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ABSTRACT 

 

 

 

 

This research focused on the response of the jacket structure to environmental 

loading.  The jacket was modelled as a space frame using ANSYS finite element 

package.  Meanwhile, the estimation of extreme value of environmental parameters 

based on data on Malaysia waters was carried out using MINITAB.  Response of the 

structure under environmental loading was performed using static analysis.  

Interaction ratios of the members are computed based on API RP2A–WSD (1993) 

using MATLAB.  The sensitivity of the jacket structure to variation in design 

parameters was investigated.  From global stress analysis, one of the structure’s 

member on a complex multiplanar leg joint, appeared to have a high utilisation of 

stress when assessed using API RP2A–WSD (1993).  Therefore, a nonlinear finite 

element analysis of the multiplanar joint has been carried out to determine both the 

absolute load capacity of the joint, the effect of the out–of–plane loads and braces 

and relate these back to the strength of the critical brace acting as a Y joint.  This 

study presents the analytical methods and results together with a calibration of the 

analysis against test data for Y joints.  A systematic study of stresses in tubular Y 

joints has also been conducted using finite element analysis which covers axial 

loading, in–plane bending and out–of–plane bending.  For each mode of loading, and 

for both chord and brace sides of the intersection, stress concentration factors and its 

distributions are calculated for selected locations.  The validity of this approach is 

demonstrated by comparing the finite element results with the predictions of other 

previously published parametric equations. 

 
 
 
 
 
 



 

 
 
 
 
 

ABSTRAK 

 

 

 

 

Penyelidikan ini bertumpu kepada tindak balas struktur luar pantai terhadap 

beban persekitaran.  Permodelan struktur luar pantai yang terdiri daripada kerangka 

dilakukan dengan menggunakan kaedah unsur terhingga ANSYS.  Selain itu, 

anggaran nilai parameter persekitaran yang ekstrim berdasarkan data di perairan 

Malaysia dilakukan dengan menggunakan MINITAB.  Tindak balas struktur luar 

pantai terhadap beban persekitaran dianalisis secara statik.  Nisbah beban terhadap 

kapasiti elemen dikira berdasarkan API RP2A–WSD (1993) dengan MATLAB.  

Kepekaan struktur luar pantai terhadap parameter yang digunakan dalam rekabentuk 

dikaji.  Daripada analisis tegasan, salah satu elemen yang terdapat pada sambungan 

kaki struktur didapati mempunyai nilai nisbah penggunaan tegasan yang tinggi 

apabila disemak dengan API RP2A–WSD (1993).  Oleh itu, analisis kaedah unsur 

terhingga tak linear sambungan multiplanar dijalankan untuk menentukan kedua–dua 

nilai mutlak kapasiti beban pada sambungan, kesan beban dan cabang luar planar dan 

mengaitkan semula kepada kekuatan elemen kritikal yang berfungsi sebagai 

sambungan Y.  Kajian ini mempersembahkan kaedah analitikal dan output bersama 

dengan kalibrasi yang dilakukan terhadap data ujikaji sambungan Y.  Kajian tegasan 

yang sistematik juga dilakukan ke atas sambungan Y dengan menggunakan analisis 

kaedah unsur terhingga yang meliputi beban paksi, momen dalam planar dan momen 

luar planar.  Bagi setiap jenis beban, dan untuk kedua–dua belah pertemuan 

sambungan, faktor penumpuan tegasan dikira untuk lokasi yang tertentu.  Kesahan 

metodologi ini dipersembahkan dengan membuat perbandingan di antara output 

daripada analisis kaedah unsur terhingga dengan persamaan parametrik yang 

diterbitkan oleh penyelidik lain. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Significance 

 

 

The demand for exploration and production of oil and gas has grown 

worldwide during the past few decades in spite of its periodic down turns.  As a 

consequence of this general search to explore and exploit offshore energy resources, 

new innovations and developments have taken place in structural form, equipment 

technology, inspection, repair methodologies and economic field utilisation.  Oil and 

gas will continue as the most important source of energy remainder of this century 

and well into the next century. 

 

 

With reference to offshore production facilities, any structures employed 

must perform satisfactorily under service conditions while safely enduring extreme 

environmental events.  Environmental loads such as wind, wave, tide, current and 

marine fouling are well known to be major contributor to the loading experienced by 

any offshore structures.  In addition, ice and earthquake are important in some 

geographical location.  Being of random in nature, the environmental loads chosen as 

design loads must not less than the most probable severest load in a time period of 

100 years.  The ability to predict accurately the extreme environmental loading 



 

remains an important factor in the continued safe and economic exploitation of the 

hydrocarbon reserves. 

 

 

Secondly, the sensitivity of the structural response due to the changes in 

design parameters is still not well understood.  The effect of variations in the design 

parameters is dependent on both the range of values considered and sensitivity of 

structural design to such variations.  In this study, analyses are carried out to 

investigate the sensitivity of the structure response to the variations in design 

parameters. 

 

 

One of the features of fixed offshore structures is the problem of tubular joint 

design.  A global stress analysis of the overall structure resolves applied gravity 

loads and environmental loads into nominal axial and bending stresses in the various 

members.  If local scale stress analysis is performed on tubular connection, the hot–

spot stresses near the welded intersection are found several times higher than 

nominal, often exceeding yield and may cause it to collapse.  The local analysis may 

involve rigorous shell theory, finite element analysis or experimental stress analysis.  

In this study, finite element analysis has been used to investigate local stress and 

ultimate static strength of tubular joint. 

 

 

 

 

1.2 Research Objectives 

 

 

The main objectives of the research presented in this thesis are: 

 

a) To develop an environmental loading model for typical jacket structure in 

Malaysia’s water. 



 

 

b) To study the effects of variations in design parameters on the jacket structure. 

 

c) To determine the load capacity of a multiplanar joint. 

 

d) To perform stress analysis on Y joint. 

 

 

 

 

1.3 Outline of Thesis 

 

 

This thesis consists of nine chapters begin with the introductory chapter.  The 

literature reviews are divided into two chapters, which is Chapter Two and Chapter 

Three.  The division of the literature review is essential to give the readers a better 

understanding of the research topic as both chapters discuss two different topics in 

depth. 

 

 

Chapter Two describes in detail the methods which are available to translate a 

definition of environmental conditions into the resultant steady and time dependent 

forces on the structure.  This chapter is concerned with describing and developing 

methods of calculating these forces for fixed offshore structures. 

 

 

Chapter Three discusses the behaviour of tubular joints under operating loads 

and static loads.  The punching shear is used as a viewpoint from which to examine 

various approaches to stress analysis of tubular joints, such as thin–shell finite 

elements and three dimensional isoparametric finite elements. 

 

 

Chapter Four describes the structural model of a typical four legged jacket 

structure and the modelling of the environmental parameters where the structure is 



 

situated.  The statistical analysis of extreme is used to estimate extreme 

environmental loading experienced by the structure. 

 

 

Chapter Five studies the response of the jacket structure under extreme 

environmental loading conditions.  Analysis procedures are discussed and the 

selections of critical member for further analysis are also discussed.  Results from the 

structural simulation studies in term of base shear and overturning moment, and the 

utilisation ratio of structural members are presented. 

 

 

Chapter Six investigates the sensitivity of jacket structure to uncertainties in 

parameters used in design.  The parameters which considered in this study are wave 

theory, force coefficients, wave height and period, current and its profile, wave–

current interaction and wind.  The design parameters were varied one at a time, 

within appropriate ranges, and the effects of parameters which were considered to be 

the measures of static strength was calculated. 

 

 

In Chapter Seven, a series of nonlinear finite element analysis was carried out 

to determine both the absolute load capacity of the joint, the effect of the out–of–

plane loads and braces and relate these back to the strength of the critical brace 

acting as Y joint.  This study presents the analytical methods and results together 

with a calibration of the analysis against test data for Y joints. 

 

 

Chapter Eight describes the modelling of Y joint using finite element and is 

subjected to simple loadings of the axial, in–plane bending and out–of–plane bending 

types, applied separately to the joints.  The stress concentration factors and its 

distributions obtained from the analyses were compared with the predictions of other 

previously published parametric equations. 

 

 



 

Chapter Nine presents the overall discussion on the research works which 

emphasises on the environmental modelling, structural analysis, sensitivity of jacket 

structure, strength assessment of a multiplanar joint and stress concentration factor 

for Y joint. 

 

 

The thesis is concluded in Chapter Ten, which comprises of the summary of 

the works and recommendations for further research. 
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