual Offshore Technology Conference. May 6–8.
 Houston: OTC, 843–856.
- Dawson, T. H. (1983). *Offshore Structural Engineering*. Englewood Cliffs: Prentice Hall.
- Dean, R.G. (1965). Stream Function Representation of Nonlinear Ocean Waves. *Journal of Geophysical Research*. 70(18): 4561–4572.
- Dean, R. G. (1970). Relative Validities of Water Wave Theories. Journal of Waterways, Harbors and Coastal Engineering Division. 96(WWI): 105–119.
- Driver, D. B., Borgman, L. E. and Bole, J. B. (1994). Typhoon Wind, Wave and Current Directionality in the South China Sea. *Proceedings of the 26th Annual Offshore Technology Conference*. May 2–5. Houston: OTC, 359–365.
- Dutta, D. (1996). Parameters Influencing the Stress Concentration Factors in Joints in Offshore Structure. In: Dover, W. D. and Madhava Rao, A. G. eds. *Fatigue in Offshore Structures (Volume 1)*. Rotterdam: A. A. Balkema. 77–128.
- Efthymiou, M. and Durkin, S. (1985). Stress Concentrations in T/Y and Gap/Overlap K–Joints. *Proceedings of the 4th Conference on Behaviour of Offshore Structures*. July 1–5. Delft: BOSS, 429–440.

- Efthymiou, M. and Graham, C.G. (1990). Environmental Loading on Fixed Offshore Platforms. *Environmental Forces on Offshore Structures and their Prediction*. November 28–29. Netherlands: SUT, 293–320.
- Gaythwaite, J. (1981). *The Marine Environment and Structural Design*. New York: Van Nostrand Reinhold Company.
- Graff, W. J. (1981). Introduction to Offshore Structures: Design, Fabrication and Installation. Houston: Gulf Publishing Company.
- Gringorten, I. (1963). A Plotting Rule for Extreme Probability Paper. Journal of Geophysical Research. 68(3): 813–814.
- Gudmestad, O. T. and Karunakaran, D. (1990). Wave Current Interaction.
 Environmental Forces on Offshore Structures and Their Prediction. November 28–29. Netherlands: SUT, 81–110.
- Guedes Soares, C. and Henriques, A. C. (1996). Statistical Uncertainty in Long– Term Distributions of Significant Wave Height. *Journal of Offshore Mechanics and Artic Engineering*. 118: 284–291.
- Guedes Soares, C. and Scotto, M. (2001). Modelling Uncertainty in Long–Term Predictions of Significant Wave Height. *Ocean Engineering*. 28: 329–342.
- Gumbel, E.J. (1958). Statistics of Extremes. New York: Columbia University Press.
- Haring, R. E. and Heideman, J. C. (1980). Gulf of Mexico Rare Wave Return Periods. *Journal of Petroleum Technology*. 32(1): 35–47.
- Healy, B. E. and Buitrago, J. (1994). Extrapolation Procedures for Determining SCFs in Mid–Surface Tubular Joint Models. In: Grundy, P., Holgate, A. and Wong, B. eds. *Tubular Structures (VI)*. Rotterdam: A. A. Balkema. 651–659.

- Hellier, A. K., Connolly, M. P. and Dover, W. D. (1990a). Stress Concentration Factors for Tubular Y– and T–Joints. *International Journal of Fatigue*. 12(1): 13–23.
- Hellier, A. K., Connolly, M. P., Kare, R.F. and Dover, W. D. (1990b). Prediction of the Stress Distribution in Tubular Y– and T–Joints. *International Journal of Fatigue*. 12(1): 25–33.
- Hogben, N. (1976). Wave Loads on Structures. Proceedings of the 1st International Conference on Behaviour of Offshore Structures. August 2–5. Norwegian: BOSS, 187–219.
- Irons, B. M. (1976). The Semiloof Shell Element. In: Ashwell, D. G. and Gallagher,R. H. eds. *Finite Elements for Thin Shells and Curved Members*. London: Wiley. 197–222.
- Isaacson, M. de St. Q. and Maull, D. J. (1976). Transverse Forces on Vertical Cylinders in Waves. *Journal of Waterways, Harbors and Coastal Engineering Division*. 102(WW1): 49–60.
- Knight, R. M. and Daniel, J. J. S. (1993). World Trends in Major Offshore Structures 1970–1999. Proceeding of the 3rd International Conference on Offshore 93: Installation of Major Offshore Structures and Equipments. February 17–18. London: IMarE/RINA, 17–23.
- Kohnke, P. (1992). ANSYS User's Manual for Revision 5.0, Volume IV: Theory.Houston: Swanson Analysis Systems, Inc.
- Lalani, M. (1992). Developments in Tubular Joints Technology for Offshore Structures. Proceedings of the 2nd International Offshore and Polar Engineering Conference. June 14–19. San Francisco: ISOPE, 260–274.
- Leick, R. D. and Potvin, A. B. (1977). Automated Mesh Generation for Tubular Joint Stress Analysis. *International Journal Computers and Structures*. 7(1): 73–91.

- Le Mehaute, B. (1976). *An Introduction to Hydrodynamics and Water Waves*. Dusseldorf: Springer–Verlag.
- Liaw, C. Y., Litton, R. W. and Reimer, R. B. (1976). Improved Finite Elements for Analysis of Welded Tubular Joints. *Proceedings of 8th Annual Offshore Technology Conference*. May 3–6. Houston: OTC, 267–282.
- Lloyd's Register of Shipping (1988). *Sensitivity of Fixed Offshore Platforms to Uncertainties in Design Parameters*. London: HMSO.
- Madhava Rao, A. G. and Raghava, G. (1996). An Overview of Offshore Structures.In: Dover, W. D. and Madhava Rao, A. G. eds. *Fatigue in Offshore Structures* (*Volume 1*). Rotterdam: A. A. Balkema. 1–20.
- Marshall, P. W. and Toprac, A. A. (1974). Basis for Tubular Joint Design. *Welding Journal*. 53(5): 192s–201s.
- Marshall, P. W. (1986). Tubular Joint Design. In: McClelland, B and Reifel, M. D. eds. *Planning and Design of Fixed Offshore Platforms*. New York: Van Nostrand Reinhold Company. 624–691.
- Morison, J. R., O'Brien, M. P., Johnson, J. W. and Schaaf, S. A. (1950). The Force Exerted by Surface Waves on Piles. *Petroleum Transactions*. 189: 149–157.
- Muga, B. J. and Wilson, J. F. (1970). *Dynamic Analysis of Ocean Structures*. New York: Plenum Press.
- Muir, L. R. and El–Shaarawi, A. H. (1986). On the Calculation of Extreme Wave Heights: A Review. *Ocean Engineering*. 13(1): 93–118.
- Pagrut, P. and Deo, M. C. (1992). Extreme Wave Height Estimates. Proceedings of the 2nd International Offshore and Polar Engineering Conference. June 14–19. San Francisco: ISOPE, 186–193.

- Patel, M. H. (1990). Offshore Structures. In: Morgan, N. ed. *Marine Technology Reference Book*. London: Butterworth.
- Peregrine, D. H. (1976). Interaction of Water Waves and Currents. *Advances in Applied Mechanics*. 16: 9–117.
- Petrauskas, C. and Aagaard, P. M. (1971). Extrapolation of Historical Storm Data for Estimating Design–Wave Heights. *Society of Petroleum Engineers Journal*. 11(1): 23–37.
- Potvin, A. B., Kuang, J. G., Leick, R. D. and Kahlick, J. L. (1977). Stress Concentration in Tubular Joints. *Journal of Petroleum Technology*. 29: 287–299.
- Puthli, R. S., van Foeken, R. J. and Romeijn, A. (1996). Guidelines on the Determination of Stress Concentration Factors of Circular and Rectangular Hollow Section Joints. In: Dover, W. D. and Madhava Rao, A. G. eds. *Fatigue in Offshore Structures (Volume 1)*. Rotterdam: A. A. Balkema. 129–154.
- Ramachandra Murthy, D. S. (1996). Static and Fatigue Strength of Steel Tubular Joints. In: Dover, W. D. and Madhava Rao, A. G. eds. *Fatigue in Offshore Structures (Volume 1)*. Rotterdam: A. A. Balkema. 311–333.
- Reeves, H. W. (1975). An Overview of the Offshore Platform Industry. New England Section: SNAME.
- Rodenbusch, G. and Kallstrom, C. (1986). Forces on a Large Cylinder in Random Two–Dimensional Flows. *Proceedings of 18th Annual Offshore Technology Conference*. May 5–8. Houston: OTC.
- Sarpkaya, T. (1976). In–Line and Transverse Forces on Cylinders in Oscillatory Flow at High Reynolds Numbers. *Proceedings of 8th Annual Offshore Technology Conference*. May 3–6. Houston: OTC, 95–108.

- Sarpkaya, T and Isaacson, M. (1981). *Mechanics of Wave Forces on Offshore Structures*. New York: Van Nostrand Reinhold.
- Sharma, J. N. and Grosskopf, W. G. (1994). Practical Considerations in Preparing Extreme Wind, Wave, and Current Criteria. *Proceedings of the 26th Annual Offshore Technology Conference*. May 2–5. Houston: OTC, 377–386.
- Skjelbreia, L. and Hendrickson, J. A. (1961). Fifth–Order Gravity Wave Theory. Proceedings of the 7th Conference on Coastal Engineering. Netherlands: ASCE, 184–196.
- Smedley, P. and Fisher, P. (1991). Stress Concentration Factors for Simple Tubular Joints. Proceeding of the 1st International Offshore and Polar Engineering Conference. August 11–16. Edinburgh: ISOPE, 475-483.
- Sterndorff, M. J., Velk, P. and Klinting, P. (1990). Coupled Experimental and Analytical Investigation of Hydrodynamic Forces on a Jacket in Waves. *Environmental Forces on Offshore Structures and Their Prediction*. November 28–29. Netherlands: SUT, 203–219.
- Swanson Analysis System (1992). ANSYS User's Manual for Revision 5.0, Volume III: Elements. Houston: Swanson Analysis Systems, Inc.
- Tucker, M. J. (1991). Waves in Ocean Engineering: Measurements, Analysis, Interpretation. Chichester: Ellis Horwood Ltd.
- Underwater Engineering Group (1985). *Design of Tubular Joints for Offshore Structures*. London: UEG Publication UR33.
- van Vledder, G. P. and Zitman, T. J. (1992). Design Waves: Statistics and Engineering Practice. *Proceedings of the 2nd International Offshore and Polar Engineering Conference*. June 14–19. San Francisco: ISOPE, 170–178.

- Visser, W. (1974). On the Structural Design of Tubular Joints. Proceedings of the 6th Annual Offshore Technology Conference. May 6–8. Houston: OTC, 881–894.
- Vugts, J. H. (1979). A Review of Hydrodynamic Loads on Offshore Structures and Their Formulation. Proceedings of the 2nd International Conference on Behaviour of Offshore Structures. August 28–31. London: BOSS, 693–708.
- Ward, J. K. and Billington, C. J. (1992). Strength Assessment of a Multiplanar Joint in a North Sea Jacket Structure. *Proceedings of the 2nd International Offshore* and Polar Engineering Conference. June 14–19. San Francisco: ISOPE, 369–376.
- Watt, B. J. (1978). Basic Structural Systems–A Review of Their Design and Analysis Requirements. In: Zienkiewicz, O. C., Lewis, R. W. and Stagg, K. G. eds. *Numerical Methods in Offshore Engineering*. Chichester: Wiley. 1–42.

Wiegel, R. L. (1964). Oceanographical Engineering. New Jersey: Prentice Hall.

- Wimpey Offshore (1989). *Background to New Static Strength Guidance for Tubular Joints in Steel Offshore Structures*. London: HMSO.
- Wordsworth, A. C. (1981). Stress Concentration Factors at K and KT Tubular Joints. Conference on Fatigue in Offshore Structural Steels. February 24–25. London: Thomas Telford Ltd, 59–66.
- Yao, G. Q., Ding, B. C., Wang, J. Y. and Ma, Z. X. (1993). Statistic Analysis of Wave Parameters for the China Sea. *Proceedings of the 3rd International Offshore and Polar Engineering Conference*. June 6–11. Singapore: ISOPE, 22– 26.
- Yura, J. A. and Zettlemoyer, N. (1980). Ultimate Capacity Equations for Tubular Joints. *Proceedings of the 12th Annual Offshore Technology Conference*. May 5– 8. Houston: OTC, 113–126.