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ABSTRACT 

 
 
 
 

The research is focused on the development of 0.18µm channel length of n-

channel (NMOS) and p-channel (PMOS) enhancement mode MOSFET. Simulation 

of the process is carried out using Silvaco Athena to modify theoretical values and 

obtain more accurate process parameters. Non-ideal effect of a MOSFET design such 

as short channel effects is investigated. The most common effect that generally 

occurs in the short channel MOSFETs are channel modulation, drain induced barrier 

lowering (DIBL), punch-through and hot electron effect. Several advanced method 

such as lightly-doped drain (LDD), halo implant and retrograde well is applied to 

reduce the short channel effects. At the device simulation process, the electrical 

parameter is extracted to investigate the device characteristics. Several design 

analysis are performed to investigate the effectiveness of the advanced method in 

order to prevent the varying of threshold voltage or short channel effect of a 

MOSFET device. 
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ABSTRAK 

 
 
 
 

Satu kajian telah dijalankan untuk menghasilkan 0.18µm saluran-n dan 

saluran-p MOSFET peningkatan. Proses simulasi dijalankan dengan menggunakan 

Silvaco-Athena untuk mengubah nilai teori dan untuk memperoleh parameter proses 

yang lebih tepat. Kesan kurang sempurna dalam rekaan MOSFET seperti kesan 

saluran pendek telah dikaji. Kesan yang sering terjadi dalam MOSFET saluran 

pendek adalah “channel modulation”, “drain induced barrier lowering (DIBL)”, 

“punch-through” dan “hot electron effect”. Beberapa teknik terkini seperti “lightly-

doped drain (LDD), “halo implant” dan “retrograde well” telah diaplikasi bagi 

mengurangkan kesan saluran pendek. Di peringkat simulasi peranti, parameter 

elektrik telah diambil untuk mengkaji ciri-ciri peranti. Beberapa analisis dijalankan 

untuk mengkaji keberkesanan teknik terkini bagi mengurangkan perubahan voltan 

ambang ataupun kesan saluran pendek sesuatu MOSFET. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

 This project uses the Silvaco-SUPREM (Athena-Atlas) as a primary 

fabrication process and device simulation tool. The first part of this report will 

discuss the project background underlying the simulation process. Several fabrication 

processes will be discussed briefly regarding the development of 0.18µm MOSFET 

and their design issues. The objective and the scope of the project are also mentioned 

in this chapter. 

 
 
 
 
1.1 Introduction/Project background: 

 
 

Over the past decades, the MOSFET has continually been scaled down in 

size, typical MOSFET channel lengths were once several micrometers, but today’s 

integrated circuits are incorporating MOSFETs with channel lengths of about a tenth 

of a micrometer. Until the late 1990s, the size reduction resulted in great 

improvement to MOSFET operation with no deleterious consequences. Historically, 

the difficulties with decreasing the size of the MOSFET have been associated with 

the semiconductor device fabrication process. For more than 30 years, the integrated 

circuit (IC) industry has followed a steady path of constantly shrinking device 

geometries and increasing chip size. This strategy has been driven by the increased 

performance that smaller devices make possible and the increased functionality that 

larger chips provide. 
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Together, these performance and functionality improvements have resulted in 

a history of new technology generations every two to three years, commonly referred 

to as “Moore’s Law”. Each new generation has approximately doubled logic circuit 

density and increased performance by about 40% while quadrupling memory 

capacity. 

 

 
Figure 1.1: Moore’s law (Intel version) 

 

 Smaller MOSFETs are desirable for two main reasons. First, smaller 

MOSFETs allow more current to pass. Conceptually, MOSFETs are like resistors in 

the on-state, and shorter resistors have less resistance. Second, smaller MOSFETs 

have smaller gates, and thus lower gate capacitance. These two factors contribute to 

lower switching times, and thus higher processing speeds. Furthermore, since smaller 

MOSFETs have lower gate capacitance, and since the amount of charge on a gate is 

proportional to its capacitance, logic gates incorporating smaller MOSFETs have less 

charge to move. Indeed, these two factors combined traditionally resulted in a 

switching times proportional to the squared length of the MOSFET channel. In other 

words, integrated circuits using 1 micrometre MOSFETs would be roughly 100 times 

faster than those using 10 micrometre MOSFETs. There is a third reason why 

MOSFETs have been scaled down in size: smaller MOSFETs can obviously be 

packed more densely, resulting in either smaller chips or chips with more computing 

power in the same area. Since the cost of producing integrated circuits is highly 

related to the number of chips that can be produced per wafer, this third reason for 

MOSFET scaling is perhaps as important as the first two. 
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Up until now, MOSFET scaling has proceeded based on the scaling theory 

without serious roadblocks. MOS transistors with a gate length as short as 10nm, 

although experimental, have been demonstrated.  

 

The scaling theory, based on a constant electric-field, requires supply voltage, 

threshold voltage, gate length, and gate oxide thickness to be scaled down by a 

scaling factor. The doping level in the channel must be scaled up by the same scale 

factor. The junction depth of source and drain also needs to be scaled down to 

suppress the short-channel effect. Figure 1.2 shows the cross section of original 

NMOS transistor and scaled NMOS transistor. Another important aspect of transistor 

scaling is the scaling of parasitic resistances and capacitances. These parasitic 

components do not necessarily scale with transistor scaling. Therefore, it becomes 

increasingly critical to minimize parasitic components in order to get the best return-

on-scaling on transistor performance [21]. A good example to address this issue is 

the silicidation of drain, source, and gate as shown in Figure 1.3. Titanium silicide 

used in advanced CMOS technology dramatically reduces parasitic resistances in the 

device.  

 

 
Figure 1.2: Cross section of (a) original NMOS transistor and (b) scaled NMOS 

transistor. 
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Figure 1.3: Silicidation of drain, source and gate in advanced CMOS technology 

 
 

Transistor scaling, in practice, has not followed exactly the constant E-field 

scenario. For performance reasons and due to product requirements, scaling of 

supply voltage did not happen as fast as geometrical scaling, such as gate length and 

gate oxide thickness. Because of this, the electric field in the device increased with 

scaling, resulting in aggravation of short-channel effect (SCE). Short channel effects 

impact threshold voltage, subthreshold currents, and I-V behavior beyond threshold. 

In addition, it also increased reliability concerns such as hot carrier effect (HCE) and 

gate oxide reliability. Various transistor design techniques have been proposed and 

investigated to deal with SCE and HCE.  

 

One of the most important developments in transistor design to deal with 

SCE and HCE is the use of lightly doped drain (LDD) in conjunction with 

polysilicon gate sidewall spacer (Figure 1.4). This technique, introduced in the 

industry at late 1970’s, has become a standard feature for sub-micron transistors, 

typically having gate lengths of 0.50um and below. Various other ideas have been 

proposed and adopted in transistor design. These include retrograde channel doping, 

super-steep retrograde channel, halo or pocket implant with a large tilt angle, pre-

amorphization implant (PAI), and source/drain extension [21]. 

 

In today’s advanced CMOS technology, MOS transistors are typically 

implemented in a dual gate CMOS configuration: n+ poly gate for NMOS, and p+ 

poly gate for PMOS (Figure 1.4). Dual-gate CMOS allows both N-channel and P-

channel transistors to operate in a surface-channel mode. However, it presents 

process integration issues such as boron penetration in the p+ poly gate, which 

causes device instability and gate oxide reliability problems in the P-channel 

MOSFET. Reduction of the thermal budget to minimize boron penetration can cause 
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insufficient dopant activation in the gate poly, leading to poly depletion problems. 

These are some of the challenges in further scaling of MOSFET below a 100nm gate 

length 

 
 

 
Figure 1.4: Dual gate CMOS configuration: n+ poly gate for PMOS 

 
 

The project focused on the Metal Oxide Semiconductor Field Effect 

Transistor (MOSFET), which has been the most important device for today’s 

advance Integrated Circuit (IC) industry. The MOSFET, which has a simple structure 

as compared to its BJT counterpart, the sizes have shrunk from a few micrometers to 

less than quarter micrometer. However, continuous shrinking in the device size has 

caused the conventional one-dimensional MOS transistor theory to be insufficient to 

explain the deep-submicron MOSFET thoroughly. A 0.18µm MOSFET (NMOS and 

PMOS) were developed according to the ITRS roadmap (Table 1.1). Figure 1.5 

shows the cross section of a MOSFET transistor. The focus of this report will be on 

discussing the short channel effect whenever a MOSFET channel length is decreased 

and applying current technology to prevent the short channel effect. Several factors 

which causes a threshold voltage variation and design analysis were also performed. 
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Table 1.1: MOS scaling requirements from the ITRS roadmap 

Year 1999 2003 2006 2009 2012 
Technology node 0.18µm 0.13µm 0.10µm 0.07µm  

 
0.05µm 

DRAM Bits/Chip 1G 4G 16G 64G 256G 
Minimum Supply 

Voltage (volts) 
 
 

1.5 – 1.8 

 
 

1.2 – 1.5 

 
 

0.9 – 1.2 

 
 

0.6 – 0.9 

 
 

0.5 – 0.6 
Gate Oxide τox  

Equivalent (nm) 
 

 
3 - 4 

 
 

2 – 3 

 
 

1.5 - 2 

 
 

< 1.5 

 
 

<1 
Contact Xj (nm) 70 – 140 50 – 100 40 – 80 15 – 30 10 - 20 
Xj at Channel 

(nm) 
 

36 – 72 
 

26 - 52 
 

20 -40 
 

15 – 30 
 

10 - 20 
Minimum Logic 

Vdd 
 

1.5 – 1.8 
 

1.2 – 1.5 
 

0.9 – 1.2 
 

0.6 – 0.9 
 

0.5 – 0.6 
Xj at source/drain 

extension 
 

42 – 70 
 

24 – 40 
 

20 – 33 
 

16 – 26 
 

11 – 19 
Channel Dopant 
Concentration 

(at.cm-3) 

 
2e18 

 
3.3e18 

 
4e18 

 
5e18 

 
14e18 

Xj = Junction Depth 

 
 

 
Figure 1.5: Cross-section drawing of a MOSFET transistor 

 
 
 
 

1.2 Objectives 

 

The main objective of the project is to develop a 0.18µm n-channel 

(NMOS) and p-channel (PMOS) MOSFET according to the ITRS roadmap. 

Many design aspects has to be considered when the MOSFET device is scaled 

down into deep submicron regime. Short channel effects that will appear 

whenever the MOSFET device is scaled down and gate oxide has to be thin 
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enough to increase the device performance. There were several advanced 

fabrication processes is applied to the 0.18µm MOSFET design such as halo 

implant for the punch-through stopper, light doped drain (LDD) to avoid hot 

electron and retrograde well to suppress the parasitic bipolar devices (latch up 

immunity). Therefore, the summary of objectives and aims of this project are: 

 

• To apply advance fabrication process to the 0.18µm MOSFET and to study 

the effects on device performance. 

• To study the factors that caused the variation of threshold voltage. 

• To study the effectiveness of advanced technique in preventing threshold 

voltage variation. 

• To study the limitations of a MOSFET designs and their solutions. 

• To reduce the short channel effects of a deep-submicron device. 

• To be exposed to MOSFET design procedures and would be able to reinforce 

the understanding of MOSFET devices by participating in the device design 

process. 

 
 
 
 
1.3 Scope and organization 

 
 

The integration of a new manufacturing process flow has been implemented 

through the design of 0.18µm MOSFET device. The remainder of this thesis 

describes the challenges facing device design in the deep sub-micron region, paying 

special attention to those that have the most relevance for the rest of this thesis: short 

channel effects. Device design considerations such as channel, halo and retrograde 

well doping are then presented. 

 
The device technology employed includes: surface channel n+ poly gates for 

NMOS and buried channel n+ poly gates for PMOS, aluminum metallization, 

shallow ion implanted sources/drains, twin-well process, punch-through stopper and 

is designed to operate at a supply voltage of 1.8V. A tolerance analysis was 

performed using Athena/Atlas simulation in order to develop a robust process that 

yielded consistent device results. Generally, the project consists of two parts: 
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1) Process simulation 

 

 The process used to fabricate the NMOS and PMOS transistors has been 

simulated in Silvaco-Athena to verify the correct process parameters such as implant 

dose and energy, thermal steps, and film deposition, result in the desired doping 

profiles and device structure. 

 

2) Device simulation 

  

The results of the process simulation program were used as the input for a 

device simulator (Silvaco-Atlas) and the device characteristics can be examined. This 

provides an easy way of studying the effects of process parameters on the device 

performance and both the device structure and the fabrication process can thus be 

optimized. 
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