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ABSTRACT

There has been considerable interest in recent years in the detection and
accommodation of multiple outliers in linear regression. However, most of them are
complicated and unappealing to users with no mathematical background. The clustering
algorithm from Sebert et al. (1998) is discussed and used since it is easy to understand
with interesting proposed approach and have a good performance in detecting the
presence of outliers. Generally, method proposed by Sebert et al. (1998) is based on the
use of a single linkage clustering algorithm with the Euclidean distances to cluster the
points in the plots of standard predicted versus residuals values from a linear regression
model. The predicted and residual values are obtained from an ordinary least squares fit
of the data. The algorithm is described and is shown to perform well on classic multiple
outlier data sets. A modification is done to the Sebert’s method by replacing the least
squares (LS) with two robust estimators. Method 1 is a modification of Sebert’s method
where the least squares (LS) fit is replaced by the least median of squares (LMS) fit while
Method 2 is a modification of Sebert’s method where the least squares (LS) fit is replaced
by the least trimmed of squares (LTS) fit. This research also provides a comparison
between these three procedures to help and give future researchers a comprehensive view
about the best procedure to detect multiple outliers. A Monte Carlo simulation study was
used to evaluate the effectiveness of these three procedures. All simulations and
calculation were done using statistical package |

S-PLUS 2000.
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ABSTRAK

Kebelakangan ini, terdapat minat dan kecenderungan yang tinggi kepada
pengesanan, pengecaman dan penyesuaian terhadap data terpencil berganda dalam regresi
linear. Walaubagaimanapun, kebanyakan daripada kaedah yang diperkenalkan adalah
rumit dan tidak dapat menarik mereka yang tidak mempunyai latar belakang matematik
untuk menggunakannya. ‘Algoritma Berkelompok’ daripada Sebert dll. (1998) akan
dibicangkan dan digunakan dalam kajian ini kerana kaedah ini mudah difahami dengan
pendekatan yang menarik dan berkesan dalam pengesanan titik terpencil. Secara
umumnya, kaedah yang dicadangkan oleh Sebert dll. (1998) ini adalah berdasarkan
kepada penggunaan kaedah pautan tunggal berkelompok bersama-sama dengan jarak
Euclidean bagi mengelompokkan titik-titik dalam plot antara nilai ramalan dan reja
piawai model regresi linear. Nilai ramalan dan reja piawai ini diperolehi daripada kaedah
penyesuaian kuasa dua terkecil (LS). ‘Algoritma Berkelompok’ ini telah dihuraikan dan
dapat ditunjukkan bahawa ianya boleh digunakan dengan baik untuk data-data klasik
yang mempunyai data terpencil berganda. Seterusnya, pengubahsuaian dilakukan ke atas
kaedah Sebert dengan menggunakan dua penganggar teguh. ‘Kaedah 1’ adalah
pengubahsuaian daripada kaedah Sebert dimana kaedah penyesuaian kuasa dua terkecil
ditukarkan dengan kaedah penyesuaian median kuasa dua terkecil (LMS) manakala bagi
‘Kaedah 2’, kaedah penyesuaian trim kuasa dua terkecil (LTS) digunakan. Kajian ini
juga menyediakan satu analisis perbandingan di antara ketiga-tiga kaedah yang
dibincangkan bagi membantu dan memberi satu pendekatan kepada para pengkaji yang
akan datang tentang pemilihan kaedah terbaik bagi mengesan data terpencil berganda.
Kaedah simulasi Monte Carlo digunakan untuk menilai keberkesanan ketiga-tiga kaedah

yang dibincangkan. Semua simulasi dan pengiraan dilakukan dengan menggunakan

pakej statistik S-PLUS 2000.



CHAPTER 1

RESEARCH FRAMEWORK

1.1  Background and Motivation

Regression analysis is an important statistical tool that is routinely applied in
most sciences. Out of many possible regression techniques, the least squares (LS)
methed has been generally adopted because of tradition and ease of computation.
However, there is presently a widespread awareness of danger posed by the occurrence
of outliers, which may be a result of keypunch errors, misplaced decimal points,
recording or transmission error, exceptional phenomena s.uch as earthquakes or strikes,

or mempbers of different population slipping into the sample.

Identifying outlying observations is an important aspect of the regression model-
building process. Outliers occur very frequently in real data, and they often go
unnoticed because nowadays computers, process much data without careful inspection
or screening. Not only the response variable can be outliers, but also the explanatory
part, leading to so-called leverage points. Both types of outliers may totally spoil an

ordinary least squares (OLS) analysis.

In general, outliers are defined as observations that appear inconsistent with
other observations in the data set. [t is important to identify these types of outliers in

linear regression modelling because when undetected, can lead to erroneous parameter



estimates and inferences from the model. ‘Additionally, these outliers may be of interest

themselves to provide insight into process behaviour at certain operating condition.

. If there is only a single or a few outliers, many standard LS regression diagnostic
quantities and plots will reliably identify these observations. These diagnostics have
been shown to fail in the presence of multiple outliers, particularly if the observations
are clustered in an outlying cloud. The measures may either fail to identify the outliers
(masking), identify the clean observation as outliers (swamping), or could both mask
and swamp observations. To overcome the limitations of the standard LS diagnostics,
numerous multiple outlier detection techniques have been proposed to identify the

outlying subset of observations.

There has been considerable interest in recent years in the detection and
accommodation of multiple outliers in statistical modelling. But, most of them are
complicated and unappealing to users with no mathematical background to overcome it.
This research briefly reviews the multiple outlier procedures chronologically for
historical purposes. A detailed outline of the clustering algorithm from Sebert et al.
(1998) and two modification from this procedure will be discussed further in chapters
four and five since it is easy to understand with interesting proposed approach and have
a good performance in detecting the presence of outliers. This research also provides a
comparative analysis among these three procedures to help and give further researcher a
comprehensive view about the best procedure to detect multiple outliers. A Monte Carlo

simulation study was used to evaluate the effectiveness of these three procedures.
1.2 Research Objectives and Scopes

The objectives of this study are to

e Review the multiple outlier procedures chronologically



e Study and characterize the performance of the procedﬁre proposed by
Sebert et al. (1998) '

e Study the influence of the least median of squares (LMS) fit in Sebert et
al. (1998) procedure and characterize the performance of the new
procedure (Method 1) |

e Study the influence of the least trimmed of squares (LTS) fit in Sebert et
al. (1998) procedure and characterize the performance of the new
procedure (Method 2) |

e Compare the performance of the procedures proposed by Sebert et al.
(1998), Method | and Method 2

e Choose the best procedure to detect multiple outliers.

For this research, the problem of outlier detection is only focused on the linear

regression model.

1.3 Organization of the Report

This report is organized into seven chapters. Chapter 1 discusses the research
framework. It begins with the introduction to the multiple outlier detection problems in

linear regression and also discusses the objectives and scope of this study.

Chapter 2 reviews the relevant literature on published work done recently.
Chapter 3 discusses how the proposed methods perform in the different outlier
situations. A detailed study of the procedure on randomly generated data sets was
performed with the simulation study planning. Chapter 4 details the procedure proposed

by Sebert et al. (1998) and characterizes its performance.



Cimpter 5 introduces two modifications of Sebert et al. (1998) procedure, which
are Method 1 and Method 2 and characterizes its performances. Chapter 6 compares the
performance of the procedures proposed by Sebert et al. (1998) and the modification of
Sebert et al. (1998) procedure made by Method 1 and Method 2. The last chapter, that

is, chapter 7 summarizes the whole study and also includes some suggestions for future

research.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter discusses the ordinary least squares (OLS) regression and hat
matrix, and includes a review on the outliers problem in linear regression and a brief
discussion on the multiple outlier detection methods and procedures which are recently
published chronologically. The discussion on ordinary least squares regression is

presented since it is the most commonly used.

2.2 Ordinary Least Squares Regression and Hat Matrix

The general linear regression model can be written in a matrix form as the

following

y=Xp+e (2.1)
where yis an nx1 response variable vector, X is the »x p matrix of predictor (or
regressor) variables with intercept, B is unknown px1 vector of regression coefficients
and gis an nx1 vector of random errors assumed to be independent normally

distributed with mean 0 and variance matrix o2.



Let the expected valueof y, £ (y)': Xp where B is the parameter to be

estimated. The method of least squares consists of finding estimators ﬁwhich

minimize the sum of squares of the error terms
S=)6 =e'e=(y-Xp) (y-XB) 2.2)
where &, = y,~x/ f and e =y - Xp.

Then S becomes:

S =y'y-p'X'y-y'Xp+p'X"Xp

RS (2.3)
=y'y -28"X"y + BX"XPp
where
(B'x"y) =y'xp
and (ﬁTXTy) is Ix1 matrix.
. A GA) .
The least squares estimates for f must fulfill — =0 i.e.
p
—2X"y +X"XB+TX"X =0
= (x'xp) = prxTx
52Xy +2X"XB =0
= X'Xp=X'y (2.4)
So the least squares estimators are
B=(X"XJ'X"y | (2.5)

These least squares estimators are also maximum likelihood estimators, which is

unbiased, minimum variance, consistent and sufficient.



The vector of predicted or fitted values can be expressed as
§ = Xp = X(X"X)"X"y = Hy (2.6)

This model can be used to provide important information about the relationship of the
response and the explanatory (or regressor) variables. The linear regression model may
also be used to identify important regressor variables and/or predict future values of the
response variables. The matrix H is referred as the hat matrix or projection matrix. The
diagonal elements of the hat matrix are used in many least squares diagnostics because

they provide an indication of remoteness in X-space.

It can be easily verified that H is idempotent (HH = H) and symmetric

(HT = H) The diagonals of the hat matrix H, is given as

By = x, (X X K Q.7
where .
X.‘ = (’x.'.l .”xi.p—l I) (28)
and
o7 7
‘\'I | X X . ’
X'X=|: 5 Pllx, o 1
|1 ] 1| : :
_xnl ]__
r " n 7

i=1

n n
th.v—lx” fo.p—lxl..n-i le.p-l
i=1 i=l

i=1

"
x:’l in,p-} .
i=l

(2.9



The hat matrix is also an important component in the covariance matrices of the

fitted y and residuals e =y -y since
cov(y)=c’H (2.10)

cov(e)= JZ(I—H) (2.11)

2.3 Treating Outliers in Linear Regression

Observations that do not follow the same model as the rest of the data are
typically called outliers. Clearly, the presence of such an extreme value can
significantly affect the least squares fitting of a model, and so it is important to
determine if the analysis should be modified in some way (such as deleting the
observation in question). An outlier among a set of residuals is one that is much larger
than the rest in absolute value, perhaps lying as many as three or more standard
deviations from the mean of the residuals. Obviously, an outlier in the data may indicate

special circumstances needing further investigation.

It is important to recognize differences among possible types of extreme values.
As described above, an outlier is any rare or unusual observation appearing at one of the
extremes of the data range. Generally, all regression observations, and hence outliers in
particular, may be evaluated to given knowledge of the variable, response extremeness
and predictor extremeness. The goal is to identify observations that are important in
affecting either the choice of variables in the model or the accuracy of estimations of the

regression coefficients and associated standard errors.

The observation should be checked for plausibility if it has been identified as an

outlier. It is important that the data analyst be familiar with the basic characteristics of



the data. More generally, one may classify any observations being impossible, highly
implausible, or plausible. It is then necessary to consider the importance of an
observation in determining the choice of variables in the model, coefficient estimates,
and associated statistics before deciding what, if any, action to take. Important concepts

include leverage and influence.

Traditionally, outliers among observations were detected by coﬁsidering the
residuals. It means that the least squares (LS) method is used frequently and has become
the cornerstone of classical statistics. After Gauss introduced the normal (or Gaussian)
distribution for which LS are optimal, the combination of Gaussian assumptions and LS
has become a standard mechanism for the generation of statistical techniques. More
recently, some people began to realize that real data usually do not completely satisfy

the classical assumption, often with dramatic effects on the quality of the statistical

analysis.

As an illustration, let us look at the effect of outliers in the simple regression

maodel
Yi=fo+Bx te, (2.12)

in which the intercept f, and the slope f, are to be estimated. In the simple regression

model, one can make a plot of the (x,,y,), which is sometimes called a scatter plot, in

order to visualize the data structure. In the general multiple regression model (2.1) with
large number of independent variables, this would no longer be possible, so it is better to

use simple regression for illustrative purposes.

Figure 2.1(a) is the scatter plot of five points, (x,,,),.. (%5, ), which almost lie
on a straight line. Therefore, the LS solution fits the data very well, as can be seen from
the LS line y = ﬁo + ,@lx in the plot. However, suppose that someone gets a wrong
value of y, because of a copying or transmission error, thus affecting, for instance, the

place of the decimal point. Then (x,,y,) may be rather far away from the ‘ideal’ line.
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Figure 2.1: (a) Original data with five points and their least squares regression line.

(b) Same data as in part (a), but with one outlier in the y-direction.
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Figure 2.1. (b) displays such situation, where the fourth point has moved up and
away from its original position (indicated by the circle). This point is called an outlier in
the y-direction, and it has a rather large influence on the LS line, which is quite different

from the LS line in Figure 2.1. (a). This phenomenon has received some attention in the
literature because v, usually considered as observations and the Xyis o5 X, 88 fixed
numbers (which is only true when the design has been given in advance) and because
such ‘vertical” outliers often posses large positive or large negative residuals. Indeed, in
this example the fourth point lies farthest away from the straight line, so its e, is
suspiciously large. Even in general multiple regressions with large p, where one cannot
visualize the data, such outliers can often be discovered from the list of residuals or from

residual plots.

For the effect of such an outlier, let us look at an example of simple regression in
Figure 2.2. Figure 2.2. (a) contains five points, (x,,3,)....,(x,, . ), with a well fitting LS
line. If we now make an error in recording x,, we obtain Figure 2.2. (b). The resulting

point is called an outlier in the x-direction, and its effect on the least squares estimator is

very severe because it actually tilts the LS line.

Therefore the point (x,,,) in Figure 2.2. (b) is called a leverage point. This
large ‘pull” on the LS estimator can be obtained as follows. Because x, lies far away,

the residual ¢; from the original line (as shown in Figure2.2. (a)) becomes a very large

5
(negative) value, contributing enormous amount to Zef for that line. Therefore the

i=l

original line cannot be selected from a least squares perspective, and indeed the line of

: 5
Figure 2.2. (b) possesses the smallest Zef because it has tilted to reduce that large e’

i=|

even if the other four terms, ei,...,ei2 have increased quite a bit.
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Figure 2.2: (a) Original data with five points and their least squares regression line.

(b) Same data as in part (a), but with one outlier in the x-direction. (leverage point)

12



1.5 7

0.5 l

0.0 0.5 1.0 1.5 = 2.0

3.5 . [ 5

2.0

1.0

0.0 0.5 1.0 1.5 2.0

(b)
Figure 2.3: (a) Original data with five points and their least squares regression line.
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Further, if we make error in recording both x, and y, , the resulting point is now
called an outlier in the xy-direction (space). Again, the effect on the least squares
estimator is large and the point (x,,y, )is called a high leverage point. Figure 2.3 (b)

illustrates the problem.

In general, an observation (xk,yk) is called a leverage point whenever x, lies far
away from the majority of the observed x, in the sample. Note that this does not take
, into account, so the point (x,,y,) does not necessarily have to be a regression outlier.
When (x,, y,) lies close to the regression line determined by the majority of the data,
then it can be considered a ‘good’ leverage point as in Figure 2.4. Therefore to say that
(x,(, ,) is leverage point refers only to its potential for strongly affecting the regression

coefficients ﬁ’, but it does not necessarily mean that (x,,y, ) will actually have a large

influence on /5’, because it may be perfectly in line with the trend set by the other data.
In such situation, a leverage point is even quite beneficial because it will shrink certain

confidence regions.
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Figure 2.4: The point (xk,yk) is a leverage point because x, is outlying. However
(xk, yk) is not a regression outlier because it matches the linear pattern set by the other
data points.
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In multiple regression, the (x,-,,...,x,.p') lie in a space with p dimensions. A
leverage point is then still defined as a point (xkl,...,x,fp,yk) for which (x,;,,...,x,fp) is
outlying with respect ta the (x”,...,xip) in the data set. As before, such leverage points

have a potentially large influence on the LS regression coefficients, depending on the

actual value of y,. However, in this situation it is much more difficult to identify

leverage points, because of the higher dimensionality.

A simple illustration of this problem is given in Figure 2.5, which plots x,,
versus x, for some data set. In this plot, we easily see two leverage points, which are,
however, invisible when the variables x, and x,, are considered separately. In general,

it is not sufficient to look at each variable separately or even at all plots of pairs of

variables. Clearly, the identification of outlying (x,.],...,.x,.p) is a difficult problem.
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Figure 2.5: Plot of the explanatory variables (x,,,, ) of a regression data set. There are

two leverage points (indicated by the circle), which are not outlying in either of the

coordinates.
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Many people will argue that by looking at the least squares residuals we can
detect regression outliers. Unfortunately, this is not true when the outliers are leverage
points. For example, consider again Figure 2.2. (b). Point x,, being a leverage point,
has tilted the LS line so much that it is now quite close to that line. Consequently, the

residual e, = ¥, — ¥, is a small (negative) number. On the other hand, the residuals e,

and e, have much larger absolute values, although they correspond to ‘good’ points.

If one would apply a rule like ‘delete the points with largest LS residuals’, then
the ‘good’ points would have to be deleted first. In a bivariate data set, there is really no
problem at all because one can actually look at the data, but there are many multivariate
data sets where the outliers remain invisible even through a careful analysis of the LS
residual. To conclude, regression outliers (either in x, in y, or in x and ) pose serious
threats to standard least squares analysis. Thus, to overcome this problem many
researchers over recent years have suggested numerous procedures and strategies. A

survey of these new techniques and approach is provided in Section 2.4.

2.4  Multiple Outlier Detection Method and Procedures

The multiple outliers problem has been considered by many writers over recent
years. As a result of the need to identify outliers, numerous outlying measures such as
residuals and influence diagnostics such as Cook’s Distance or COVRATIO have been
developed. These outlying measures and influence diagnostics work well when a
regression data set contains only a single outlying point. However, it is well established
that regression data set may have multiple outlying observation that individually are not

easily identified by the same measures.
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Researchers have suggested numerous strategies to solve the mﬁltiple outlier
identification problem. Normally, multiple outlier identification techniques suffer from
two identification errors that is masking and swamping. Masking is the inability of a
detection method to correctly classify a true outlier. That is, the detection method
falsély indicates that the outlier is an inlier. Swamping results when a detection method

classifies an inlier as being outlier. Masking is more serious than swamping.

Generally, there are two broad classes of multiple outlier detection procedures.
Hadi and Simonoff (1993) defined these procedures as direct method and indirect
method. The direct method used algorithms to isolate outliers and the indirect methods
use the results from robust regression estimates. The description of both the direct and

indirect procedures below considers the standard linear model y = X +¢ where y is the
response vector of dimension #, the number of observation; X is the nx p matrix of
regressor variables with intercept; and € is the column vector of 7 random errors

assumed to have mean 0 and covariance matrix o’I. Figure 2.6 shows the historical
flowchart of multiple outlier detection methods for both direct and undirect procedures.

Of course this list is not exhaustive.
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P—

Direct

Multiple Outlier Detection
Method

T

Indirect

v

v

Gentleman and Wilk Subsets
algorithm (1975)

Andrews and Pregibon algorithm (1978)

Hawkins, Bradu and Kass elemental sets
algorithm (1984)

Marasinghe multistage procedure
(Backward selection algorithm) (1985)

Paul and Fung backward selection
algorithm (1991)

Hadi and Simonoff forward search
algorithm (1993)

Pena and Yohai influence matrix
algorithm (1995)

Swallow and -Kianifard recursive residual
forward search
algorithm (1996)

Sebert, Montgomery, and Rollier
clustering algorithm (1998)

Luceno re-weighted least deviances
algorithm (1998)

Justel and Pena bayesian unmasking in
linear model (2001)

Marcheete and Solka data images for
outlier detection (2003)

Fernholz, Morghenthaler and Tukey
outliers nomination based on multihalver
(2004)

Least absolute deviation (LAD) estimator
(Edgeworth, 1887)

Maximum likelihood robust (M) estimator
(Huber, 1973)

Generalized M (GM) estimators
(Mallows, 1975)

Least median of squares (LMS) estimator
(Rousseeuw, 1984)

Least trimmed squares (LTS) estimators
(Rousseeuw, 1983, 1984)

S estimators (Rousseeuw & Yohai, 1984)

Minimum volume ellipsoid (MVE)
estimators (Rousseeuw, 1983, 1984)

Minimum covariance determinant (MCD)
estimators (Rousseeuw, 1983, 1984)

MM -estimators (Yohai, 1987)
Coakley & hettmansperger estimator (1993)
Simpson & Montgomery estimator (1998)

Least trimmed sum of absolute deviations
(LTA) estimator (Hawkins & Olive, 1999)

Blocked adaptive computational efficient
outliers nominators (BACON)
(Billor, Hadi & Velleman, 2000)

Agullo new algorithms for computing the
least trimmed squares regression estimator
(2001)

Figure 2.6: The historical flowchart of multiple outlier detection methods for direct and

indirect procedures
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2.4.1 Direct Procedures

Direct methods are procedures based on least squares and specifically designed
algorithm to detect multiple outliers. Many of the direct procedures in the literature are
based on either sequential deletion (backward search) of outlying observations or
sequential addition (forward search) of clean observations. In a backward search, the
entire set of observations is initially considered and the outliers are sequentially removed
by a criterion such as the largest absolute value of a transformed residual. The forward
search works similarly. A small subset of the data is selected as the initial clean basis
and clean observations are sequentially added to this basis. Wisnowski et al. (2001)
pointed out that methods using forward search generally outperform backward search

methods.

The following discussed briefly the relevant direct procedures chronologically
from 1996 but only a detailed outline of the clustering algorithm from Sebert et al.
(1998) will be discussed fully in chapter 4. The general steps of these algorithms and

specific issues related to this research are outlined below. -

Swallow and Kianifard Recursive Residual Forward Search Algorithm

Swallow and Kianifard (1996) suggest recursive residuals standardized by a
robust estimate of scale as the test statistic to classify multiple outliers. The algorithm

first orders-the magnitudes of the studentized residual values from a least squares fit to

form the basis of p clean observations, The jth recursive residual, w , is computed by

. Y, —XTﬁj—]
i~ _1 /2
(1_X?(X1T—1Xj—l) xi)

determined by using the subset of size j-1 from the ordered observations (by ordinary

,J = p+1..,n B, is the vector of parameter estimates

least square (OLS) studentized residuals). Thus, parameter estimates must be
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recalculated many times (#7-p) to find the recursive residuals for a single data set.

Similarly, X, is the subset matrix of explanatory variables for the first j-1 ordered

observations. Recursive residuals are scaled by the median absolute deviation from the

median (MAD) estimate of scale & . The MAD is {]e, = median{e,.}i} where ¢, is the

OLS residual, not the studentized residual. The test statistic ’w ! / &l for each observation

is compared to a cutoff value to identify the outliers. The required MAD scale estimate
correction factor and the cutoff value come from the quantiles of 1000 simulations of »

observations with p parameters under the null hypothesis of no outliers.

Sebert, Montgomery, and Rollier Clustering Algorithm

Sebert et al. (1998) proposed an approach for identifying a reasonable subset of
potential outliers without the complexities associated with most competing procedures.
This approach uses a single linkage clustering algorithm with the Euclidean distances for
the standardized predicted and standardized residual values from a least squares fit. The
crux of the algorithm is to find the single largest cluster, or the bulk of the data to
classify as the inliers. Mojena's stopping rule forms the final clusters by splitting a
cluster tree at the average of the n-1 tree cluster heights (a measure of cluster separation)

plus 1.25 times the standard deviation of the tree cluster heights. The Mojena’s stopping
rule defined as % +1.25s, where 1 is the average height of the tree and s, is the sample
standard deviation of the heights. Minowski (1999) showed that this procedure
generally perform well in classical challenging data sets. The performance of this
method improves with the increase of outlying distance, number of observations, and the

number of regressors as well as a decrease in the percentage of outliers.
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Luceno Re-weighted Least Deviances Algorithm

Luceno (1998) proposed a procedure to detect multiple outliers in the generalized
linear models (GLIM) using the weights from a re-weighted least square. The mean of
the deviance (sum of squared deviance residuals) is replaced by a wéighted mean of
deviances. The weights used are related to the deviance residuals through Huber or

redescending type function. The parameter estimates come from the minimization of the

quantity n"Zw,.D, (114 ) where D, is the squared deviance residual for the i-th
observation, x is the mean, ¢ is the nuisances parameter, and w, is the weight from the

influence function. If the Huber’s function is used to find w,, then

W, = ﬁ ,if\D,.'ﬂ\ >1.5
i
=1.0 , otherwise

Observations with unusually low values for weights are considered outliers. The
procedure successfully detected outliers in several examples from McCullagh and
Neldeer (1989) and also identified outliers in the stackloss data set. The method appears

to be effective at detecting X-space outliers (leverage outliers).

Bayesian Unmasking in Linear Model

Justel and Pena (2001) proposed a Bayesian procedure for multiple outlier
detection in linear models, which avoids the masking problem. The posterior
probabilities of each data point being an outlier are estimated by using an adaptive
learning Gibbs sampling method. The idea is to modify the initial condition of the
Gibbs sampler in order to visit the posterior distribution space in a reasonable number of
iterations. To find an appropriate vector of initial values, the information is extracted

from the eigenstructure of the covariance matrix of a vector of latent variables. These
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variables are introduced in the model to capture the heterogeneity in the data. This

procedure also overcomes the false convergence of the Gibbs sampling in problems with

strong masking.

Using Data Images for Outlier Detection

Proposed by Marcheete and Solka (2003), the data image is a method for
visualizing high-dimensional data. The idea is to map the data into an image, by using
gray-scale (or color) values to indicate the magnitude of each variable. Thus, the image
for a data set of size n and dimension ¢ is an ¢ x n image, where the columns
correspond to observations and the rows to variables. They consider the application of
this idea to the detection of outliers providing a simple visualization technique that

highlights outliers and clusters within the data.

Outliers Nomination Based on Multihalver by Fernholz, Morghenthaler and Tukey

Fernholz et al. (2004) proposed a new method for detecting observations with a
pronounced influence on a given estimator 7. This method based on a careful selection
of a set of half samples A/ and on a detailed study of the differences of the estimator
computed on the complementary halves. After the outlier detection has been performed,
the flagged observations can be removed or winsorized. Then, compute an improved
estimate and a confidence interval based on the modified sample and again using half
samples. An important advantage of this method is its generality. The method can

easily be applied to any real-valued estimator, even if the data is multivariate.
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2.4.2 Indirect Procedures from Robust Regression Estimators

Robust regression techniques accommodate outliers by down weighting or
ignoring the unusual observations to ensure they are not too influential on the regression
para.meter estimates. It is possible to detect unusual observations from either the final
weights assigned to the observations or by the magnitude of the residuals. Robust
regression techniques are important since they provide similar estimates of the parameter
compared to the estimates given by least squares methods when the data are free of

outliers, but differ significantly when there exist outliers.

Robust regression models are useful when the random error (variation) in the

data is not normally distributed or when there are outliers present. Robust regression

devises estimators, which are not strongly effected by outliers. If an estimate x, (R for

robust) is relatively unaffected by outliers, the residuals e, = y - 7, from the robust fit
should be useful to flag cases off the regression line. In robust analysis, it wants to fit a
regression to the majority of the data and discover the outliers at those points with large

residuals from the robust solution. Clearly, robust regression methods are designed to fit

data with outliers by minimizing some function of the residuals that is less sensitive than

least of squares to outliers.

The three most important properties of robust regression estimators are high
breakdown point, high efficiency, and bounded influence. The breakdown point is the
percentage of outliers present in the data when the technique’s parameter estimates
become unreliable or fail to provide useful information regarding the bulk of the data.
This measure used to determine an estimator’s insensitivity to multiple outliers,
Generally, the breakdown point gives the limiting fraction of outliers the estimator can
cope with. For instance, least squares have a breakdown of 1/, indicating that only a
single outlier can make the estimate useless. Some robust techniques have the highest

possible breakdown point of 1n/2n or 50%. Various high breakdown estimators have

been used as starting points for bounded influence estimation.
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Efficiency is defined as the performance of robust estimator relétive to least
squares estimator under the assumption of no outliers, that is, the random error & is
normally and independently distributed with mean 0 and variance covariance a’l.
Since the least squareséstimaie is the unbiased minimum variance estimator (UMVE),

typically the efficiency is defined as the ratio of the mean square error, that is

MSE,
MSE,,

Efficiency = (2.13)

The bounded influence property makes sure the estimator is resistant from being
affected by the extreme observation in x-space. Krasker and Welsh (1982) discussed the
importance of bounded influence specifically its ability to down weight observations that
are both high residual and high leverage observations. The least squares estimate is not
bounded influence and therefore the observation, which is more remote; exert a greater
influence on the parameter estimates. That is why the techniques based on least squares

are unable to detect high leverage points.

The following discussed briefly the relevant direct procedures chronologically

for historical purposes.

Maximum Likelihood Robust (M)-Estimator

M-estimator proposed by Huber (1973) as pointed out in Huber (1981), is based
on the idea of replacing the squared residuals e,.2 in least squares method by another

function of the residuals, yielding

Mingnize i ,o(e,.) (2.14)
(=]
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where p is symmetric function (i.e., pl-1)= p(t) for all ) with a unique minimum at
zero. Differentiating this expression with respect to the regression coefficients f3,

yields

> ole )k, =0, | ‘ (2.15)

where 1 is the derivative of p, and x, is the row vector of explanatory variables of the
ith case. One has to standardize the residuals by means of some estimate of o, yielding

Z@[e—ij,. =1 (2.16)
()

i=1
where & must be estimated simultaneously. Huber proposed to use the function
o(t) = min(e, max(t,~c)). (2.17)

M-estimators are still robust with respect to outliers y,. However, their breakdown

point is again 1/ because of the effect of outliers x,.

Generalized M (GM)-Estimators

GM-estimators were introduced, with the basic purpose of bounding the
influence of outlying x, by means of some weight function w. Mallows (1975)

proposed to replace (2.16) by

n

3 w(x,)rp(‘i;)x, =0, (2.18)
a

i=1

whereas Schweppe (1977) suggested using

iMJ(xj)qa[L]x, =0. (2.19)

=y w(x, )6
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These estimators were constructed in the hdpe of bounding the influence of a single
outlying observation, the effect of which can be measured by means of so-called
influence function. Generally, the corresponding GM-estimators are called bounded

influence estimator.

Least Median of Squares (LMS) Estimator

Rousseeuw (1984) introduced the high breakdown (as much as 50%) LMS

estimators. LMS is obtained by minimizing the Ath ordered squared residual where /1 is

defined as the integer portions of [(#/2)+(p+1)/2]. Note / is not the median of n. In

other words, LMS estimator /3 is obtained from minimizing the median of squared

errors, that is, it solves

f’laringﬂfzelmed(ef )J (2.20)

LMS fits just over half the data and minimizes the residual for a single observation. The

i3

LMS has a high breakdown but due to its »™"° convergence rate, it has zero efficiency

under the central Gaussian model.

Least Trimmed Squares (LTS) Estimator

Rousseeuw (1983,1984) proposed the high breakdown LTS estimator as an
efficient alternative to LMS. The LTS estimator is formed by minimizing the / out of n
ordered squared residuals, given by

h
Mfiizgm'ze;(ez ).. (2.21)

where (ez)i <. < (ez)”m are the ordered squared residual. Rousseeuw and Leroy

n

(1987) recommended / = n(l - ct) + 1 where « is the trimmed percentage. This estimator
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is attractive because @ can be selected to prevent some of the poor results (efficiency)
that other 50% breakdown estimators show. LTS estimator has 7.12% asymptotic

efficiency.

S-Estimator

Both the LMS and LTS are defined by minimizing a robust measure of the
scatter of the residuals. Generalizing this, Rousseeuw and Yohai (1984) introduced so-

called S-estimator, corresponding to

Mz'ngnize Se, (B), €, (ﬁ)) X (2.22)

where the dispersion function S(e, (B),...,e, (B)) is found implicitly as the solution to

[ 1 ],Z?p[y’—x'?ﬁ}=](. (2.23)

”_P i=| §

The constant K may be defined as E,[p], where @ represents the standard normal

distribution. S-estimator is also asymptotically normal and has 28.7% efficiency.

Minimum Volume Ellipsoid (MVE) and Minimum Covariance Determinant

(MCD) Estimators

The traditional regression leverage measure, /, and the Mahalanobis distance

are not robust. Robust measures of leverage include the Minimum Volume Ellipsoid
(MVE) estimator, the Minimum Covariance Determinant (MCD) estimator, and M-
estimates of covariance. The MVE and MCD estimators (Rousseeuw, 1983,1984) have

breakdown as high as 50% but suffer from computational problems and have some
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outlier detection vulnerabilities. The MVE and MCD estimators computed using a
global optimization search routine that considers subsamples of p+1 points. For
moderate to large sized problems, random subsampling is required. Unfortunately,
random subsampling does not guarantee locating the true minimum. Several algorithms
havé been developed that calculate the approximate and exact solutions require
excessive processing time and the approximate solutions have considerable variability.
A study was performed on the high breakdown MVE and MCD estimators using
datasets with outliers (Simpson, 1995). In several instances these methods not only
masked the points in the outlier cluster, but they also identified some of the inliers as

outliers (swamping).

MM-estimator

The MM-estimator is a high-breakdown and high-efficiency estimator with three
stages, which was proposed by Yohai (1987) as pointed out in Yohai et al. (1991). The
initial estimate is a high-breakdown estimate using an S-estimate. The influence

function given by

p(x) = 3(%7 = 3(%)1 + (%)“ if |A| 2a

plx)=1 otherwise

The value of the tuning constant is set as 1.548. The second stage computes an MM

” g
Lo s =X, ; ; ;
parameters that minimize Z p[J’—jﬁ—-’W{l where p(x) is the influence function used
“n

i=|
in the first stage with tuning constant selected as 4.687 and &, is the estimate of scale

from the first stage that is the standard deviation of the residuals. In the last step, the

procedure computes the MM estimate of scale as the solution to

~

1 e J’,-‘X,Tﬁ _
A2 s
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Coalkley and Hettmansperger Estimator '

Proposed by Coakley and Hettmansperger (1993), this compound estimator uses
LTS as the initial estimate and adjusts the estimates with empirically determined
weights'. The weights given to the leverage come from the minimum volume ellipsoid
(MVE) scaled by percentiles of the chi-square distribution. Other components include a
Scheppe-type GM objective function, an estimate of scale from the scaled median of the

LTS residuals, the Huber psi function and a one-step Newton—Raphson convergence

approach.

Simpson and Montgomery Estimator

Proposed by Simpson and Montgomery (1998), this compound estimator uses a
high-breakdown S-estimate for the initial estimate that minimizes the dispersion of the
residuals. The estimate of scale also comes from this initial fit with the S-estimator. A
leverage measure for each observation is based on distances using the M-estimates of
covariance procedure. High-leverage points are downweighted using a Schweppe-type
GM objective function if the observations do not conform to the regression surface.
Regression outliers are downweighted by a Tukey-biweight psi function. This function
allows outliers to exert an increasing amount of influence on parameter estimates to a
certain point (e.g. 3¢ off the regression plane) and then decreases the outliers' influence
beyond this point until eventually reaching no influence. These weights are then used in
only a single step of reweighted least squares to preserve the high-breakdown property

from the S-estimator.

Least Trimmed Sum of Absolute Deviations (LTA) Estimator

Hawkins and Olive (1999) proposed the use of least trimmed sum of absolute

deviations (LTA) as an alternative to LMS and the LTS. The computational complexity
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is of lower order than the LMS or the LTS. The use of high breakdown estimates for
example, LMS and LTS, lead to a portioning of the data set into two halves, that is the
covered and the uncovered ‘half’. The covered half of cases are accommodated by the
fit, while the uncovered half, which might include the outliers, are ignored. In LMS, the
critérion is the Chebyshev norm of the residuals of the covered cases while in LTS; the
criterion is the sum of squared residuals of the covered cases. The criterion of the LTA
is found by minimizing the sum of squared residuals of the covered cases. The LTA is
particularly attractive for large data sets. The modification of the Hawkins-SimonofT
elemental set code has been used for the exact computation of the LTA, which involves
enumeration of all elemental subsets of the data. It is also suggested that LTA be used

as a tool foe modeling data sets with missing observations on predictors.

Blocked Adaptive Computational Efficient Outliers Nominators (BACON)

Billor, Hadi and Velleman (2000), proposed a method that is based on the
methods of Hadi (1992, 1994), that is by finding a small s.ubset of data that can be
presumed free of outliers and then allowing the subset to grow rapidly, testing against a
criterion and incorporating blocks of observations at each step. The following is the

general BACON algorithm:

o Step I: Identify an initial basic subsets of m > p observations that can safely be

assumed free for outliers, where p is the dimension (or number of regressors) of
the data and m is an integer chosen by the analyst.

o Step 2: Fit an appropriate model to the basic subset, and from that model
compute discrepancies for each of the observations.

e Step 3: Find a larger basic subset consisting of observations known (by their
discrepancies) to be homogenous with the basic subset. Generally, these are the
observations with smallest discrepancies. This new basic subset may omit some
of the previous basic subset observations, but the size must be as large as the

previous basic subset.
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e Step 4: Iterate Steps 2 and 3 to refine the basic subset, using stopping rule that
determines when the basic subset can no longer grow safely.

e Srep 5: Nominate the observations excluded by the final basic subset as outliers.

The. BACON algorithms reliably detect multiple outliers can be as slow as four
repetitions of the underlying fitting method. This algorithm can be applied to non-linear
models provided the analyst is willing to assume an error distribution to use as a basis
for determining the cutoff value for discrepancies. It is also easy to implement in

statistics packages that have programming or macro languages.

New Algorithms for Computing the Least Trimmed Squares Regression Estimator

Agullo (2001) proposed two new algorithms to compute the LTS estimator. The
first algorithm is probabilistic and based on an exchange procedure. The second
algorithm is exact and based on a branch and bound (BAB) technique that guarantees
global optimality without exhaustive evaluation. This BAB technique avoids the
exhaustive enumeration of all /-subsets and the algorithm is computationally feasible for
data sets with 7 <50 and p <5. However in practice, unless for these very small data
sets, the BAB algorithm will be computationally prohibitive and an approximate
algorithm should be used. In order to approximate the LTS and LTD estimates, Agullo
also proposed a minimum-maximum exchange algorithm. Agullo recommended
executing many repetitions of the minimum-maximum exchange algorithm, with each
repetition starting from a partially random A-subset containing the /7 observations with

smallest squared residuals evaluated at the LS fit for a random p-subset.



32

CHAPTER 3

MONTE CARLO SIMULATION STUDY PLANNING

3.1 Introduction

This chapter discusses how the proposed methods perform in the different outlier
situations. However to further understand the performance of the methods, a detailed
study of the procedure on randomly generated data sets was performed. The following

discusses the details of the simulation study planning.

3.2 Outlier Scenarios and Regression Conditions

Each of the multiple outliers detection method was tested in various outlier
scenarios and regression conditions. An outlier scenario refers to the placement of the
outlying observations relative to the inlying observations. A regression condition refers
to the number of observations in the data set, the number of regressor variables, and the
percentage of outlying observations. There are 6 outlier scenarios and a total of 36
regression conditions for each scenario considered in this research. These 36 regression
conditions consist of 3 levels of regressor variables, 3 levels of sample size, 2 levels of

outlying percentage and 2 levels of outlier distances. Figure 3.1 illustrates the six-outlier



33

scenarios chosen for this research for the case of one regressor variable. In the figure, the

black circles represent outlying groups of observations.

These scenarios were chosen because they are situations in which multiple
outliers are highly influential but typical least squares outlying meéasures and influence
diagnostics fail to identify them. Specifically, these scenarios contain groups of high
leverage outliers, which are most difficult to identify. It should be noted that these
scenarios closely resemble those of Kianifard and Swallow (1990) and Hadi and

Simonoff (1993).

Scenario 1 Scenario 2 Scenario 3
AB A
® "B @ O
® B
0 20 0 20 30 0 20
Scenario 4 Scenario 5 Scenario 6
AB A
® B
® B
-10 0 20 30 0 20 30 0 20 30

Figure 3.1: Simple regression picture of the six-outlier scenarios tested
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Every outlier scenario tested had either one or two outlying groups of
observations. Scenarios 1, 2, 3, and 4 have groups of xy-space outliers. The xy-space
outlier is an observation with an unusual value in both the regressor variable(s) and
response variable. In scenario 1, there is one group of xy-space outlying observations
with the regressor variable values (x) approximately 20. There is also one group of xy-

space outlying observations in scenario 2 but with the x values approximately 30.

While, in scenario 3 there are two groups of xy-space outlying observations with
the x values approximately 20 and 0. There are also two groups of xy-space outlying
observations in scenario 4 but with the x values approximately 30 and -10. On the other
hand, scenario 5 has a group of x-space outlying observations with the x values
approximately 30. The x-space outlying observations meaning that, observation is
outlying in the regressor variable values only. In the last scenario, which is scenario 6,
there are one x-space outlying observations and one xy-space outlying observations both

with the x values approximately 30.

Table 3.1 shows various regression conditions for the six scenarios. The factors
and corresponding levels were chosen so that the performance of the identification
method could be tested in a wide variety of regression conditions for each outlying
scenario. Since there are an infinite number of regression conditions, priority was given

to regression conditions that are “typical”.

Table 3.1: Factors and levels for the simulated data sets

Factor Levels
Number of regressor variables (p) 1,2,6
Number of observations in data set (17) 20, 40, 60
Percentage of outlying observations 10%, 20%

Outlier distances 50,100




35

In each scenario, the outliers were placed away from the inliers by a specified
distance. The “outlier distances” were measured in standard deviations of inlying
observations (o= 1). Two outlying distances were considered which at 5 standard

deviations and 10 standard deviations.

For each of the simulations, the value of all regression coefficients was set to
equal 5 to guarantee there was a statistically significant slope in the regression line
(plane). The values of the inlying or “clean” observations regressor variables were

selected at random from the U/(0,20) distribution. The distribution of the random error

for both the clean and outlying observations were N(0,1).

33 Creating Simulated Data Sets

The approach to creating data sets to test the methodology was to randomly

generate » regression observations. Of these # observations, n, “clean” observations
were generated and represent the inlying observations, while #, observations were
generated and represent the outlying observations where n = 7, +n,. Next, we will

show how the data sets used in this simulation study were created for the case of one
regressor variable. However, the same methodology can be extended to the case of
multiple regression ( p > 1) data sets. Every outlier scenario has either one or two
groups of outlying observations. The following will illustrate how these groups of

outliers were formed.
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3.3.1 One Group of Outlying Observations

The n, clean observations were generated according to the model
V=B + Bx. .+, i=L..,n, (3.1

where x,, is U(O,ZO) and gis N(0,1) with g, =0and §, =5. The n, outlying

observations were generated according to the model

y, = B, + B, (%, +xshift)+ yshift +¢,, i=1,....7, (3.2)

where gis N(0,1). The term (% + xshift) allows the outliers to be placed at a specified

location in the x-space. The yshift term allows the outliers to be placed at a specified
distance away from the inliers in the y-space. Note that yshift is the number of standard

deviations that the outliers are placed away from the clean observations.

The average of a sample of clean variable values created from the U(0,20) will

be approximately 10. For example, to create outlying observations with x values that
approximately 20, xshift was set to 10. Then, to create outlying observations with y
values that are approximately 10 standard deviations away from the clean observations,
yshift was set to 10. If the outlying observation was in the x-space only, the yshift was
set to zero. An example of this data set (scenario 1, n =20, and 10% outlying) is given
in Table 3.2 and the regression graph in Figure 3.2. It should be noted that xshift is in

absolute units while yshift is in standard deviation units,



Table 3.2: Example of one group of xy-space outliers (l 9,20)
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Obs. y X
1 5.446120 25.745060
2 14.979626 58.761800
3 1.970022 15.384090
4 4511679 19.981200
5 17.091321 82.968340
6 10.750279 53.063810
7 15.631164 86.254420
8 17.828718 110.085210
9 11.628712 61.031740
10 16314657 88.381990
1  5.695668 14.885710
12 14.575002 92.919310
13 19.909402 97.987210
14 13.556771 71.464600
15 16.405463 77.679850
16 12631480 66.270780
17 13.206961 74.310600
8 8.443224 31.924210
19 22525134 228.186350
20 22.444198 225.512960
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Figure 3.2: Example of one group of xy-space outliers (19, 20) for data in Table 3.2

3.3.2 Two Groups of Outlying Observations

The data sets containing two outlying groups were created in a similar manner.
Again, the clean observations were created according to model (3.1). The two groups of

outlying observations were created using the following models

Yur =B+ (x, + xshiftl)+ yshiftl + & J 2= Nyl 3.3)

ial ?
Voy = By + By (E, + xshift2) + yshifiz+&,,, i=1...,71, (3.4)

where 7, and »,, are the sizes for outlying group 1 and outlying group 2 respectively.
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For example consider scenario 3. To create outlying observations with x values

that approximately 20, xshift was set to 10. To create outlying observations with y

values that are approximately 10 standard deviations greater than the clean observations,

yshift was set to 10. To create outlying observations with x values that approximately 0,

xshift was set to -10. To create outlying observations with y values that are

approximately 10 standard deviations less than the clean observations, yshift was set to -

10. An example of this two outlying group data set with n = 20 and 10% outlying is

shown in Table 3.3 and the regression graph in Figure 3.3.

19 ¢
200 -
100 *
x
b ™
[ 2 .’.
a
L]
[ ) []
07 ®
00 20
T T T T
0 5 10 15
X

Figure 3.3: Example of two groups of xy-space outliers (19, 20) for data in Table 3.3




Table 4.3: Example of two groups of xy-space outliers (19, 20)
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Obs. y X
1 16.162502 82.531400
2 2.647700 16.709300
3 10.994522 43.841952
4 2.329006 31.021920
5 11.168700 51.698600
6 18.582858 104.269000
7 0.944700 -6.283140
8 0.951488 60.173599
9 18.358800 84.994312
10 - 8.549300 51.629500
11 18.743107 101.755200
12 11.074729 50.865764
13 0.952399 8.977400
14 11.596495 46.480400
15 17.739295 98.288252
16 18.947655 91.137074
17 2.159500 9.349378
18 16.236994 78.118742
19 21.739419 228.569682
20 1.253974 -100.611872
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3.4 Performance Measure

Recall that, the two fundamental problems with outlier identification techniques,
in the presence of multiple outliers are masking and swamping. If the purpose of the
a11aiyst is to identify influential subsets of observations, masking is more of a problem
than swamping. That is, if the candidate set of outlying observations does not contain
true outliers, this is more “costly” than the additional cost of computing the influence

inliers.

For that reason, in this research “success” will mean that the method successfully
identified all of the outlying observations (no masking occurred). If the method is
successful but also includes inlying observations in the candidate set of outliers
(swamping oc'curs), this will be noted as “false alarm”. Both the detection capability
and false alarm rate are reported for 1000 sets of data (or replications). Figure 4.4
illustrates how the performance of this method was assessed. All code development and

simulations done using S-PLUS 2000 were shown in Appendix A, C, E and G.

DO.ES How many

candidate inliers are in

subset Yes the candidate ¥ 3

subset?
contain ——p “Success” ———» -
- M
all of the -
outliers?
Swamping Occurred
p “Failure” Masking Occurred

Figure 3.4: Flowchart summarizing performance assessment of methodology
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CHAPTER 4

SEBERT, MONTGOMERY AND ROLLIER CLUSTERING ALGORITHM

4.1 Introduction

This chapter discusses the Sebert et al. (1998) clustering algorithm for
identifying multiple outliers in linear regression. This methodology is based on
clustering the points in the plots of residuals versus predicted values, in building linear
regression models. Although these plots are primarily used for assessing model
adequacy, it will be shown that they can be equally valuable tool for identifying multiple
outlying observations. The algorithm is described and is shown to perform well on
classical multiple outlier data sets. Also, the performance characteristics of the proposed
methodology are demonstrated and explored by applying the procedure to simulated data

sets that have various outlier scenarios.

4.2  Clustering Overview

“Cluster analysis” is the generic name for a wide variety of procedures that can
be used to create a classification. More specifically, clustering method is a multivariate
statistical procedure that starts with a data set containing information about a sample of

entities and attempts to reorganize these entities into relatively homogenous groups. In
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other words, cluster analysis discovers the natural groupings of the entities (items or
variables). Similarly, Hartigan (1975) refered the word clustering as “the grouping of
similar object” and noted “clustering techniques were first developed in an applied field
(biological taxonomy)'and significance tests, probability models, loss functions, or

optimal procedure”.

Cluster analysis begins by taking a set of » observations on p variables. Nexta
measure of similarity between observations is obtained. Then a set of rules is employed
that group the observations based on their inter-observation similarities. There are three
primary decisions the analyst has to make before clustering multivariate data. First, one
must decide what point or variables to use. Second, the measure of similarity to use and

third, the clustering algorithm to use.

4.2.1 Similarity Measure

In order to group the items (or variables) into their natural groupings, it is
necessary to have a measure of “closeness” or “similarity” or a measure of dissimilarity
between the items (or variables). Aldenderfer and Blashfield (1984) described four
types of similarity measure: correlation coefficients, distances measures, association

coefficients and probabilistic similarity coefficients.

Each of these methods has advantages and disadvantages that must be considered
before a decision is made to use one. Most commonly used is to compute the measure
of distance. Among the more popular representations of distance is Euclidean distance,

defined as

d; = i(xm ~ Xk )2 (4.1)
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where d; is the distance between observation i and j, and x,, is the value of the th

variable for the ith observation. Other types of distance is the Manhattan distance, or

city-block metric, which is defined as

(4.2)

P
dy = Z|xm Y
k=1

Other metrics can be defined, but most are specifics forms of the special class of metric

distance functions known as Minkowski metrics, defined in a general form as

yd R r
d; = (Z Xy — Xy } (4.3)

k=1

The other distance is called generalized distance (Mahalanobis), which is defined as

d, =% -x,> "% -x,) (4.4)

where I is the pooled within-groups variance-covariance matrix, and X, and X, are

vectors of the values of the variables for observation 7 and /.

Johnson and Wichern (1982) and Everitt (1993) noted that the Euclidean distance
is the most widely accepted and commonly used measure of similarity when trying to
find groups among multivariate observations. The Euclidean distance is popular
because of its intuitive appeal as a similarity measure. That is, a relatively small
distance should separate similar observations; while dissimilar a relatively large distance

should separate observations.
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43 A Review on Clustering Method

The primary reason for the use of cluster analysis is to find groups of similar
entmes in a sample data. These groups are conveniently referred to as clusters. Clusters
have certain properties. Sneath and Sokal (1975) as pointed out in Aldenderfer and
Blashfield (1984) have described a number of these properties, the most important of

which are density, variance, dimension, shape and separation.

Density is a property of cluster that defines it as a relatively thick swarm of data
points in a space when compared to other areas of the space that may have
comparatively few or no points. Variance is the degree of the dispersion of the points in
this space from the center of the cluster. This property can simply describe the relative
nearness of points to one another in the data space. Cluster can be said to be ‘tight’
when all points are near the centroid, or they may be ‘loose’ when the data points are

dispersed from the center.

Dimension is a property closely related to variance; if a cluster can be identified,
it is then possible to measure its ‘radius’. Shape is simply the arréngement of points in
the space. The typical conception of the shape of clusters is that they are hyperspheres

or ellipsoids; many different kinds of shapes, such as elongated clusters are possible.

The followings are some of the clustering methods that have been developed

according to Aldenderfer and Blashfield (1984):

1. Hierarchical

2. lterative partitioning

3. Density search
4. Factor analytic
5. Clumping

6. Graph theoretic
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Each of these methods represent a different perspective on the formation of groups, and
the results obtained can be very different when different methods are applied on the
same data. What is important to remember when faced with the difficult choice of
which clustering method to use is that the method must be compatible with the desired
nature of the classification, the variables to be used, and the similarity measure used to

estimate the resemblance between cases if one is required.

Sebert et al. (1998) have shown that clustering methods are sensitive to outliers.
The most popular method used in order to detect the presence of outliers is hierarchical

agglomerative method. This method will be discussed briefly in this project.

4.3.1 Hierarchical Clustering Methods

Hierarchical clustering is useful if the analyst has no prior ideas about how many
clusters he expects or might like to have. These methods operatelon similarity matrix to
construct a tree depicting specified relationships among entities. These methods are
divided into two groups, that is the agglomerative and the divisive. The agglomerative
methods build tree from branches to root, while the divisive methods begin at the root

and work toward the branches.

Root

v

Branches <

Figure 4.1: Branches and root in hierarchical clustering methods
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The agglomerative hierarchical methods proceed with a series of successive
mergers with the individual items as clusters. The most similar objects are first grouped
and these initial groups are merged according to their similarity measures. Eventually,
as the similarity decreases, all subgroups are fused into a single cluster. These cluster
are nested, that is the merging are permanent. The divisive hierarchical methods are just
the opposite of agglomerative. The initial group consist of all the objects and then
divided into two subgroups such that the objects in one subgroup are far from the objects
in the other. The process of division will continue until there are many subgroups as

objects.

These clustering methods produce nonoverlapping clusters. The results of both
agglomerative and divisive may be displayed in the form of two-dimensional diagram
known as dendogram or tree diagram. The dendogram illustrates the merges or
divisions, which have been made at successive level. It seems that all the hierarchical
clustering methods treated in the literature are alternative forms or minor alterations of

three major clustering concepts:

1. Linkage methods:
o Single linkage — use the smallest dissimilarity between a point in the first
cluster and a point in the second cluster.
e Average linkage — use the average of the dissimilarities between the
points in one cluster and the points in the other cluster.
e Complete linkage — use the largest dissimilarity between a point in the

first cluster and a point in the second cluster.

2. Centroid methods
o use the Euclidean distances as the dissimilarity between two centroids of

the clusters.

3. Error sum of squares or variance methods: Ward’s methods
o the mergers at each stage are chosen so as to minimize the error sum of

squares between two clusters summed over all the variables.
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All of these methods are suitable in clustering data units, but the linkage methods
are suitable in clustering both data units and variables. There are at least 12 different
linkage forms that have been proposed, three have become widely popular; single
linkage, average linkage and complete linkage. Figure 4.2 shows the different

representations of the linkage clustering methods.

)
b)
'®)
@ _®
.__——
c)
. —8

Figure 4.2: Representation of a) Single linkage b) Complete linkage c) Average linkage
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The following are the general agglomerative hierarchical clustering algorithm for

grouping N objects (items or variables):

Lo

Start with N cluster, each containing a single entity and an N x N symmetric

matrix of distances (or similarities), D = {d, }

Search the distance matrix for the nearest (most similar) pair of clusters. Let the

distance between “most similar” clusters U and Vbe d,,, .
{

Merge clusters U and . Label the newly formed cluster (UV). Update the
entries in the distance matrix by

e Deleting the rows and columns corresponding to clusters U and ¥ and,

e Adding a row and column giving the distances between cluster (UV) and

the remaining clusters.

Repeat steps 2 and 3 for N —1 times. All objects will be in one cluster at
termination of the algorithm. Record the identity of clusters that are merged and

the levels (distances or similarities) at which the merges take place.

Different agglomerative methods are implemented by varying the procedures

used for defining the most similar pair in step 2 and for updating the revised similarity

matrix at step 3. The stability of hierarchical solutions can be checked by applying the

clustering algorithms before and after small errors (perturbation) have been added to the

data units. The solution is stable if the clustering before and after perturbation agrees.

Almost all hierarchical agglomerative methods are vary to monotonic transformations

except for single linkage method.

The best clustering algorithm for a certain situation largely depends upon the

type of clusters that are in the data set. There are many types of clusters. Figure 4.3

shows the different types of clusters, as described by Kaufmann and Rousseouw (1990).
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Figure 4.3: Examples of types of clusters
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If one really wants to find elongated clusters then the single liﬁkage is the
clustering methods to use. The average linkage is aimed at finding elliptical clusters.
Meanwhile, the complete linkage tends to produce a very compact cluster that is the
clusters have small diameters. Sebert et al. (1998) proposed to use single linkage

clustering method in other to detect the presence of multiple outliers in linear regression.

4.3.2 Single Linkage

This method is the easiest and most fruitful mathematically in constructing
clusters and has been widely used since it was first introduced by Florek et al. (1951)
and Sneath (1957) as pointed out in Aldenderfer and Blashfield (1984). Single linkage
method operates on a matrix distance (or similarity) coefficients between groups, which
is revised as each successive level of the hierarchical is generated. The term single
linkage is used because two clusters are joined if any of the distances between the
objects in different clusters is sufficiently small, that is if there is a single link between
the clusters. The inputs to a single linkage algorithm can be distances or similarities
between pairs of objects. Groups are formed from individual entities by merging nearest

neighbors, where the term nearest denotes smallest distance or largest similarities.

Single linkage is incapable of delineating poorly separated clusters. The single
linkage method is one of the very few clustering techniques, which can outline non-
ellipsoidal clusters. The presence of scattered intermediate points lying between denser
clusters of points tends to cause these clusters to link together prematurely and is

sometimes called “chaining”.
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It is well established (refer to Johnson and Winchern, 1982; Kaufman and
Rousseouw, 1990; Everitt, 1993) that, single linkage is a good clustering algorithm for
identifying elongated or “chain-like” clusters. In most regression situations one would
assume that an approximate linear relationship exists between the regressor variables
and the response variable and that these observations form a chain-like cluster.

Observations that do not follow this linear pattern can be thought of as “outliers”.

Many researches fault the single linkage approach because of its “chaining”
tendency. Everitt (1993) noted, however, that “to call chaining a defect is rather
misleading, since chaining is simply a description of what single linkage does. In some
cases it may lead to a more accurate picture of the structure in the data than other
methods”. This thought is also consistent with Johnson and Winchern (1982) who noted
that if in fact one expects long chain-like clusters, single linkage is one of the only
clustering techniques that can find them. Therefore, in regression situation, it is the
chain-like structure of the inlying observations that single linkage clustering is well

suited to identify.

4.3.2.1 Single Linkage Clustering Algorithm

Initially, we must find the smallest distance in D = {d, } and merge the

corresponding objects, say U and ¥ to get (UV). For step 3 of the general algorithm, the

distances between (UV) and other cluster /7 are computed by

d(yyyy = min {duwde} or  Sgyyy = max {S”,,,.,S,,“,}

Here quantities ,,, and d,, are distances between the nearest neighbors of clusters U

and W and clusters V and W, respectively. Figure 4.4 shows the general steps in the

single linkage clustering algorithm.



Step 1
Start with N clusters, each containing

a single multivariate observation.

Step 2

Calculate the matrix of distances between all possible

pairs of clusters

Step 3
Find the pair(s) of clusters with the smallest distance between

them and merge these clusters into a single cluster.

Step 4
In the distance matrix, delete the rows and columns

corresponding to the merged cluster(s). Add a single

row and column for each merged cluster from step 3

Step 5

Go back to step 2 if more than one

cluster remains

Figure 4.4: Steps in single linkage clustering algorithm
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The results of single linkage clustering algorithm can be seen oﬁ a dendogram, or
what is commonly referred to as “cluster tree” diagram. The branches in the tree
represent clusters. The branches come together (merge) at nodes whose positions along
a distance (or similarity) axis indicate the level at which the fusions occur. The
following is an example illustrating the single linkage algorithm using the Euclidean
distance as the similarity measure. The observations are shown in Table 4.1 and the

scatter plot in Figure 4.5.

Table 4.1: Observation used to illustrate the single linkage clustering algorithm

Observation X1 X2
1 : 0.651] 0.573
2 -0.535 1.651
3 -0.170 0.606
4 1.450 -2.437
5 0.548 -0.547
2
1
. 1
3
5 ol
™ .
5
A -
-2
4 .
-3 T i T T T
-0.5 0.0 0.5 1.0 1.5
x1

Figure 4.5: Plot of Observations used to illustrate the single linkage clustering algorithm
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Since there are 5 observations, initially there are also 5 clusters with one element
in each cluster. First, we need to calculate the matrix of distances (similarity matrix)
between all possible pairs of clusters. As an example, the distance between observation

I and 2 is calculated as

dy, =/(0.651-(=0.535)) +(0.573~1.651)
=1.602710

The distance for d, = d ,, then the similarity matrix is written as an upper triangular

matrix. Table 4.2 (a) shows the similarity matrix.

Table 4.2 (a)

1 2 3 4 5
1 1.602710 0.821663 3.114242 1.124726
2 0 1.106910 | 4.544375 2.450325
3 0 3.447354 1.358283
4 0 2.094207
5 0

In single linkage method, the pair of clusters with the smallest distance is merged

first. From Table 4.2 (a), the smallest distance is within cluster 1 and 3, which is

0.821663. In this case, cluster 1 and 3 is merged first while the row 1 and column 3 in

similarity matrix are deleted. Table 4.2 (b) shows the new similarity matrix with the

new row and column added for cluster (1,3).




Table 4.2 (b)

4 5 (1,3)
2 4.544375 | 2.450325 1.106910
4 0 2.094207 | 3.114242
5 0 1.124726
1,3) 0
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Since the single linkage clustering algorithm computes similarity measures based

on the “nearest neighbors” therefore the distance between cluster 2 and cluster (1,3) is

measured based on observation 2 and observation 3. The distance between cluster 4 and

cluster (1,3) is measured based on observation | and 4 while the distance between

cluster 5 and cluster (1,3) is measured based on observation 1 and 5. According to Table

4.2 (b), cluster 2 and (1,3) is merged since this pair has the smallest distance value of

1.106910. Then, the corresponding column and row of cluster 2 and (1,3) are deleted.

Table 4.2 (c) shows the new similarity matrix with the new row and column for cluster

(2, (1,3)) added.

Table 4.2 (c)

5 2, (1,3)
4 2.094207 3.114242
5 0 1.124726
2, (1,3) 0
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In Table 4.2 (c), the shortest distance is between clusters 5 and (2, (1,3)) (cluster

5 and (1,3)) with value of 1.124726. The next merging is thus between cluster 5 and

(2, (1,3)). Table 4.2 (d) shows the new similarity matrix with the new row and column

for cluster (5, (2, (1,3))) added.

Table 4.2 (d)

4 5, (2, (1,3)))
4 0 2.094207
(5, (2, (1,3))) 0

Thus, the final merging is between cluster 4 and cluster (5, (2, (1,3))) where all

the observations are put into one cluster. The distance between cluster 4 and cluster

(3, (2, (1,3))) is calculated using the distance between cluster 4 and cluster 5 which is

2.094207. Below are the tree diagram illustrating the merges.

2.0

1.8

16

Height
1.4
|

1.2

Figure 4.6: Tree diagram to illustrate the single linkage algorithm

1.981682
Mojena’s
Stopping
Rule

1.70

1.05
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One can also use the S-PLUS 2000 cof*nputer package to illustrate the single
linkage algorithm with the Euclidean distance as the similarity measure. Figure 4.7
shows the output from S-PLUS agglomerative hierarchical clustering and explanation on

some of the arguments is given below.

*+% Agglomerative Hierarchical Clustering ***
Call:
agnes {x = menuModelFrame(data = SDF41l, variables =
"<ALL>", subset = NULL, na.rm = T), diss = F,
metric = "euclidean", stand = F, method =
"single", save.x = T, save.diss = T)

Merge:
[»11 [,2]

[1,] -1 -3 = Step 1: Merge between observation 1 and cbservation 3
(Negative sign denote the merging is between individual
observations and not clusters at previous stage)

[2,] 1 -2 => Step 2: Merge between cluster from step 1 and observation 2

[3,1 2 -5 = Step 3: Merge between cluster from step 2 and observation 5

(4,1 3 -4 — Step 4: Merge between cluster from step 3 and observation 4

Order of objects: — order of objects appeared on the dendogram read from left
to right
[1] 1 32514
Height: — distances between merging clusters read from left to right of the
dendogram
[1] 0.8216629 1.1069101 1.1247262 2.0942072

Agglomerative coefficient: — dimensionless quantity between 0 and 1
[1] 0.4299352

Available arguments:

(1] "order" "height" "ac" "merge"

[5] "order.lab" "diss" "data" Wea LM

Figure 4.7: The output from S-PLUS agglomerative hierarchical clustering

The agglomerative coefficient is given by AC = lZZ(z) where !(i) is the length
sy

of the jth observation on the 0 - 1 scales above or below the graphical display.
Generally, the AC describes how strong the clustering structure is but the value tends to
be larger with the increase of the sample sizes. When the value of AC is very small, the
corresponding method has not found the natural structure. But a high value of AC that is
close to 1 implies very strong clustering structure has been found but not necessarily the
“right” clustering. Inclusion of outlier can make the value of 4C very close to 1. But

with the help of graphical display such as dendogram can pinpoint the outlier.
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4.3.3 Stopping Rule

After a clustering algorithm is used on a data set, the user must decide how many
groups (if any) are in the data set. Specifically, the cluster tree must be portioned or
“cut” ai a certain height. The number of groups depends upon where the tree is cut.
Again, consider Figure 4.6. Notice that the number of groups in this data set would be
two if the tree is cut at a height 1.70. On the other hand, if the tree is cut at 1.05 the data
will be divided into four groups. The “number of groups” problem is practical issue that

any user of clustering procedures must deal with.

An extensive research on the different stopping rules was done by Milligan and
Cooper (1985). Most of these stopping rules have difficulty in a two clusters scenarios
that is, it would seem that a two-cluster case is the most difficult structure for the
stopping rules to detect. The stopping rule used in this research is the Mojena’s stopping
rule (1977). The Mojena’s stopping rule is widely known and has been the subject of

some limited validation research (Mojena, 1977; and Blashfield and Morey, 1980).

The rule resembles a one-sided confidence interval based on the N —1 heights

(joining distances) of the cluster tree. Formally, Mojena’s stopping rule or “cut height”
is /1 +as, where /1 is the average of the heights for all N —1 clusters, and s, Is the
unbiased standard deviation of the heights, and is a specified constant. Mojena initially
suggested that o should be specified in the range of 2.75-3.50. However, Milligan and
Cooper (1985) in a more comprehensive study, concluded that the best overall
performance of Mojena’s stopping rule occurs when the value of & is 1.25. Returning to
the example in Figure 4.6, / =1.286877 and s, =0.555844 , using & =1.25, Mojena’s
cut height is 1.981682, which result in a two groups solution for the data.set. The groups

are cluster 4 and cluster (5, (2, (1,3))).
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44  Sebert et al. Clustering Methodolbgy

It is well known that residual plotted against the corresponding predicted values
is a useful tool for judging the adequacy of a regression model. These plots are useful
for .detecting departures from normality, inequality of variance, the Wrong functional
specification of the regressor(s), and outliers. The regression user is generally instructed
to look for an approximate horizontal band on the plot. If this is found then there are no
obvious problems with the fitted regression model. Observations that are not outlying
will generally have a linear relationship that can be visualized in the plot of predicted
and residual values. That is why one looks for a horizontal band to determine the
adequacy of the fitted model. Again, from a single linkage clustering point of view, one
is looking for a long, horizontal, chain like cluster. If this type of cluster is seen then

one assumes that there are no major model inadequacies.

The methodology is based on using the single linkage algorithm to cluster the
points in the predicted values versus residual values plot. Specifically, single linkage
will be used because it is the best technique for identifying elongated clusters, which for
the purpose of this research, will be the inliers. The steps of the methodology will now
be discussed in detail and illustrated with the “Modified Wood Gravity” data set given
by Rousseeuw and Leroy (1987) and shown in Table 4.3. The observations 4, 6, 8, and

19 in this data were outliers.



Step 1.

Step 2:

Step 3:

Step 4:
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Standardize the predicted values and residuals obtained from an ordinary least
squares (OLS) fit of the data.

Table 4.4 shows these values for the Modified Wood Gravity data.

Figure 4.8 shows a plot of the standardized predicted values and residuals for the
wood data.

Using the Euclidean distance between pairs of standardized predicted values and
residuals as the similarity measure, cluster the observations using the single
linkage clustering algorithm and obtain the cluster tree.

Figure 4.9 shows the output from S-PLUS agglomerative hierarchical clustering
and explanation on some of the arguments.

Based on Mojena’s stopping rule cut the tree and form groups at a height of
h +1.25s, where h is the average of the tree cluster heights for all N —1

clusters, and s, is the unbiased standard deviation of the heights of the N —1

clusters.

Forthe example data set, / is 0.593138 and s, is 0.291703. Therefore, the cut
height on the cluster tree is 0.593138 + 1.25%0.291703 = 0.957767.

The cluster tree and corresponding cut height is shown in Figure 4.10.

Identify the group with a majority of the observations in it as the inlying
observations. All other observations are outlying observations.

The summary of this methodology is shown in Figure 4.11.



Table 4.3: Modified Wood Gravity Data, Rousseeuw and Leroy (1987)
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Obs. y x1 x2 x3 x4 x5
B - 0.5340 0.5730 0.1059 0.4650 0.5380 0.8410
2 0.5350 0.6510 0.1356 0.5270 0.5450 0.8870
3 0.5700 0.6060 0.1273 0.4940 0.5210 0.9200
4 0.4500 0.4370 0.1591 0.4460 0.4230 0.9920
5 0.5480 0.5470 0.1135 0.5310 0.5190 0.9150
6 0.4310 0.4440 0.1628 0.4290 0.4110 0.9840
7 0.4810 0.4890 0.1231 0.5620 0.4550 0.8240
8 0.4230 0.4130 0.1673 0.4180 0.4300 0.9780
9 0.4750 0.5360 0.1182 0.5920 0.4640 0.8540
10 0.4860 0.6850 0.1564 0.6310 0.5640 0.9140
11 (0.5540 0.6640 0.1588 0.5060 0.4810 0.8670
12 0.5190 0.7030 0.1335 0.5190 0.4840 0.8120
13 0.4920 0.6530 0.1395 0.6250 0.5190 0.8920
14 0.5170 0.5860 0.1114 0.5050 0.5650 0.8890
15 0.5020 0.5340 0.1143 0.5210 0.5700 0.8890
16 ~ 0.5080 0.5230 0.1320 0.5050 0.6120 0.9190
17 0.5200 0.5800 0.1249 0.5460 0.6080 0.9540
18 0.5060 0.4480 0.1028 0.5220 0.5340 0.9180
19 0.4010 0.4170 0.1687 0.4050 0.4150 0.9810
20 0.5680 0.5280 0.1057 0.4240 0.5660 0.9090




Table 4.4: Standardized least squares predicted values and residuals for

Modified Wood Gravity data.

) Predicted Standardized Standardized
Obs. Values Predicted Values Residual Residual
1 0.5515 1.1873 -0.0175 -0.8447
2 0.5339 0.7728 0.0011 0.0550
3 0.5400 0.9179 0.0300 1.4478
4 0.4414 -1.4006 0.0086 0.4132
5 0.5238 0.5368 0.0242 1.1678
6 0.4419 -1.3899 -0.0109 -0.5264
7 0.4591 -0.9846 0.0219 1.0563
8 0.4238 -1.8146 -0.0008 -0.0407
9 0.4845 -0.3869 -0.0095 -0.4613
10 0.4960 -0.1174 ~0..01 00 -0.4835
L1 0.5061 0.1201 0.0479 2.3133
12 0.5479 1.1026 -0.0289 =1.3953
13 0.5037 0.0637 -0.0117 -0.5656
14 0.5474 1.0916 -0.0304 -1.4693
15 0.5161 0.3562 -0.0141 -0.6834
16 0.4954 -0.1324 0.0126 0.6102
17 0.5261 0.5914 -0.0061 -0.2969
18 0.4992 -0.0434 0.0068 3307
19 0.4271 -1.7371 -0.0261 -1.2625
20 0.5549 1.2665 0.0131 0.6355
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Figure 4.8: Plot of standardized predicted (sfit) and residual (sRes) values for the

Modified Wood Gravity data
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***% Agglomerative Hierarchical Clustering ***

Call:
agnes (x = menuModelFrame (data = SDF2%, variables =
"<ALL>", subset = NULL, na.rm = T), diss = [,
“metric = "euclidean", stand = F, method =
"single", save.x = T, save.diss = T)

Merge:
[,11 [,2]
1,17 -1z -14 ~> Merge between observation 12 and observation 14
[2,1] -10 ~-13
[3,] -9 2 — Merge between observation 9 and cluster from step 2
[4,)] -16 -18
[5,] 3 =15 — Merge between cluster from step 3 and observation 15
[6,1] 2. =47
(7,1 6 5 — Merge between cluster from step 6 and cluster from
step 5
[8,] -3 -5
[9.'] =1 1
{10,131 -4 -8
[11,] 10 -6
[12,] 7 =20
[1:3,:1 11 =7
[14,] ) 12
(15,1 13 -19
[16,] 14 4q
[17,1 16 8
[18,] 17 15
[19,] 18 -11 —+ Merge between cluster from step 1B and observation 11

Order of objects:
(111 12 142 17 9 10 13 1520 16 183 5 4 8§ 6
[18) 7 19 11

Height: (h)
[1] 0.5570767
[6] 0.2704128
[11]} 0.2933279
[16] 0.6451934

.0748131 0.8094329 0.3959035 0.4524393
.1988407 0.3153301 0.7620498 0.8175559
.8710605 0.4729030 0.9618992 0.6143462
.7659201 0.8138741 1.1772516

oo oo

Agglomerative coefficient: (AC)
[1] 0.6004517

Available arguments:
{1] "order" "height" "ac" "merge"
[5] "order.lab" "diss" "data" "call"

Figure 4.9: The output from S-PLUS agglomerative hierarchical clustering for
Modified Wood Gravity data.
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Figure 4.10: Cluster tree and Mojena’s cut height for Modified Wood Gravity data.

Again referring to Figure 4.10. It can be seen that after the cut there are three
groups formed. Going across the tree from left to right, Group 1 consists of observation
11 and Group 2 consists of observation 19, 7, 6, 4, and 8. Group three consists of
observations 3, 5, 16, 18, 1, 12, 14, 20, 15, 9, 10, 13, 2, and 17. Group 3 contains the
majority of the observations and thus this set will be the inlying observations.
Observations 4, 6, 7, 8, 11, and 19 are identified as the outlying observations. The

outlying observations identified by this methodology are noted also in Figure 4.8.



Step 1
Standardize the predicted values and
residuals obtained from an ordinary least

squares fit of the data.

Step 2
Cluster the observations using the single linkage clustering
algorithm with the Euclidean distance between pairs of
standardized predicted values and residuals as the similarity

measure, and obtain the cluster tree.
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Step 3

Based on Mojena’s stopping rule cut the tree and form groups at a height of

B+ 1.25s, where 7 is the average of the tree cluster heights for all N -1

clusters, and s, is the unbiased standard deviation of the heights of the N -1

Step 4
Identify the group with the largest size as the clean
subset, that is, free of potential outliers. All other

observations are outliers.

Figure 4.11: Steps in Sebert et al. clustering algorithm
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4.5  Performance of the Clustering Methodology on Classic Data Sets

Sebert et al. have used many data sets to illustrate the multiple outlier problem in
linear regression. Thése data sets will be referred to as “classic™ multiple outlier data
sets anﬁ are shown in Table 4.5. In the table, p represents the number of regressor
variables and » is the total number of observations in the data set. The last column lists
the outlying observations. The performance of the methodology on the classic data sets
is summarized in Table 4.6. It can be seen that the methodology successfully identified
all the outliers for all of the data sets. The method performed perfectly for 3 out of the 5
data sets in the sense that there was no masking or swamping. When there was
swamping, the number of observations swamped is small. For example, in the Modified
Wood Gravity data, observations 7 and 11 are included in the outlying set of
observations. Appendix B shows the full computation and results for the other 4 classic

data sets using this clustering methodology.

Table 4.5: Classic multiple outlier data sets

No Data sets D n Outlying
observation
1 = Telephone Data 1 24 15-24
(Rousseuw and Leroy, 1987)
2 Hertzsprung-Russell StarsData
(Rousseuw and Leroy, 1987) 1 47 11,20, 30, 34
3 Hawkins, Bradu, and Kass Data
(Hawkins et al., 1984) 3 75 1-14
4 Modified Wood Gravity Data
- (Rousseuw and Leroy, 1987) 5 20 4,6,8,19
5 Stackloss Data

(Brownlee,1965) 3 21 1-4,21
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Table 4.6: Sebert’s methodology performance on classic multiple outlier data sets

Number of
No Data sets Outlying Outlying observations
observation observations swamped
identified (False
alarms)
1 Telephone Data 15-24 15-24 0
(Rousseuw and Leroy, '
1987) '
2 Hertzsprung-Russell 11, 20, 30, 11,20, 30, 2
StarsData (Rousseuw 34 34,7, 14
and Leroy, 1987)
3 Hawkins, Bradu, and 1-14 1-14 0
Kass Data
(Hawkins et al., 1984)
4 Modified Wood Gravity 4,6,8,19 4,6,7,8, 2
Data (Rousseuw and 11,19
Leroy, 1987)
5 Stackloss Data 1-4,21 1-4,21 0

(Brownlee,1965)

4.6 Discussion of Methodology

The following discussion is provided to highlight the important point of

clustering methodology.

Standardizing predicted and residual values

Generally, it is advisable to standardize the observations of a data set before a

cluster analysis. The reason for this is that the observations with the most variability
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will dominate the similarity measure. This is especially necessary when using Euclidean
distance as similarity measure. In many regression data sets the variation of the
predicted values will be much different than the variation in the residuals. Thus to

properly differentiate the outlying observations the predicted values and residuals must

be standardized.

Predicted values versus residual plots

One may argue that the predicted value versus residual plot is all that is required
for identifying multiple outliers in linear regression. To be sure, in some instances the
regression analyst will be able to identify multiple outliers by a simple examination of
this plot. In fact, the methodology of this research was motivated by being able to “see”
multiple outlying observations in the plots of many of the classic multiple outlier data
sets. The problem of looking only at the predicted value versus residual value plot is
that there will be many instances where multiple outliers are not as extreme and ones

ability to see them is greatly reduced.

For example, consider again the plot of the predicted versus residual values for
the “Modified Wood Gravity” data set in Figure 4.8. It is our argument that the outlying
observations (4, 6, 8, 19) are not easily identifiable by visual inspection only. Lastly it
seems like it would be less than satisfactory to propose that the regression user only
examine the predicted versus residual plot for multiple outlying observations.
Therefore, a formal method of grouping the observations and classifying them as inlying

or outlying, as proposed in this research, is beneficial.
Mojena’s stopping rule

One may wonder why Mojena’s stopping rule for grouping the observations was
chosen over numerous other rules that have been proposed. Milligan and Cooper (1985)

empirically evaluated the performance of thirty proposed stopping rules and Mojena’s
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rule was among the top performers. Milligan and Cooper pointed out that all stopping
rules are “heuristic, ad hoc procedures”. They discussed that, although many have
recommended the development of more formal statistical methods for determining the
number of clusters in a data set, progress in this area has been slow because of the
“immense distributional problems” associated with clustering. Therefore, the practioner

has only heuristic rules to use as a guide.

The reason that Mojena’s rule was chosen for the clustering methodology of this
research is because it is simple to calculate and it performs excellently on the data sets in
which it was tested. It must be emphasized that Mojena’s criteria is very straightforward
when compared with other stopping rules. One should not select a stopping rule base on
ease of computation only, however based on Milligan and Cooper’s study, there is no
evidence to suggest that the overall performance of Mojena’s rule is worse than other
stopping rules, and this research has shown that using this simple rule provides excellent

solutions in the regression or multiple outlier context.
Masking and Swamping

It can be seen from the methodology’s performance on the classic data sets that
there was no masking. However, there were a few data sets that contained swamped
observations. Masking is a more serious problem than swamping. If an outlier is missed
because of masking, the outlier, if influential, can degrade the performance of the
regression model. On the other hand, if swamping occurs, these “clean” or inlying

observations should be identified though they are not influential.
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4.6  Testing the Sebert ef al. Cluster Methodology on Simulated Data Set

Sebert et al. clustering methodology discussed in this research has been shown to
perform well on the classic data set. However to further understand the performance of
the methods, a detailed study of the procedure on randomly generatéd data sets was
performed. According to Figure 3.1 in chapter three, 6-outlier scenarios have been
considered. Each outlier scenario has 36 regression conditions. The results are based
upon applying the proposed methodology to 1000 random sets created according to a

specific regression condition.

The results showing the performance of the proposed methodology for each
scenario is provided in Table 4.7 — Table 4.12. Figures 4.12 - 4.17 shows the Sebert’s
method performance based on the number of observation » and the number of regressor
variable p. Scenario 1 consists of situations 1-4, while scenario 2 consists of situations
5-8 and so on. Table 4.16 summarizes Sebert’s method performance for each scenario.
The following provides the general conclusions about the procedure’s performance

characteristics.

The tppo (total probability a planted outlier is detected) value increases as the
outlying distance increases. From a clustering perspective, this is an intuitive result.
The more separated outlying groups of observations are from inlying observations, the
easier it is to obtain a proper clustering solution. However, it must be emphasized that
this is not the case when using typical least squares diagnostics and many robust
methods. In high leverage scenarios, the more separated a group of out!ying.
observations is the more difficult it is to identify the group as outlying. The tppo (total
probability a planted outlier is detected) value increases as the number of regressor
variables increases. Figures 4.12- 4.14 show this situation. From Figure 4.12 where the
sample size is 20, the detection probability decreases significantly with the increase in
the number of regressors particularly in situations 2, 4, 10 and 12 but increases

significantly in situations 19 through 24.



Table 4.7: Scenario 1 result for the Sebert et al. methodology

73

n=20 n =40 n =060
No of
regressor outlier outlier

(p) % _distance tppo tpswamp tppo tpswamp tppo tpswamp

1 10 5 0.9730 0.0528 0.9930 0.0893 0.9957 0.1120

10 10 1 0.0069 1 0.0072 1 0.0109

20 5 09128 0.1629 0.9567 0.2666 09723 0.2926

20 10 0.9920 0.0672 0.9892 0.0899 09890 0.0889

2 10 3 0.9190 0.0000 0.9825 0.0007 0.9877 0.0026

10 10 0.5565 0.0012 0.6333 0.0040 0.6920 0.0086

20 5 0.9263 0.0008 0.9819 0.0028 0.9943 0.0061

20 10 0.5515 0.0073 0.6670 0.0158 0.7229 0.0254

6 10 2 0.9990 0.0238 ] 0.0396 1 0.0488

10 10 1 0.0168 1 0.0224 1 0.0266

20 5 0.9893  0.0541 09980 0.0714 0.9992 0.0800

20 10 1 0.0508 0.9993  0.0621 0.9990 0.0631

Table 4.8: Scenario 2 result for the Sebert et al. methodology
n=20 n=40 n =60
No of
regressor outlier outlier

() % distance tppo tpswamp tppo tpswamp tppo tpswamp

1 10 5 0.9995 0.0283 0.9983 0.0413 ] 0.0466

10 10 1 0.0076  0.9990 0.0086 1 0.0118

20 5 0.9928 0.0787 0.9923 0.1068 0.9947 0.1083

20 10 0.994  0.0538 0.9894 0.0678 0.9882 0.0736

2 10 4 0.9995  0.0000 1 0.0000 1 0.0000

10 10 0.992  0.0000 1 0.0004 1 0.0012

20 5 1 0.0000 1 0.0000 1 0.0000

20 10 0.9943  0.0000 1 0.0005 1 0.0014

6 10 3 1 0.0107 ] 0.0154 | 0.0193

10 10 I 0.0101 1 0.0143 1 0.0174

20 5 1 0.0228 1 0.0317 ] 0.0350

20 10 1 0.0271 1 0.0350 1 0.0371
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n=20 n=40 n=60
No of
regressor outlier outlier

(p) % __distance tppo tpswamp tppo tpswamp tppo tpswamp

1 10 5 0.9260 0.0113 0.9770 0.0210 0.9850 0.0281

10 10 ] 0.0002 1 0.0003 1 0.0011

20 5 0.8560 0.0492 0.9591 0.0976 0.9797 0.1255

20 10 0.9995 0.0124 09990 0.0197 0.9980 0.0195

2 10 5 0.90I5 0.0001 0.9698 0.0010 0.9807 0.0026

10 10 0.5365 0.0006 0.6095 0.0027 0.6617 0.0066

20 5 0.8923  0.0006 0.9653 0.0027 0.9863 0.0064

20 10 0.5340 0.0068 0.6243 0.0133 0.6765 0.0198

6 10 3 0.9895 0.0100 0.9985 0.0159 1 0.0214

10 10 1 0.0045 I 0.0080 1 0.0102

20 5 0.9298 0.0208 0.9951 0.0334 0.9999  0.0404

20 10 0.9943  0.0193 1 0.0281 I 0.0313

Table 4.10: Scenario 4 result for the Sebert et al. methodology
n=20 n=40 n =060
No of
regressor outlier outlier

(p) % _distance tppo tpswamp tppo tpswamp  tppo  tpswamp

1 10 5 0.9885 0.0057 09998 0.0108 ] 0.0148

10 10 1 0.0003 1 0.0012 1 0.0019

20 5 0.9350  0.0276 0.9991 0.0323 0.9995 0.0380

20 10 0.9990  0.0120 I 0.0126  0.9995 0.0161

2 10 5 0.9995  0.0000 1 0.0000 1 0.0000

10 10 0.9925  0.0001 1 0.0004 1 0.0012

20 5 ] 0.0000 1 0.0000 | 0.0000

20 10 0.9908  0.0001 ] 0.0011 1 0.0017

6 10 3 ] 0.0038 1 0.0059 ] 0.0073

10 10 ] 0.0035 ] 0.0056 1 0.0068

20 5 0.9973  0.0088 1 0.0135 ] 0.0156

20 10 0.9990 0.0106 ] 0.0162 I 0.0168
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Table 4.11: Scenario 5 result for the Sebert et al. methodology

n=20 n=40 n=:60
No of
regressor outlier outlier

» % distance tppo tpswamp tppo tpswamp tppo tpswamp

1 10 5 0.9885 0.0673 1 0.0682 1 0.0729

10 10 0.9885 0.0673 1 0.0682 1 0.0729

20 5 09178 0.0860 09943 0.1012 09991 0.1017

20 10 09178 0.0860 09943 0.1012 09991 0.1017

2 10 5 0.9650  0.0000 1 0.0000 1 0.0000

10 10 0.9700  0.0000 1 0.0001 1 0.0010

20 5 0.9930  0.0000 1 0.0000 1 0.0000

20 10 0.9893  0.0001 1 0.0007 1 0.0015

6 10 5 1 0.0099 1 0.0152 1 0.0193

10 10 1 0.0097 I 0.0151 1 0.0353

20 8 1 0.0184 1 0.0296 1 0.0154

20 10 1 0.0186 ] 0.0300 1 0.0352

Table 4.12: Scenario 6 result for the Sebert et al. methodology
n=20 n=40 n =60
No of
regressor outlier outlier

) % distance tppo tpswamp tppo tpswamp tppo tpswamp

I 10 5 0.8980 0.0061 0.9998 0.0102 1 0.0160

10 10 0.7310 0.0001 0.9995 0.0008 1 0.0017

20 8 0.8988 0.0086 1 0.0158 1 0.0259

20 10 0.8430 0.0001 1 0.0012 1 0.0032

2 10 5 0.9995  0.0000 ] 0.0000 1 0.0000

10 10 1 0.0000 1 0.0000 1 0.0000

20 5 I 0.0000 1 0.0000 1 0.0000

20 10 1 0.0000 1 0.0000 1 0.0000

6 10 5 1 0.0008 1 0.0023 1 0.0039

10 10 1 0.0000 1 0.0002 I 0.0006

20 5 1 0.0005 1 0.0033 1 0.0068

20 10 1 0.0000 ] 0.0003 1 0.0013
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Figures 4.13 and 4.14 indicate that for large », (n = 40 and n = 60), the detection
probability remains high and quite the same for different values of p. The outlying
observations were generated to be outlying in all regression variables. The methodology
is based on clustering the elements in the predicted versus residual value plots. Asa
result, as the number of regressor variables increases, observations that are outlying in
all regressor variables will tend to have larger predicted values with similar residual
values. This allows the proposed identification method to more easily identify the

outlying observations as a cluster.

The tppo (total probability a planted outlier is detected) value increases as the
percentage of outliers decreases. Recall, the outlying and inlying observations were
created randomly, both having N (0,1) error distribution. For a given outlier distance, as
the percentage of outliers increases the probability that an outlier will be close to the
inlying observations also increases. Therefore, from a clustering perspective, the

possibility of falsely classifying an outlier as an inlier (failure) increases

The tppo (total probability a planted outlier is detected) value increases as the
number of observations in the data set increases. Figures 4.15 — 4.17 shows this
situation. In all simulations, the regressor values were generated from the U (0,20)
distributions. From a clustering point of view it is easier:to distinguish groups of data
when there are more data ina givén range. In other words, clusters are easier to identify
as the density of the cluster increas;es. This is why this method performs better as the

number of observations increases.

To verify this phenomenon, consider scenario 6 for the 1 regressor, 20
observation regression condition. Overall this was the regression condition in which this
methodology had the worst success rate. However, the performance of the methodology
is improved dramatically when the density of the clean cluster is increased. This was

done by generating the clean observations from the /(0,10) distribution. The results are

shown in Table 4.13.
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The tpswamp (total probability a clean observation is c!as.siﬁed as an outlier)
value decreases as the outlying distance increases. Again, this is an intuitive result. The
more separated the inlying and outlying observations are, the easier it is for the
clustering algorithm to correctly differentiate them. Thé tpswamp (total probability a
clean observation is classified as an outlier) value decreases as the number of regressor
variables increases. Figures 4.12-4.14 shows this situation. Because the predicted
values are “magnified” in these situations, they will be more separated on the predicted
versus residuals plots. From a clustering perspective, the more separated groups are the

easier it is to correctly identify them.,

The tpswamp (total probability a clean observation is classified as an outlier)
value decreases as the percentage of outliers decreases. This is consistent with the
improved of tppo value at lower outlier percentages. In general, it is easier to

differentiate the outliers from the inliers when there are fewer outliers.

Table 4.13: Comparison of Sebert et al. method performance with

higher density clusters

Scenario 6 with n =20 Inlying observations Inlying observations
U(0,10) U(0,20)

No of Outlier Outlier

regressor Y% distance tppo tpswamp tppo tpswamp
1 10 5 I 0.0008 0.8980 0.0061
10 10 1 0.0000 0.7310 0.0001
20 5 1 0.0018 0.8988 0.0086
20 10 1 0.0000 0.8430 0.0001

The simulation result for Sebert et al. method performs well for most of
regression conditions tested. In general, this method performs best (high tppo value with

low tpswamp value) at lower outliers percentages. Table 4.14 summarizes the tppo
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value in percentage for the six scenarios. For example, in scenario 6 this method was

successful at least 95% of the time in 32 of 36 regression conditions. Recall that each

scenario has 36 regression conditions, so for scenario 6, this method was successful at

least 950 out of 1000 times for 32 of the 36 regression conditions. Similarly, Table 4.15

surhmarizes the tpswamp value in percentage for the six scenarios. ‘For example in

scenario 6, the percentage of clean observations is classified as an outlier is between 0 to

5% in all the regression conditions.

Table 4.14: Total probability a planted outlier is detected (in percentage) of the

Sebert et al. methodology in all regression conditions tested

% 100-95  94.9-90 89.9-85 84.9-80 79.9-75 74.9-70 <70
Scenario 1 27/36 3/36 0/36 0/36 0/36 1/36 5/36
Scenario 2 36/36 0/36 0/36 0/36 0/36 0/36 0/36
Scenario 3 25/36 3/36 0/36 0/36 0/36 0/36 6/36
Scenario4  35/36 1/36. 0/36 0/36 . 0/36 0/36 0/36
Scenario 5 34/36 236 - 0/36 0/36 0/36 0/36 0/36
Scenario 6  32/36 0/36 2/36 1/36 0/36 1/36 0/36

Table 4.15: Total probability a clean observation is classified as an outlier (in

percentage) of the Sebert et al. methodology in all regression conditions tested

%o 0-4.9 5-9.9 10-14.9 15-19.9  20-24.9 >25
Scenario | 23/36 9/36 1/36 1/36 0/36 2/36
Scenario 2 30/36 4/36 2/36 0/36 0/36 0/36
Scenario 3 34/36 1/36 1/36 0/36 0/36 0/36
Scenario 4 36/36 0/36 0/36 0/36 0/36 0/36
Scenario 5 28/36 8/36 0/36 0/36 0/36 0/36
Scenario 6 36/36 0/36 0/36 1/36 0/36 0/36
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Figure 4.12: Performance of Sebert’s method for » = 20 and all values of p
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Figure 4.13: Performance of Sebert’s method for n = 40 and all values of p
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Figure 4.14: Performance of Sebert’s method for # = 60 and all values of p
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Table 4.16: Summary of Sebert’s method performance for each scenario

No of No of Outlier % Outlier

regressor | observation increase distance

increase increase increase

‘ tppo increase increase decrease increase
Scenario 1 tpswamp decrease increase increase decrease
tppo increase increase decrease increase

Scenario 2 tpswamp decrease increase increase decrease
tppo increase increase decrease increase

Scenario 3 tpswamp decrease increase increase decrease
tppo increase increase decrease increase

Scenario 4 tpswamp decrease increase increase decrease
tppo increase increase decrease increase

Scenario 5 tpswamp decrease increase increase decrease
tppo increase increase decrease decrease

Scenario 6 tpswamp decrease increase increase decrease




4.8  Summary and Conclusion

This chapter discussed the Sebert et al. clustering method in identifying multiple
outliers in linear regression and was shown to perform excellently on the classic data
sets found in the literature and a wide variety of simulated data sets. This methodology
is not the first to suggest a clustering based approach. For example, Gray and Ling
(1984) proposed to use a clustering algorithm to identify potentially influential subsets.
They used the hat matrix with the vector of response values appended as the basis for

their clustering algorithm. H.eid'g and Simonoff (1993) also proposed a clustering strategy
based on the use of single linkage clusteringon Z = (X|y).
B
There are several advantages in using this approach. First, recall that it is the
residual and associated predicted values that are clustered in this methodology. This
always reduces the multiple outlier problem to two dimensions, where as clustering

Z= (le) maintains the dimensions k& +1. Having fewer dimensions will make a

clustering algorithm more efficient and, as was discussed earlier, in extreme outlying
cases, multiple outliers can be easily identified in a plot of the residuals versus predicted
values. Next, instead of relying on hypothesis testing for determining multiple outliers,
this approach uses the cluster tree itself, with an appropriate cutting rule, to separate
inliers from outliers. This methodology relies on a more data analytic approach rather
than having to determine appropriate hypothesis testing distributions or formal cut off
values. This method is also beneficial because predicted and residual values are
standard regression outputs for most common statistical software packages.
Furthermore, single linkage clustering is also found on many commonly used statistical

software packages such as SAS, S-PLUS and Minitab.

In general, this procedure performs best (no masking and swamping) in those
situations in which the outlying observations are located at a large distance from the
inliers. One could argue that this is a somewhat intuitive result, and from a clustering

perspective it is. However, it must be stressed that many of the current outlier
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identification strategies, such as least squarés type diagnostics or robust methods fail on
similar types of data sets. The common characteristic of these data sets that makes them
problematic for typical least squares and robust identification strategies is the presence
of high leverﬁge groups of outliers. That is, groups of observations that are located a
relatively large distance away from the inliers in the regressor space. However, this
separation is not problematic for clustering algorithm, but is exactly what the algorithm

attempts to show.

The disadvantage of this clustering methodology is that it requires the analyst to
use a diagnostic approach that is not in typical regression analyst’s toolbox. However,
clustering algorithm in general (including single linkage) is now found in commonly
used data analysis software packages. Therefore, Sebert et al. hoped this clustering
methodology is effective for identifying multiple outliers and will become a routine part

of the regression model building process.
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CHAPTER 5

MODIFICATION ON SEBERT’S METHOD

5.1 Introduction

This chapter discusses the modification of Sebert et al. (1998) clustering
algorithm for identifying multiple outliers in linear regression. The modification is done
using the robust estimator and two modifications will be discussed in this chapter.
Method 1 is a modification of Sebert’s method where the least squares (LS) fit is
replaced by the least median of squares (LMS) fit while Method 2 is a modification of
Sebert’s method where the least squares (LS) fit is replaced by the least trimmed of
squares (LTS) fit. The LTS and LMS estimators are chosen since they have a high
breakdown (as much as 50%), efficient and bounded influence. The classical data sets
will be used to illustrate the methods. Also, the performance characteristics of the
proposed methodology are demonstrated and explored by applying the procedure to

simulated data sets that have various outlier scenarios.

5.2 The Difference between LS, LMS and LTS Estimator:

The least median of squares (LMS) and the least trimmed of squares (LTS)
estimators are the most popular and good robust estimators. These estimators have a

high breakdown (as much as 50%), efficient and bounded influence. A high breakdown
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estimator can fit a model to the bulk of the data even if a large percenfage of outliers are
present. The ordinary least squares (LS) estimator has a breakdown of 0% because a
single outlying observation can make the estimates and inference from the remaining
(n-1) observation meaningless. An efficient estimator provides parameter estimates
close to those of the ordinary least squares estimates of a data set with NID error terms
in the absence of outliers. Bounded influence estimators protect the regression surface
from being pulled toward extreme observation in x-space. The ordinary least squares
estimators do not have bounded influence and the more extreme the outlier is in x-space,

the greater is the impact it has on the estimates of the parameter.

Figure 5.1 shows the least squares fit (LS fit), the least median of squares fit
(LMS fit) and the least trimmed of squares fit (LTS fit) for a data set with outliers. From
this graph it is obvious that the fit from the LTS and LMS is better compared to the LS

in the presence of outliers.

40 - LTS fit
30
>
£l LS fit
outliers
10
0 T T T 7 T
0 50 100 150 200

X

Figure 5.1: The LS, LMS and LTS regression for a data set with

two xy-space outlying observations
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5.3 A Review on the Least Median of.Squares (LMS) Regression

The least median of squares (LMS) regression was proposed by Rousseuw in

1984. LMS estimator is obtained from minimizing the median of squared errors, that is,
it solves

M z'n;'}.’nize [med (8,2 JJ (5.1)

In other words, LMS is obtained by minimizing the /th ordered squared residual where /4
is defined as the integer portions of [(n/?_)—}- (p+1)/2]. Note A is not the median of ».
LMS fits just over half the data and minimizes the residual for a single observation. The
LMS estimator is regression equivariant, scale equivariant, and affine equivariant. A
note and proof on these three characteristics are shown in Appendix I. The LMS has a

-3

high breakdown (as much as 50%) but due to its »™° convergence rate, it has zero

efficiency under the central Gaussian model. If p >1 and the observation are in

general position, then the breakdown point of the LMS method is Qn/ 2]—— p+ 2) n.

5.4 A Review on the Least Trimmed of Squares (LTS) Regression

The least trimmed of squares (LTS) regression was proposed by Rousseuw in
1984. This method is similar to the least squares but instead of using all the » ordered

squared residuals, it minimizes the sum of the / smallest squared residuals, given by

Mingnizei(ez)””. (5.1)
i=1

2 .
where (ez)l_" N (e )”;” are the ordered squared residual. Rousseeuw and Leroy

(1987) recommended /1 = n(l —a)+1where a s the trimmed percentage and » equal to

the number of observations.
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This estimator is attractive because « can be selected to prevent some of the poor
results (efficiency) that other 50% breakdown estimators show. LTS attains the same
breakdown point as LMS. The breakdown value for LTS will reach its maximal value,
(2= p)/2]+1)/n when /= (n+ p+1)/2 where p is the number of parameters. When /
beclomt—as close to », the breakdown point approaches zero. The number of observations
must be at least twice the number of parameters for the breakdown point to be high. LTS
estimator has 7.12% asymptotic efficiency. LTS can be fairly efficient if the number of
trimmed observations is close to the number of outliers because ordinary least squares is

used to estimate the parameter from the remaining 7 observation.

5.5 Method 1

Method | is a modification of Sebert’s method where the least squares (LS) fit is
replaced by the least median of squares (LMS) fit. It is a well-known fact that the least
median of squares (LMS) is a high breakdown estimator, therefore the proposed method
uses the standardized predicted and residual values from the least median of squares
(LMS) fit rather than the ordinary least squares (LS) fit. The flowchart for this method

is presented in Figure 5.2,

The steps of the methodology will now be discussed in detail and illustrated with
the “Modified Wood Gravity” data set given by Rousseuw and Leroy (1987), which is
shown in Table 4.3. Table 5.1 shows the standardized predicted and residual values
from the least median of squares (LMS) for the Modified Wood Gravity data. Figure 5.3
shows the output from S-PLUS agglomerative hierarchical clustering and explanation on
some of the arguments. Scatter plot of the standardized predicted values and residuals
for the wood data using the least median of squares (LMS) fit is shown in Figure 5.4.

The cluster tree and corresponding cut height is shown in Figure 5.5.



Step 1
Standardize the predicted values and
residuals obtained from the least median of .

squares (LMS) fit of the data.

Step 2
Cluster the observations using the single linkage clustering
algorithm with the Euclidean distance between pairs of

standardized predicted values and residuals as the similarity

measure, and obtain the cluster tree.
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Step 3
Based on Mojena’s stopping rule cut the tree and form groups at a height of

h+1 255, where # is the average of the tree cluster heights for all & —1

clusters, and s, is the unbiased standard deviation of the heights of the N —1

Step 4
Identify the group with the largest size as the clean
subset, that is, free of potential outliers. All other

observations are outliers.

Figure 5.2: Steps in Method 1
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Table 5.1: Standardized least median of squares predicted values and residuals for
Modified Wood Gravity data.

Predicted Standardized Standardized
Obs. Values Predicted Values Residual Residual
1 0.5227 -0.3674 D.OT13 0.5939
2 0.5304 -0.2337 0.0046 0.5203
3 0.5651 0.3671 0.0049 0.5235
4 0.6379 1.6267 -0.1879 - -1.5879
5 0.5295 -0.2495 0.0185 0.6727
6 0.6488 1.8167 -0.2178 -1.9163
7 0.4752 -1.1891 0.0058 0.5334
8 0.6401 1.6662 -0.2171 -1.5087
9 0.4799 -1.1076 -0.0049 0.4161
10 0.4909 -0.9172 -0.0049 0.4161
11 0.5589 0.2599 -0.0049 0.4161
12 0.5239 -0.3459 -0.0049 0.4161
13 0.4889 -0.9525 0.0031 0.5041
14 0.5209 -0.3977 -0.0039 0.4269
15 0.5012 -0.7391] 0.0008 0.4786
16 $.5129 -0.5364 -0.0049 0.4161
17 0.5202 -0.4101 -0.0002 0.4676
18 0.5109 -0.5710 -0.0049 0.4161
19 0.6550 1.9236 -0.2540 -2.3125
20 0.5645 0.3571 0.0035 0.5080
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*** Agglomerative Hierarchical Clustering ***
Call: '
agnes (x = menuModelFrame (data = woodl, variables =
-"<ALL>", subset = NULL, na.rm = T), diss = F,

metric = "euclidean", stand = F, method =
"single", save.x = T, save.diss = T)
Merge:
(.11 [,2]
[1,1] -3 =20 —» Merge between observation 3 and observation 20
(2,7 -16 -18
[3,1] -14 =17 — Merge between ohservation 14 and observation 17
[4,1 =12 3 — Merge between observation 12 and cluster from step 3
{5,1 -it =13
[6,] =1 4
[7,1 1 -11 — Merge between cluster from step 1 and observation 11
[8,] 6 2
[9,) 8 -5
[10,] =7 -9
[11,] -6 -8
[12,] 9 -2

(13,1 10 5

[14,] 2 =15

[1:5%] 14 13

[16,] -4 11

(17,1 16 -19

[18,] 15 7

[19,] 18 17 — Merge between cluster from step 18 and cluster from step

17 :

Order of objects:
(1] 1 12 14 17 16 18 5 2 157 9 10 13 3 20 11 4
(18] 6 8 19

Height: (h)

(1] 0.13332284 0.05291389 0.04254703 0,.13639626
[5] 0.03460000 0.14180920 0.15261930 0.17934286
(8] 0.18874814 0.14283396 0.17832557 0.09481609
[13] 0.50447854 0.01844587 0.13376640 2.42572839
[17] 0.32322266 0.15069177 0.41036819
Agglomerative coefficient: (AC)
[1] 0.9485673
Available arguments:
[1] "order"” "height" "ac" "merge"
[5] "order.lab" "diss" "data" "call"

Figure 5.3: The output from S-PLUS agglomerative hierarchical clustering for
Modified Wood gravity data using the least median of squares (LMS) fit.
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Figure 5.4: Plot of the standardized predicted (sfit) and residuals (sRes) values for
the Modified Wood Gravity data using the least median of squares (LMS) fit.

Based on Mojena’s stopping rule, the tree will be cut and formed groups at a

height of % +1 25s,. For this example data set, # = 0.286578 and s, =0.532637.

Therefore the cut height on the cluster tree is 0.286578+1.25%0.532637 = 0.952374 .

Referring to Figure 5.5, it can be seen that after the cut, there are two groups formed.

Going across the tree from right to left, Group 1 consists of observations 4, 6, 8, and 19.
Group 2 consists of observations 11, 20, 3, 13, 10, 9, 7, 15, 2,5,18,16,17, 14,12, and

1. Group 2 contains the majority of the observations and thus this set will be the inlying

observations. Observations 4, 6, 8, and 19 are identified as the outlying observations.

The outlying observations identified by this methodology are also noted in Figure 5.4.
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Figure 5.5: Cluster tree and Mojena’s cut height for the Modified Wood Gravity
data using the least median of squares (LMS) fit.

The performance of the methodology on the classic data sets is summarized in
Table 5.2. It can be seen that the methodology successfully identified all the outliers for
all of the data sets. The method performed perfectly for 3 out of the 5 data sets in the
sense that there was no masking or swamping. When there was swamping or masking,
the number of observations swamped or masked is small. For example, in the
Hertzsprung-Russell StarsData, observations 7 and 14 are included in the outlying set of
observations. Appendix D shows the full computation and results for the other 4 classic

data sets using this clustering methodology.
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Table 5.2: Method 1’s performance on classic multiple outl-ier data sets

Outlying Outlying Number of Number of
observation observations observations observations

Data set g
B TLEES identified swamped masked

1 Telephone Data 15-24 15-24 0 0
(Rousseuw and
Leroy, 1987)

2 Hertzsprung- 11,20, 30, 11, 20, 30, 2 i 0
Russell StarsData 34 34,7, 14

(Rousseuw and
Leroy, 1987)

Hawkins, Bradu, 1-14 1-10,13, 14 0o 2
and Kass Data

(Hawkins et al.,
1984)

(8]

4  Modified Wood 4,6,8,19 4,6,8,19 0 0
Gravity Data
(Rousseuw and
Leroy, 1987)

5  Stackloss Data 1-4,21 1-4, 21 0 0
(Brownlee,1965)

“Method 17 clustering methodology discussed in this research has been shown
to perform well on the classic data set. However to further understand the performance
of the methods, a detailed study of the procedures on randomly generated data sets was
performed. The results showing the performance of the Method 1 for each scenario is
provided in Table 5.3 — Table 5.8 and Figures 5.6 — 5.11. Again, scenario 1 consists of
situations 1-4, while scenario 2 consists of situations 5-8 and so on. Appendix E shows

the simulation code for the Method 1.



Table 5.3: Scenario 1 result for the Method 1
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n=20 n =40 n=260
No of
regressor outlier outlier
(p) % distance tppo tpswamp tppo tpswamp tppo tpswamp
1 10 5 0.9815 0.0364 0.9943 0.0722 0.9958 0.0903
10 10 8 0.0021 1 0.0034 1 0.0066
20 2 0.9505 0.1184 09799 0.1911 09803 0.2097
20 10 0.9990 0.0176 0.9980 0.0278 0.9940 0.0352
2 10 5 0.8220 0.0002 0955 0.0009 0.9753 0.0024
10 10 0.6350  0.0007 0.7283 0.0048 0.7787 0.0092
20 2 0.8100 0.0012 0.9455 0.0028 0.9744 0.0057
20 10 0.6490 0.0056 0.7599 0.0145 0.8128 0.0261
6 10 3 0.9900 0.0678 1 0.0377 1 0.0423
10 10 1 0.0089 1 0.0156 1 0.0155
20 5 0.9798 0.0823 ] 0.0889 0.9990 0.0953
20 10 0.9990  0.0660 1 0.0798 1 0.0751
Table 5.4: Scenario 2 result for the Method 1
n=20 n =40 n =60
No of
regressor outlier outlier
(p) % _distance tppo tpswamp tppo tpswamp tppo tpswamp
1 10 5 0.9995  0.0141 1 0.0192 I 0.0233
10 10 1 0.0007 1 0.0002 | 0.0013
20 3 0.9948 0.0555 0.9971 0.0577 0.9983 0.0526
20 10 0.998  0.0103 1 0.0019 1 0.0023
2 10 5 0.9405 0 1 0 1 0
10 10 0.9120 0 1 0.0001 1 0.0003
20 3 0.9750 0 1 0 1 0
20 10 0.9610 0 I 0.0002 I 0.0005
6 10 5 1 0.0251 1 0.0274 1 0.0273
10 10 1 0.0169 1 0.0135 l 0.0123
20 S 1 0.0473 ] 0.0502 | 0.0442
20 10 1 0.0507 ] 0.0498 1 0.0471




Table 5.5: Scenario 3 result for the Method 1

96

n=20 n =40 n =60
No of
regressor outlier outlier
() % distance tppo tpswamp tppo tpswamp tppo tpswamp
1 10 5 0.9395 0.0083 0.9825 0.0139 0.9898 0.0221
10 10 1 0 1 0 I 0.0004
20 5 0.8958 0.0220 0.9769 0.0474 0.9903 0.0700
20 10 1 0.0017 1 0.0005 0.9995 0.0036
2 10 3 0.7935 0.0002 0.9325 0.0011 0.9580 0.0024
10 10 0.5695 0.0007 0.6428 0.0019 0.6898 0.0038
20 5 0.7503 0.0011 0.9051 0.0025 0.9534 0.0044
20 10 0.5463  0.0014 0.6426 0.0043 0.6804 0.0068
6 10 5 0.9875 0.0177 0.9990 0.0165 1 0.0199
10 10 0.9990  0.0037 1 0.0035 1 0.0056
20 § 0.8915 0.0434 0.9905 0.0415 0.9999 0.0552
20 10 0.9530  0.0553 1 0.0396 1 0.0444
Table 5.6: Scenario 4 result for the Method 1
- n=20 n=40 n=60
No of
regressor outlier outlier
(p) % _distance tppo tpswamp tppo tpswamp tppo tpswamp
1 10 5 0.994  0.0032 0.9998 0.0046 1 0.0057
10 10 1 0.0002 1 0 1 0.0001
20 5 0.9613  0.0206 0.9996 0.0166 1 0.0167
20 10 1 0.0023 1 0.0003 1 0.0001
2 10 5 0.8515 0 1 0 1 0
10 10 0.8925 0 1 0.0001 1 0.0003
20 5 0.8460 0 1 0 1 0
20 10 0.8888  0.0002 1 0.0002 1 0.0005
6 10 5 1 0.0111 1 0.0113 1 0.0101
10 10 1 0.0079 1 0.0057 1 0.0055
20 5 1 0.0277 1 0.0222 1 0.0223
20 10 0.9989  0.0362 1 0.0258 I 0.0253
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Table 5.7: Scenario 5 result for the Method 1

n=20 n =40 n=:60
No of
regressor outlier outlier
(p) % distance tppo tpswamp tppo tpswamp tppo tpswamp
1 10 5 0.9880 0.0688 1 0.0707 1 0.0717
10 10 0.9880 0.0688 ] 0.0707 | 0.0717
20 5 0.9310 0.0868 0.9925 0.1021 0.9991 0.1036
20 10 0.9310 0.0868 0.9925 0.1021 0.9991 0.1036
2 10 5 0.807 0 1 0 1 0
10 10 0.8845  0.0001 1 0 1 0
20 5 0.9375 0 ] 0 | 0
20 10 0.958 0 1 0 1 0
6 10 8 I 0.0198 1 0.0204 1 0.0252
10 10 1 0.0236 1 0.0222 1 0.0361
20 2 1 0.0399 1 0.0432 I 0.0333
20 10 » 1 0.0374 1 0.0501 1 0.0421
Table 5.8: Scenario 6 result for the Method 1
n=20 n=40 n=:60
No of
regressor outlier outlier ;
(p) % _distance tppo tpswamp tppo tpswamp tppo tpswamp
1 10 5 0.8510  0.0048 1 0.0090 1 0.0132
10 10 0.6295 0 0.996  0.0002 ] 0.0008
20 5 0.8918 0.0058 09995 0.0152 I 0.0234
20 10 0.7525  0.0005 1 0.0004 1 0.0014
2 10 5 0.9060 0 1 0 1 0
10 10 0.9995 0 1 0 ] 0
20 5 0.962 0 1 0 1 0
. 20 10 0.999 0 1 0 I 0
6 10 5 1 0.0029 1 0.0039 1 0.0045
10 10 ] 0 1 0.0003 1 0.0005
20 5 I 0.0017 1 0.0035 1 0.0068
20 10 1 0 1 0.0001 1 0.0008
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From the simulation result of Method 1 it shows that the method performs well

for most of regression condition tested except in scenario 1 and 3 forp=2. Table 5.9

summarizes the tppo value in percentage for the six scenarios.

Table 5.9: Total probability a planted outlier is detected (in .percentage) of the

Method 1 in all regression conditions tested

% 100-95  94.990 89.9-85 84.9-80 79.9-75 74.9-70 <70
Scenario I 27/36  1/36 0/36 3/36 2/36 136 2/36
Scenario 2 34/36  2/36 0/36 0/36 0/36 036 0136
Scenario 3 23/36  3/36 2/36 0/36 0/36 036 6/36
Scenario4  32/36  0/36 3/36 1/36 0/36 0/36  0/36
Scenario 5 31/36  3/36.  1/36 136 0/36 036 036
Scenario 6 31/36  1/36 2/36 0/36 1/36 036 1/36

Table 5.10: Total probability a clean observation is classified as an outlier (in

percentage) of the Method 1 in all regression conditions tested

% 0-4.9 5-9.9 10-14.9  15-19.9  20-24.9 >25
Scenario 1~ 24/36 9/36 1/36 1/36 1/36 0/36
Scenario 2 31/36 5/36 0/36 0/36 0/36 0/36
Scenario 3 33/36 3/36 0/36 0/36 0/36 0/36
Scenario 4 36/36 0/36 0/36 0/36 0/36 0/36
Scenario 5 23/36 - 9/36 4/36 0/36 0/36 0/36
Scenario 6 36/36 0/36 0/36 0/36 0/36 0/36
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For example, in scenario 2, this method was successful at least 95% of the time
in 34 of 36 regression conditions. Recall that each scenario has 36 regression
conditions, so for scenario 6, this method was successful at least 950 out of 1000 times
for 34 of the 36 regression conditions. Similarly, Table 5.10 summarizes the tpswamp
value in percentage for the six scenarios. For example in scenario 2, the percentage of
clean observations is classified as an outlier is between 0 to 5% in 34 out of 36

conditions.

From Figure 5.6, where the sample size is 20, the detection probability is
decreased significantly with the increase in the number of regressor fromp=1top =2
in situations 1, 2 through 18. The detection probability also increase significantly with
the increase in the number of regressor from p =1 to p = 6. However, the detection
probability increases significantly with the increase in the number of regressor from
p=1,p=2top=6insituations 19, 20 through 24. Figures 5.7 and 5.8 show that for
large # (n = 40 and n = 60 for this case) the detection probability is high and quite the
same for every situation and condition except for situation 2, 4, 10 and 12 in condition
p = 2. These situations come from the data with 10 outlier distance and xy-space
outlier scenario. Figures 5.6 — 5.9 also indicate that the probability of swamping

decreases as the number of regressor variable increases.

From Figure 5.9, where the number of regressor is one, the detection probability
is increased significantly with the increase in the sample size particularly in situation 3,
9,11, 15,19, 21 through 24. For the number of regressor equals to two (Figures 5.10),
the detection probability increases significantly with the increase in the sample size in
every situation. However, for the number of regressor six (Figures 5.11), the detection
probability increases significantly with the increase in the sample size particularly in
situations 3, 9, 11, and 12. Figurés 5.9 —5.11 shows that Method | has difficulty in
detecting the presence of outliers in\ situations 3, 9, and 11. Situations 3, 9, and 11 are
those with outliers that are 5o away from the rest of the data. Figures 5.9 —5.11 also

indicate that the probability of swamping decreases as the sample size increase.
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Figure 5.9: Performance of Method 1 for p =1 and all values of n



102

1.2 ;
1 -
a 084"
‘% —g—1{ppo, =20
3 —j— tpswamp, n=20
‘g 0.6 —&—tppo, n=40
"g_ 3 tpswamp, n=40
i=3 04 —é—tppo, n=60
i —@&—{pswamp, n=60
0.2 4
O~4lﬁ4!%ﬂ!q45;ﬁ‘ﬂ4Iﬂ4.ﬂ4l14l1%lﬂﬁl1ﬂ!ﬂﬂ.ﬂ4.ﬂ%.ﬂ4.ﬂ4'ﬂrlFrlPr.Fr.H#Iﬁ%lﬁrlh
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
situation
Figure 5.10: Performance of Method 1 for p = 2 and all values of n
1.2 q
o 08 ~—1ppo, n=20
g —fi—tpswamp, n=20
% —d&—tppo, n=40
g 0.6 1 s
= —¥-—~tpswamp, n=40
f’-.' —¢—tppo, n=60
0.4 | —@—tpswamp, n=60
0.2 4
0 — T ] . T i — = — =

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

situation

Figure 5.11: Performance of Method 1 for p = 6 and all values of n
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Table 5.11: Summary of Method 1 performance for each scenario

No of No of Outlier % Outlier
regressor | observation increase distance
increase increase increase

tppo increase increase decrease increase
Scenario 1 tpswamp decrease increase increase decrease
tppo increase increase decrease increase
Scenario 2 tpswamp decrease increase increase decrease
tppo increase increase decrease increase
Scenario 3 tpswamp decrease increase increase decrease
tppo increase increase decrease increase
Scenario 4 tpswamp decrease increase increase decrease
tppo increase increase decrease increase
Scenario 5 tpswamp decrease increase increaée decrease
tppo increase increase decrease increase
Scenario 6 tpswamp decrease increase increase decrease

Table 5.11 summarizes the performance of Method 1 for each scenario. The

following provides the general observations and conclusions concerning the

performance of Method 1. Since this method is the modification of Sebert et al. method,

the tppo (total probability a planted outlier is detected) value also increases as the

outlying distance and the number of regressor variables increases. Besides, the tppo

value also increases as the number of observations in the data set increases and as the

percentage of outliers decreases. Further, the tpswamp (total probability a clean

observation is classified as an outlier) value decreases as the outlying distance and the

number of regressor variables increases. However, the tpswamp value decreases as the

percentage of outliers decreases. In general, this method also performs best (high tppo

value with low tpswamp value) at lower outliers percentages.
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5.6 Method 2

Method 2 is a modification of Sebert’s method where the least squares (LS) fit is
replaced by the least trimmed of squares (LTS) fit. It is a well-known fact that the least
trim.me'd of squares (LTS) is a high breakdown estimator, therefore the proposed method
uses the standardized predicted and residual values from the least trimmed of squares
(LTS) fit rather than the ordinary least squares (LS) fit. The flowchart for this method is

presented in Figure 5.12.

The steps of the methodology will now be discussed in detailed and illustrated
with the “Modified Wood Gravity” data set given by Rousseuw and Leroy (1987) which
shown in Table 4.3. Table 5.12 shows the standardized predicted and residual values
from the least trimmed of squares (LTS) for the Modified Wood Gravity data. Fi gure
5.13 shows the output from S-PLUS agglomerative hierarchical clustering. Further,
Figure 5.14 shows a plot of the standardized predicted values and residuals for the wood
data using the least trimmed of squares (LTS) fit. The cluster tree and corresponding cut

height is shown in Figure 5.15.



Step 1
Standardize the predicted values and
residuals obtained from the least trimmed of -

squares (LTS) fit of the data,

Step 2
Cluster the observations using the single linkage clustering
algorithm with the Euclidean distance between pairs of
standardized predicted values and residuals as the similarity

measure, and obtain the cluster tree.
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Step 3
Based on Mojena’s stopping rule cut the tree and form groups at a height of

h +1.25s, where h isthe average of the tree cluster heights for all N =1

clusters, and s, is the unbiased standard deviation of the heights of the N —1

Step 4
Identify the group with the largest size as the clean
subset, that is, free of potential outliers. All other

observations are outliers.

Figure 5.12: Steps in Method 2



106

Table 5.12: Standardized least trimmed of squares (LTS) predicted values and
residuals for Modified Wood Gravity data.

Predicted Standardized Standardized
Obs. Values Predicted Values Residual Residual
1 0.5197 -0.3878 0.0143 0.6085
2 0.5296 -0.2225 0.0054 0.5122
3 0.5700 0.4512 0.0000 0.4541
4 0.6415 1.6455 -0.1915 -1.6187
5 0.5332 -0.1633 0.0148 0.6145
6 0.6518 1.8165 -0.2208 -1.9351
7 0.4635 -1.3260 Q0173 0.6432
8 0.6350 1.6023 -0.2160 -1.8828
9 0.4750 -1.1345 0.0000 0.4541
10 0.4882 -0.9145 -0.0022 0.4306
11 0.5540 0.1842 0.0000 0.4541
12 0.5190 -0.4001 0.0000 0.4541
13 0.4874 -0.9272 0.0046 0.5037
14 0.5220 -0.3493 -0.0050 0.3996
15 0.4984 -0.7437 0.0036 0.4930
16 0.5080 -0.5837 0.0000 - 0.4541
17 0.5241 -0.3142 -0.0041 0.4093
18 0.5117 -0.5213 -0.0057 0.3920
19 0.6550 1.8705 -0.2540 -2.2948
20 0.5680 0.4179 0.0000 0.4541
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**% Agglomerative Hierarchical Clustering ***
Call:
agnes (x = menuModelFrame (data = DS66, variables =
"sRes,sfit", sSubset = NULL, na.rm = T), diss =
F, metric = "euclidean", stand = F, method =
“single", save.x = T, save.diss = T)

Merge:
(11 [,2]
[1,1 -3 =20 — Merge between observation 3 and ochservation 20
[2,] -14 -17
[3,] =310 =13
[4,] =12 2 — Merge between observation 12 and cluster from step 2

[5,1 -1¢ ~-18B
[61] =2 =5
[7,] 4 5

[B,1 6 7

[9r] =1 8 .

[10,] 9 -15 — Merge between cluster from step 9 and observation 15
[11,] 10 3

[12,] 11 =8

[13,] -6 -8

(14,1 A =TT

[15,] -4 i3

[16,] 12 =3

[17,1] 15 -19

[i8,] 16 14

[19,] 18 17 — Merge between cluster from step 18 and cluster from step

17

Order of cbjects:
{111 2 5 12 14 17 16 18 15 10 13 9 7 3 20 11 4

[18] 6 8 19

Height: (h) :
[1] 0.15488915 0.11819446 0.13783069 0.07450430
[5] 0.03641566 0.13618315 0.08803505 0.16466089
[9] 0.18184169 0.07419501 0.21315124 0.26913019
[13] 0.38273282 0.03330000 0.23370000 2.39224838
[17] 0.26760988 0.22@%9247 0.36373079
Agglomerative coeffiéient: {AC)
[1] 0.9397504
Available arguments:
[1] "ordex" "height" "ac" "merge"
[5] "order.lab" '"diss" "data" "call"

Figure 5.13: The output from S-PLUS agglomerative hierarchical clustering for

Modified Wood gravity data using the least trimmed of squares (LTS) fit.
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Figure 5.14: Plot of the standardized predicted (sfit) and residuals (sRes) values for
the Modified Wood Gravity data using the least trimmed of squares (LTS) fit.

Again, based on Mojena’s stopping rule, the tree will be cut and formed groups

at a height of % +1.25s,. For this data set, # = 0.291729 and 5, = 0.518238.
Therefore the cut height on the cluster tree is 0.291729+1.25%0.518238 = 0.939526.

Referring to Figure 5.9, it can be seen that after the cut there are two groups formed.
Going across the tree from right to left, Group 1 consists of observations 19, 8, 6, and 4.
Group two consists of observations 11, 20, 3, 13, 10,9, 7, 15, 2, 5, 18, 1-6, 17, 14,12,
and 1. Group 2 contains the majority of the observations and thus this set will be the
inlying observations. Observations 4, 6, 8, and 19 are identified as the outlying
observations. The outlying observations identified by this methodology are also noted in

Figure 5.7.
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Figure 5.15: Cluster tree and Mojena’s cut height for the Modified Wood Gravity

data using the least trimmed of squares (LTS) fit.

The performance of the methodology on the classic data sets is summarized in
Table 5.13.. It can be seen that the methodology successfully identified all the outliers
for all of the data sets. The method performed perfectly for 3 out of the 5 data sets in the
sense that there was no masking or swamping. When there was swamping or masking,
the number of observations swamped or masked is small. Appendix F shows the full

computation and results for the other 4 classic data sets using Method 2.
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Table 5.13: Method 2’s performance on classic multiple outlier data sets

Outlying Number of  Number of
_ Outlying  observations observations observations
No Data sets observation identified swamped masked

1 Telephone Data 15-24 15-24 0 0
(Rousseuw and
Leroy, 1987)

2 Hertzsprung-Russell  11,20,30, 11,20, 30, 2 0
StarsData - 34 34,7, 14

(Rousseuw and
Leroy, 1987)

3 Hawkins, Bradu, 1-14 1-10 0 4
and Kass Data
(Hawkins et al.,
1984)

4 Modified Wood 4,6,8,19 4,6,8,19 0 0
Gravity Data
(Rousseuw and
Leroy, 1987)

5 Stackloss Data 1-4,21 1-4, 21 0 0
(Brownlee,1965)

“Method 2” clustering methodology discussed in this research has been shown to
perform well on the classic data set. However to further understand the performance of
the methods, a detailed study of the procedure on randomly generated data sets was
performed. The results.showing the performance of the Method 2 for each scenario is
provided in Table 5.14 — Table 5.19 and Figures 5.16 — 5.21. Again, scenario 1 consists
of situations 1-4, while scenario 2 consists of situations 5-8 and so on. Appendix G

shows the simulation code for the Method 2.



Table 5.14: Scenario 1 result for the Method 2
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n=20 n=40 n =60
No of
regressor outlier outlier
(r) % distance tppo tpswamp tppo tpswamp tppo tpswamp
1 10 5 0.9860 0.0293 0.9970 0.0638 0.9955 0.0865
10 10 I 0.0018 1 0.0035 1 0.0060
20 5 0.9313  0.1447 09753 0.2090 0.9743  0.2547
20 10 0.9970 0.0371 0.9970 0.0448 0.9960 0.0451
2 10 5 0.8205 0.0001 0.9550 0.0006 0.9707 0.0019
10 10 0.6250 0.0006 0.7118 0.0032 0.7687 0.0081
20 5 0.6918 0.0009 0.8973 0.0033 0.9475 0.0057
20 10 0.6163 0.0018 0.7373 0.0106 .0.7995 0.0232
6 10 5 0.9920 0.0410 1 0.0363 I 0.0396
10 10 1 0.0046 1 0.0018 1 0.0043
20 5 0.9558  0.0946 1 0.0905  0.999  0.1003
20 10 0.9890 0.1066 1 0.0926 1 0.0904
Table 5.15: Scenario 2 result for the Method 2
n=20 n=40 n=60
No of ~
regressor outlier outlier
(12)] % distance tppo tpswamp fppo tpswamp tppo tpswamp
1 10 5 0.9995 0.0138 1 0.0156 1 0.0226
10 10 I 0.0001 1 0.0003 1 0.0012
20 5 0.9928 0.0821 0.9884 0.1166 0.9908 0.1111
20 10 0.996 0.061 0.997 0.0766 0.98382 0.0852
2 10 5 0.9370 0 1 0 1 0
10 10 0.889 0 1 0 1. 0.0002
20 5 0.9600 0 1 0 1 0
20 10 0.9565 0 1 0.0001 1 0.0001
6 10 5 1 0.0366 1 0.0358 | 0.0347
10 10 1 0.0228 1 0.0124 1 0.0088
20 5 I 0.0686 1 0.0614 1 0.0586
20 10 1 0.0787 1 0.0658 1 0.0642




Table 5.16: Scenario 3 result for the Method 2

LI2

No of

regressor outlier outlier

n=20

n=40

n

=60

tppo  tpswamp tppo tpswamp tppo tpswamp

») % distance

1 10 5 0.9385 0.006 09828 0.0142 0.9895 0.0210
10 10 | 0 1 0.0001 1 0.0005
20 3 0.8685 0.0263 0971 0.0558 0.9847 0.0749
20 10 0.9985 0.0062 0.9995 0.0029 1 0.0041

2 10 5 0.8035 0.0001 0.9300 0.0006 0.9553 0.0021]
10 10 0.5565 0.0002 0.626  0.0013 0.6757 0.0035
20 5 0.6223  0.0008 0.8248 0.0028 0.9008 0.0052
20 10 0.5293  0.0004 0.6236 0.0032 0.6691 0.0061

6 10 5 0.9725 0.0267 0.9993 0.0185 1 0.0170
10 10 0.9985 0.0033 1 0.0001 1 0.0007
20 : 0.7805 0.0723 0.9898 0.0641 0.9999 0.0638
20 10 0.9270  0.0769 1 0.0671 1 0.0593

Table 5.17: Scenario 4 result for the Method 2
| n=20 n=40 n =260
No of
regressor outlier outlier

2] % distance tppo tpswamp tppo tpswamp tppo tpswamp

1 10 5 0.9920  0.0044 I 0.0045 1 0.0065
10 10 1 0 1 0 1 0
20 5 0.9428 0.0318 0.9995 0.0342 09995 0.0398
20 10 0.9993  0.0137 09995 0.0172 0.9995 0.0198

2 10 5 0.8465 0 1 0 ] 0
10 10 0.8660 0 1 0.0001 1 0.0003
20 5 0.7560 0 1 0 1 0
20 10 0.8785 0 1 0.0001 | 0.0003

6 10 5 1 0.0221 1 0.0172 1 0.0140
10 10 1 0.0137 1 0.0060 1 0.0035
20 5 1 0.0494 1 0.0367 1 0.0334
20 10 0.9978  0.0517 1 0.0416 1 0.0362




Table 5.18: Scenario 5 result for the Method 2

113

n=20 n=40 n =460
No of
regressor outlier outlier
() % distance tppo tpswamp tppo tpswamp tppo tpswamp
1 10 5 0.9865 0.0672 ] 0.0673 1 0.0743
10 10 0.9865 0.0672 1 0.0673 1 0.0743
20 5 0.9178 0.0891 0.9953 0.0999 0.9982 0.1029
20 10 09178 0.0891 0.9953 0.0999 0.9982 0.1029
2 10 8 0.7935 0 1 0 1 0
10 10 0.8590 0 1 0 1 0.0002
20 5 0.9395 0 1 0 1 0
20 10 0.9615 0 1 0.0001 1 0.0003-
6 10 8 | 0.0446 | 0.0390 1 0.0369
10 10 1 0.0448 1 0.0390 1 0.0368
20 5 ] 0.0626 1 0.0611 1 0.0598
20 10 1 0.0620 1 0.0608 1 0.0599
Table 5.19: Scenario 6 result for the Method 2
n=20 n=40 n=060
No of
regressor outlier outlier
(p) % distance tppo tpswamp tppo tpswamp tppo tpswamp
1 10 5 0.8190  0.0039 1 0.0081 1 0.0127
10 10 0.595 0 0.995  0.0002 1 0.0008
20 5 0.8750 0.0046 0.9995 0.0127 1 0.0226
20 10 0.739 0 1 0.0002 | 0.0013
2 10 5 0.899 0 I 0 1 0
10 10 1 0 I 0 1 0
20 5 0.9465 0 1 0 1 0
20 10 0.999 0 1 0 1 0.0001
6 10 4 1 0.0058 1 0.0062 1 0.0067
10 10 1 0.0001 1 0.0002 1 0.0004
20 5 | 0.0028 1 0.0039 | 0.0069
20 10 1 0 1 0 1 0.0002
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The Method 2 simulation result also performs well for most of regression condition

tested except in scenario 1 and 3 for p = 2. Table 5.20 summarizes the tppo value in

percentage for the six scenarios. Similarly, Table 5.21 summarizes the tpswamp value

in percentage for the six scenarios. It shows that, the probability of swamping in this

method is quite high.

Table 5.20: Total probability a planted outlier is detected (in percentage) of the

Method 2 in all regression conditions tested

Y% 100-95  94.9-90 89.9-85 84.9-80 79.9-75 74.9-70 <70
Scenario 1 25/36 2/36 1/36 1/36 2/36 2/36 3/36
Scenario 2 34/36 1/36 1736 0/36 0/36 0/36 0/36
Scenario 3 21/36 4/36 1/36 2/36 1/36 0/36 7/36
Scenario 4 31/36 1/36 2/36 1/36 1/36 0/36 0/36
Scenario 5 31/36 3/36 1/36 0/36 1/36 0/36 0/36
Scenario 6 30/36 1/36 2/36 1/36 0/36 1/36 1/36

Table 5.21: Total probability a clean observation is classified as an outlier

(in percentage) of the Method 2 in all regression conditions tested

% 0-4.9 5-9.9 10-14.9  15-19.9  20-24.9  >25
Scenario 1 25/36 6/36 3/36 0/36 1/36 1/36
Scenario 2 24/36 10/36 2/36 0/36 0/36 0/36
Scenario 3 28/36 8/36 0/36 0/36 0/36 0/36
Scenario 4 35/36 1/36 0/36 0/36 0/36 0/36
Scenario 5 18/36 16/36 2/36 0/36 0/36 0/36
Scenario 6 36/36 0/36 0/36 0/36 0/36

0/36
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From Figure 5.16, where the sample size is 20, the detection probability
decreases significantly with the increase in the number of regressor from p=1to p=2
in situations 1, 2 through 18. The detection probability also increase significantly with
the increase in the number of regressor from p = 1 to p = 6. However, the detection
probability increases significantly with the increase in the number of regressor from

p=1,p=2top=06insituations 19, 20 through 24.

Figures 5.17 and 5.18 show that for large » (» = 40 and n = 60 for this case) the
detection probability is high and quite the same for every situation and condition except
for situation 2, 4, 10 and 12 in condition p = 2. These situations come from the data
with 100 outlier distance and xy-space outlier scenario. Figures 5.16 —5.18 also indicate
that the probability of swamping decreases as the number of regressor variable increases

except for p = 2.

From Figure 5.19, where the number of regressor is one, the detection probability
is increase significantly with the increase in the sample size particularly in situation 3, 9,
11,15, 19, 21 through 21. For the number of regressor equals to two (Figures 5.20), the
detection probability increases significantly with the increase in the sample size in every

situations.

However, for the number of regressor six (Figures 5.21), the detection
probability is increase significantly with the increase in the sample size particularly in
situations 3,9, 11, and 12. Figures 5.19 ~ 5.21 shows that Method 1 has difficulty to
detect the presence of outliers in situations 3, 9, and 11. Situations 3, 9, and 11 are those
with outliers that are 5o away from the rest of the data. Figures 5.9 —5.11 also indicate

that the probability of swamping is decreases as the sample size increase.

From Figure 5.16 — 5.21, the graph for Method 1 looks almost the same as the
graph for Method 2. Thus, the performance result and explanation of the graph is also

same.
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Figure 5.18: Performance of Method 1 for 7 = 60 and all values of p
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Table 5.22: Summary of Method 2 performance for each scenario

No of No of Outlier % Outlier
regressor | observation increase distance
increase increase increase

tppo increase increase decrease increase
Scenario 1 tpswamp decrease increase increase decrease
tppo increase increase decrease increase
Scenario 2 tpswamp decrease increase increase decrease
tppo increase increase decrease increase
Scenario 3 tpswamp decrease increase increase decrease
tppo increase increase decrease. increase
Scenario 4 tpswamp decrease increase increase decrease
tppo increase increase decrease increase
Scenario 5 tpswamp decrease increase increase decrease
tppo increase increase decrease increase
Scenario 6 tpswamp decrease increase increase decrease

Table 5.22 summarizes the performance of Method 2 for each scen.?rio. The
following provides the general observations and conclusions concerning thie
performance of Method 2. Same as the Method 1, the tppo (total probability a planted
outlier is detected) value also increases as the outlying distance and the number of
regressor variables increases. Besides, the tppo value also increases as the number of
observations in the data set increases and as the percentage of outliers decreases.
Further, the tpswamp (total probability a clean observation is classified as an outlier)
value decreases as the outlying distance and the number of regressor variables increases.
However, the tpswamp value decreases as the percentage of outliers decreases. In
general, this method also performs best (high tppo value with low tpswamp value) at

lower outliers percentages.
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5.7  Summary and Discussion

Two procedures known as Method 1 and Method 2, which use the robust fit and
clustering technique, are discussed in this chapter. The Least Median of Squares (LMS)
andbLeast Trimmed of Squares (LTS) fits are used to obtain the fnx‘edicted and residuals
from the data set. Then, the Euclidean distance is used with the single linkage clustering
algorithm to cluster the points in the plot of standard predicted versus residuals values.

A cluster tree is obtained and the Mojena’s stopping rule is used to choose the outliers.

The conclusion given for the Method 1 and Method 2 is quite the same since the
LMS and LTS estimator have the same high breakdown, efficient and bounded

influence.
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CHAPTER 6

COMPARISON ANALYSIS

6.1 Introduction

This chapter discusses the performance among Sebert et al. (1998) clustering
algorithm, Method 1 and Method 2 for identifying multiple outliers in linear regression.

Comparison analysis was done using the result from classical data and simulation

performance.

6.2 Performance on Classical Data

Each method discussed in this research was tested using 5 classical multiple
outlier data sets. These data sets are the most popular and widely used in any multiple
outlier papers. The performances of Sebert’s method, Method 1 and Method 2 on the
classical data sets are summarized in Table 6.1. It can be seen that Sebert’s method
successfully identified all the outliers for all the data sets. The method performed
perfectly for 3 out of the 5 data sets in the sense that there was no swamping. Method I
and 2 only successfully identified all the outliers for the data sets, which the number of
observation is less than 60. Masking occurred when the number of observation is

greater than 60 for the Hawkins, Bradu, and Kass (Hawkins et al., 1984) data set.



Table 6.1: Performance of Sebert’s Method, Method 1and Method 2

on classic multiple outlier data sets
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Sebert’s Method Method 1 Method 2
p n 0] I S M I I M
1 1 24 15-24 15-24 0 0 15-24 15-24 0
2 1 47 11, 20, 11, 20, 2 0 11, 20, 11, 20, 0
30, 34 30, 34, 30, 34, 7, 30, 34, 7,
7,14 14 14
3 3 75 1-14 1-14 0 0 1-10,13, 1-10 4
14
4 5 20 4, 6,8, 4,6, 7, 2 0 4,6, 8, 4,6, 8, 0
19 8,17, 19 19 19
5 3 21 1-4, 21 1-4, 21 0 0 1-4, 21 1-4, 21 0
Where

1: Telephone Data (Rousseuw and Leroy, 1987)

2: Hertzsprung-Russell StarsData (Rousseuw and Leroy, 1987)
3: Hawkins, Bradu, and Kass Data (Hawkins et al., 1984)

4: Modified Wood Gravity Data (Rousseuw and Leroy, 1987)
5: Stackloss Data (Brownlee, 1965)

p: Number of regressor variables

n: Total number of observations

O: Outlying observation
I: Outlying observations identified
S: Number of observations swamped

M: Number of observations masked
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According to the performance on the classical data, Sebert’s Method is better
than Method 1 and Method 2 when the number of observation is greater than 60.
Besides, Method 1 and Method 2 are better than Sebert’s Method when the number of

observation is less than 60.

6.3 Overall Performance

From the simulation study, several pattern appeared. Since Method 1 and
Method 2 are tﬁe modification of Sebert’s method, the pattern of the graph is quite the
same for every condition, situation and scenario. Appendix H shows the full result of
the simulation study for every method. Figures 6.1 — 6.9 show the detection
probabilities and the probability of swamping for Sebert’s method, Method 1 and
Method 2 for every condition. The detailed illustration of the performances by the
different methods in the six scenarios are shown in Figures 6.10(a, b, ¢) — 6.15(a, b, c).
Besides, Tables 6.2 — 6.4 summarizes the performances of the Sebert method, Method 1
and Method 2 for different scenario. Table 6.5 show the rate of every method’s

performance according to the tppo value.

From Figure 6.1 where » =20 and p = 1, the detection probability for Method 2
is better than Method 1 and Sebert’s method except in situations 21 through 24. These
situations come from scenario 6 where there are two outlying groups with one of them
an x-space outlier and the other is an xy-space outlying observations. However, the
swamping probability for the Method 2 is smaller than Method 1 and Sebert’s method in
almost scenarios. From Figure 6.2 where » =20 and p = 2, the detection probability for
Sebert’s method is better than Method 1 and Method 2 except for situations 2, 4, 10 and
12. These situations come from scenario 1 and 3, which the outlier distance is 10o.
However, the swamping probability for the Method 2 is also smaller than Method 1 and

Sebert’s method in almost scenarios.
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From Figure 6.3 where » =20 and p =6, every method are very effective in
detecting the presence of outliers except in situations 3, 11 and 12. The swamping
probability for the Sebert’s method is smaller than Method 1 and Method 2 in almost all
scenarios. Besides, Figure 6.4 where n = 40 and p = 1, shows that all methods are very
effective. The detection probabilities are almost one for every situation and method.
However, the swamping probability for the Method 2 is smaller than Method 1 and

Sebert’s method in almost all scenarios.

From Figure 6.5 where n =40 and p = 2, the detection probabilities for all
methods are high except for situation 2, 4, 10 and 12. The swamping probabilities are
also small for every method in each situation. For Figure 6.6 where n =40 and p = 6,
again all methods are very effective in detecting the presence of outliers. However, the

swamping probability for the Sebert’s method is smaller than Method 1 and Method 2.

The pattern of graph in Figure 6.7 is the same as the one in Figure 6.4. For
n= 60 and p = 1, all methods are also very effective and the swamping probability for
the Sebert’s method is smaller than Method 1 and Method' 2 in almost scenarios. Further
more, from Figure 6.8, where # = 60 and p = 2, the detection probabilities are also high
for every method except for situations 2, 4, 10 and 12 and the swamping probabilities
are small for every method. The pattern of the graph is the same as Figure 6.5. Lastly,
for Figure 6.9, where n = 60 and p = 6, every method shows a good performance, but
Method 2 and Method 1 is better than Sebert’s method because they have small values

of swamping probabilities.

Generally, Method 2 has a higher detection probability and a lower swamping
probability than Method 1 and Sebert’s method when the number of regressor variables
p £2. Method 2 is also better than Method 1 and Sebert’s method when the sample
size is bigger but the swamping probability is quite high. Sebert’s method is better than

Method 1 and Method 2 when the number of regressor variables is high.
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Table 6.5: The rate of method’s performance according to the tppo value

Method’s performance ' tppo value
Very effective 1
Effective 0.9-0.9999
Good 0.7-0.8999
Worse <0.7

The following provides the general findings and conclusions for every scenario given
by Figures 6.10 - 6.15 and Tables 6.2 — 6.4. It appears that all methods generally performed
effectively in detecting single group outliers in the xy-space (Scenario 2) and the x-space
(Scenario 5). This pattern holds in every sample size and number of regressors. For a
group of outliers in xy-space (Scenari® 1), the performances of Sebert’s method and Method 1

were effective when p <2. All methods was very effective when p > 2.

For two groups of outliers in xy-space (Scenario 3), Sebert’s method performed well
and approximately effective in all sample size and number of regressors. For the other two
groups of outliers in xy-space (Scenario 4), all methods were effective when the sample size is
large that is for #» = 40 and » = 60 in this case. For the two groups of outliers, where one is an
x-space outlier and the other is an xy-space outlier (Scenario 6), all methods were also
effective when the sample size is large. Generally, Method 2 is approximately effective for

~ every scenario.
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CHAPTER 7

SUMMARY, CONCLUSION AND SUGGESTIONS -

7.1 Introduction

This chapter summarizes the materials presented in the previous six chapters and
discusses in further detail some of the results and findings. Some conclusions and

suggestions are presented based on the results and findings given.

7.2 Summary and Conclusions

Generally, this research provided a review on the multiple outlier problems in
linear regression and the limited uses of Least Squares (LS) fit to overcome these
problems. As pointed out in Chapter 2, researchers have suggested numerous strategies

and procedures to solve the multiple outlier identification problems.

The outliers identification procedures based on clustering algorithm proposed by
Sebert et al. (1998) was chosen to be discussed and it showed to perform well on the
classical multiple outliers data set and simulated random data. This method used the
single linkage clustering algorithm with the Euclidean distances to cluster the points in
the plots of standard predicted versus residuals values. The predicted and residuals values

are obtained from an ordinary least squares fit of the data. The Mojena’s stopping rule
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was finally used to choose the outliers. The discussion on this method was presented in

Chapter 4.

This research also studied the influence of the least median of squares (LMS) and
the lcast trimmed of squares (LTS) fit as opposed to the least squares (LS) used in Sebert
et al. (1998) and characterized the performance of the new procedures, Method 1 and
Method 2 as pointed out in Chapter 5. These two robust estimators were chosen because
of a high breakdown, efficient and bounded influence. The new methods also performed

well on the classical data set and provided a better result in some data.

The Monte Carlo simulation presented in Chapter 3 compared the performance of
the procedures proposed by Sebert et al. (1998) and the modifications by Method 1 and
Method 2. The comparison is discussed in Chapter 6 and the simulation was done using
S-PLUS 2000 statistical package. Generally, Method 2 has a higher detection probability
and a lower swamping probability than Method 1 and Sebert’s method when the number
of regressor variables p <2. Method 2 is also better than Method I and Sebert’s method
when the sample size is bigger but the swamping probability is quite high. Sebert’s
method is better than Method 1 and Method 2 when the number of regressor variables is
high. Method 2 is also approximately effective for every scenario. All methods
generally performed effectively only in detecting single group outliers in the xy-space
(Scenario 2) and the x-space (Scenario 5). All methods also have problems in detecting

outliers in scenario 1 and 3 when the number of regressor variable is 2.

7.3  Suggestion

The following provides several suggestions and recommendations for future

research
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Improve the performance of Sebert’s method, Method 1 and Method 2 by other
robust fit such as Least Trimmed Sum of Absolute Deviations (LTA) and
generalized M (GM) robust fit.

Use other stopping\rules and compare the performances

'Con—qpare Sebert’s method with other multiple outlier detection procedures, for
example, the outlier nomination method based on multihalver by Fernholz et al.
(2004).

Improve the quality of the simulation results by adding new outliers scenario.
Study the outliers scenario used in the classical data

Study the reason why all methods have problem in detecting outliers in scenario |

and 3 when the number of regressor variable is equal to 2.
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