DESIGN OF A COMPACT MICROSTRIP ANTENNA AT 2.4GHZ

NURULRODZIAH BT ABDUL GHAFAR

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical - Electronics & Telecommunications)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > NOVEMBER, 2005

To all my loving family members, especially to my beloved HUSBAND & my dearly loved SON.....

ACKNOWLEDGEMENT

In the name of Allah, the Most Beneficent and Most Merciful.

First and foremost, I would like to extend my highest gratitude and thanks to my supervisor, Dr. Mohamad Kamal A.Rahim for his generous support, comments, advice and guidance throughout the duration of my project. Without his continuous support and interest, this thesis would not have been the same as presented here.

The thanks also go to all my friends for their constant kind help and moral support despite the hectic semester that we had to undergo. Special thanks to Ida, Ina, Ija and others who have provided assistance at various occasions.., thanks for being such a wonderful companion.

Last but not least, my deepest appreciation to my dearest husband and son, for all their assistance, love and care... your fully support and encouragement is gratefully appreciated.

ABSTRACT

With the recent advances in telecommunications, the need for compact antennas has greatly increased. Electronic equipment has rapidly reduced in physical size due to the development of integrated circuits, especially in mobile communications; the demand for the smaller antennas is quite strong. However, requirements on antenna performance on such small equipment are becoming increasingly severe, since the antenna performance should not be significantly degraded as the size become smaller.

The microstrip antenna is one of the most preferable for small equipment, especially when a built-in antenna is required. It has many advantages such as low profile and easy fabrication. However for low-frequency applications, the microstrip size becomes too large for practical implementation. One of the problems in microstrip antenna technology is the reduction of the antenna sizes. The aim of this project was to design, fabricate and test a compact microstrip patch antennas operating at 2.4GHz.

Three microstrip antennas operating at 2.4GHz was designed, fabricated and tested; a conventional rectangular microstrip antenna, a compact rectangular microstrip antenna with shorted wall method and a compact rectangular microstrip antenna with shorted pin method. Those designs were simulated with Microwave Office software and tested with the Marconi Scalar Analyzer. Both, simulated and measured data were compared and contrasted.

ABSTRAK

Perkembangan yang pesat di dalam industri telekomunikasi telah menyebabkan keperluan terhadap penggunaan antena yang kecil dan mampat meningkat dengan begitu ketara. Peralatan elektronik telah pun mengalami satu perubahan yang drastik dari segi saiznya iaitu kepada yang lebih kecil. Ini adalah disebabkan oleh kemajuan pembangunan di dalam litar bersepadu terutamanya dalam industri telekomunikasi bergerak dan seterusnya menjadikan permintaan ke atas antena bersaiz lebih kecil adalah sangat tinggi. Walaupun permintaan ke atas antena ini meningkat dengan begitu ketara, namun prestasi antena tersebut tidak seharusnya terjejas.

Antena mikrojalur merupakan salah satu dari antena yang dicadangkan bagi peralatan yang bersaiz kecil. Terdapat banyak kelebihan pada antena tersebut seperti ianya berprofil rendah dan mudah difabrikasi. Walaubagaimanapun bagi applikasi berfrekuensi rendah, saiz mikrojalur akan menjadi terlalu besar untuk dilaksanakan secara praktikal. Ini merupakan salah satu masalah dalam penggunaan teknologi antena ini. Justeru itu, objektif utama projek ini adalah untuk merekebentuk, memfibrikasi dan menguji antena mikrojalur termampat yang beroperasi pada frekuensi 2.4 GHz.

CONTENTS

CHAPTER TOPICS

TITLE	i
CERTIFICATION	i
DEDICATION	i
ACKNOWLEDGEMENT	i
ABSTRACT	,
ABSTRAK	·
CONTENTS	,
LIST OF TABLES	2
LIST OF FIGURES	2
LIST OF TERMINOLOGIES	2
LIST OF SYMBOLS	2

CHAPTER I	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Objectives	2
	1.3	Scope of Work	2
	1.4	Outline of Thesis	3

PAGE

MIC	ROSTR	IP PATCH ANTENNA	4
2.1	Introd	luction	4
2.2	Basic	Patch Antenna Shapes and	
	Geom	etries	6
2.3	Basic	Antenna Parameters	8
	2.3.1	Reflection Coefficient (Γ) and	
		Characteristic Impedance (Z_0)	9
	2.3.2	Return Loss	9
	2.3.3	Radiation Pattern	10
	2.3.4	Gain	12
	2.3.5	Voltage Standing Wave Ratio	13
	2.3.6	Bandwidth	14
	2.3.7	Polarization	15
2.4	Micro	strip Antenna Feed Techniques	16
	2.4.1	Microstrip Line Feed	17
	2.4.2	Coaxial Probe Feed	18
	2.4.3	Aperture Coupled Feed	18
	2.4.4	Proximity Coupled Feed	19
2.5	Metho	ods of Analysis	21
2.6	Sumn	nary	22

CHAPTER II

CHAPTER IIICOMPACT MICROSTRIP ANTENNAS23

3.1 Introduction	23
3.2 Shorting Wall Method	25
3.3 Shorting Pin Method	27
3.4 Summary	29

CHAPTER IV MICROSTRIP DESIGN, SIMULATION AND FABRICATION 30

	4.1 Microstrip Anten	na Patch Design	30
4.1.1	Desig	n Specifications	30
4.1.2	Desig	n Procedure	31
4.1.3	Conve	entional Rectangular	
	Micro	strip Patch Design	35
4.1.4	Comp	act Rectangular Patch	
	Desig	n with Shorted Wall	35
4.1.5	Comp	act Rectangular Patch	
	Desig	n with Shorted Pin	36
	4.2 Simulation		36
	4.3 Fabrication and M	leasurement Process	37
4.3.1	Gener	ating Mask on the	
	Trans	parency	38
4.3.2	Photo	Exposure Process	38
4.3.3	Etchir	ng in Developer Solution	38
4.3.4	Etchir	ng in Ferric Chloride	39
4.3.5	Solder	ring the Probe	39
4.3.6	Testin	g	39
	4.4 Summary		42

CHAPTER V SIMULATION AND MEASUREMENT RESULTS 43

5.1 Conventional Microstrip Antenna		43
5.2	Compact Microstrip Antenna with	
	Shorted Wall	49
5.3	Compact Microstrip Antenna with	
	Shorted Pin	54
5.4	Summary	61

CHAPTER VI	CONCLUSION AND SUGGESTIONS	62

6.1	Conclusion	62

6.2Suggestions For Future Work63

REFERENCES	65-67

APPENDIX A

LIST OF TABLES

TABLE NO.	TITLE	PAGE

2.1	Comparing the different feed techniques	21
4.1	Design specifications of microstrip antenna	31
5.2	Comparison of the simulation and measurement values	
	of conventional, shorted wall and shorted pin rectangular	
	patch antenna	60

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1	Structure of a microstrip patch antenna	6
2.2	Common shapes of microstrip patch elements	7
2.3	Radiation pattern of a generic directional antenna	11
2.4	A linearly polarized wave	15
2.5	Commonly used polarization schemes	16
2.6	Microstrip line feed	17
2.7	Probe fed rectangular microstrip patch antenna	18
2.8	Aperture-coupled feed	19
2.9	Proximity-coupled Feed	20
3.1	Conventional microstrip antenna structures	25
3.2	A rectangular patch with shorting wall	27
3.3	Quarter-wavelength structures	27
3.4	Geometries of compact rectangular microstrip antenna with	
	shorting pin	27
3.5	A rectangular patch with shorting pin	28
3.6	Less than quarter-wavelength structures	28
4.1	Generalized flowchart for fabrication process	37
4.2	Circuit pattern on the transparency	40
4.3	Photo exposure machine	40
4.4	Etching in developer solution	40
4.5	Etching in ferric chloride	41
4.6	Soldering the connector	41

4.7	Marconi Scalar Analyzer 6204	41
4.8	Testing using Marconi Scalar Analyzer 6204	42
5.1	EM structure with the calculated value of W , L and port	
	position	43
5.2	3D layout of conventional rectangular patch antenna	
	with the coaxial feed	44
5.3	RL for conventional rectangular patch antenna	45
5.4	VSWR for conventional rectangular patch antenna	45
5.5	Match smith for conventional rectangular patch antenna	46
5.6	Maximum radiation at 0dB, gain = 5.58dB for conventional	
	rectangular patch antenna	47
5.7	HPBW at -3dB = 82.11dB conventional rectangular patch	
	antenna	47
5.8	View of fabricated patch for conventional rectangular patch	
	antenna	48
5.9	Comparison of <i>RL</i> between simulation and measurement	
	values for conventional rectangular patch antenna	49
5.10	EM structure with the calculated value of W, L and port	
	position	50
5.11	3-D view with the coaxial feed for compact patch antenna with	
	shorted wall	50
5.12	<i>RL</i> for compact rectangular patch antenna with shorted wall	51
5.13	<i>VSWR</i> for compact rectangular patch antenna with shorted wall	52
5.14	Match Smith for compact rectangular patch antenna with	
	shorted wall	52
5.15	Maximum radiation at 0dB, gain = 5.49 dB	53
5.16	HPBW at $-3dB = 76.5 dB$	53
5.17	EM structure with the calculated value of <i>W</i> , <i>L</i> and port position	
5.18	3-D view with the coaxial feed for compact rectangular patch	
0.10	antenna with shorted pin	55
5.19	<i>RL</i> for compact rectangular patch antenna with shorted pin	56
5.20	<i>VSWR</i> for compact rectangular patch antenna with shorted pin	56
5.20	Match smith for compact rectangular patch antenna with shorte	
5.41	pin 57	u
	pin 57	

5.22	Maximum radiation at 0dB, gain = 4.9dB for compact rectangu		
	patch antenna with shorted pin	57	
5.23	HPBW at -3dB = 84.18dB simulation for compact		
	rectangular patch antenna with shorted pin	58	
5.24	View of fabricated patch for compact rectangular patch antenn	na	
	with shorted pin	58	
5.25	Comparison of RL between simulation and measurement valu	es	
	for shorted pin rectangular patch antenna	59	
5.26	Actual size of the conventional rectangular patch antenna	60	
5.26	Actual size of the compact shorted wall rectangular patch		
	antenna	61	
5.27	Actual size of compact shorted pin the rectangular patch		
	antenna	61	

LIST OF TERMINOLOGIES

PCS	-	Personal Communication System
GSM	-	Global System for Mobile Communication
DCS	-	Digital Communication System
WLAN	-	Wireless Local Area Network
ISM	-	Industrial Scientific and Medical
RF	-	Radio Frequency
DBS	-	Direct Broadcast Satellites
GPS	-	Global Positioning System Satellite

LIST OF SYMBOLS

mm	-	milimeter
dB	-	decibel
Hz	-	hertz
Κ	-	kilo
d	-	diameter
h	-	height
L	-	length
W	-	width
Г	-	reflection coefficient
Z_0	-	characteristic impedance
λο	-	free-space wavelength
\mathcal{E}_r	-	dielectric constant of the substrate
t	-	patch thickness
С	-	speed of light 3x 10 ⁻⁸ m/s

CHAPTER 1

INTRODUCTION

1.1 Introduction

In modern mobile and wireless communications systems, there is an increasing demand for smaller low-cost antennas that can be easily integrated with packaging structures [1]. It is well known that planar antennas such as microstrip patch have a significant number of advantages over conventional antennas, such as low profile, lightweight and low production cost. Nevertheless in some mobile/wireless applications such as the *AMPCS/PCS, GSM/DCS, PDC/PHS, IMT 2000* or *WLAN* in the 2.4GHz Industrial Scientific and Medical (*ISM*) band, their physical size maybe too large for handheld terminals.

A number of techniques have been proposed to reduce the physical size of a conventional half-wave ($\lambda_0/2$, λ_0 is the guide wavelength in the substrate) patch antenna [2]. The most straightforward approach is to use a high dielectric constant substrate [2], however, it leads to poor efficiency and narrow bandwidth. A shorting wall has been used to reduce the overall size of the patch antenna to $\lambda_0/4$, while a shorting pin near the feed can reduce the patch size even further [3].

1.2 Objectives

The objective of this project is to design and fabricate a compact rectangular microstrip antenna operating at 2.4GHz frequency using *FR4* substrate ($\varepsilon_r = 4.5$) with dielectric loss tangent (*tanb*) of 0.019 and height (*h*) of substrate 1.6mm. The antenna is excited by a coaxial probe and the feed point is located at the distance (*dx*) away from the center of the patch.

1.3 Scope of Work

The scope of work of the project is to design a conventional rectangular patch antenna and two compact rectangular patch antennas (with shorting wall and shorting pin method) operating at 2.4GHz frequency.

The design is simulated with Microwave Office software. The antennas were then etched on a FR4 substrate with dielectric substrate of 4.5 and height of 1.6mm. Network Analyzer was used to measure the antennas. Both, simulated and measured data are compared and contrasted.

1.4 Outline of the Thesis

The thesis comprises of five chapters and the overview of all the chapters are as below:

- Chapter 1: This chapter provides the introduction, objective and scope of work involved in accomplishing the project.
- Chapter 2: Chapter 2 presents the literature reviews on microstrip antenna, including the antenna basic parameters, the feeding methods and the methods of analysis that can be used for the microstrip antenna design.
- Chapter 3: This chapter comprises the literature reviews on compact microstrip antennas and the description of the methods used in this project.
- Chapter 4: The fundamental processes required in the design, fabrication and simulation of the microstrip antenna for this project are explained in this chapter.
- Chapter 5: The simulation and measurement results obtained are discussed in this chapter.
- Chapter 6: Conclusion of the project and suggestions for future work are presented in this final chapter.