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ABSTRACT

Goal programming (GP) is one of the most promising techniques for multiple
objective decision analysis. Goal programming is a powerful tool which draws upon
the highly developed and tested technique of linear programming, but provides a
simultaneous solution to a complex system of competing objectives. In decision
analysis, the least squares method is also a popular technique. It is an approach used
in the study of relations between variables, particularly for the purpose of
understanding how one variable depends on one or more other variables. However,
one of the main problems is that the method of least squares is biased by extreme
cases. This study proposes goal programming as an alternative to analyze such
problems. The analysis were done by using QM for Windows and MINITAB

software package.



ABSTRAK

Pengaturcaraan gol adalah satu kaedah yang berkesan dalam penganalisisan
keputusan objektif berganda. Ia juga merupakan suatu teknik yang lebih baik
berbanding pengaturcaraan linear dalam penyelesaian serentak untuk sistem
kompleks. Dalam membuat keputusan, kaedah kuasa dua terkecil dalam analisis
regresi juga adalah satu teknik yang terkenal. Kaedah ini mengkaji hubungan antara
pembolehubah terutama dalam memahami bagaimana satu pembolehubah bersandar
kepada satu atau lebih pembolehubah yang lain. Walaubagaimanapun, masalah
utama bagi kaedah kuasa dua terkecil ialah pengaruh kes ekstrim. Kajian ini
mencadangkan pengaturcaraan gol sebagai kaedah alternatif untuk mengatasi
masalah tersebut. Kajian ini menggunakan program QM for Windows dan

MINITAB dalam analisis.
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CHAPTER 1

RESEARCH FRAMEWORK

1.0 Introduction

A number of techniques have been proposed for multiple-objective decision
making. One of the most promising techniques for multiple objective decision
analysis is goal programming (GP). GP is a powerful tool which draws upon the
highly developed and tested technique of linear programming and at the same time
provides a simultaneous solution to a complex system of competing objectives
(Lee,1981). GP can handle decision problems having a single goal with multiple

subgoals.

GP has been widely accepted and applied technique mainly because of its
underlying philosophy of “satisficing” (Lee and Shim, 1986). Nobel laureate Herbert
A. Simon suggested that the satisficing approach, rather than optimizing is based on
the concept of bounded rationality. This approach has emerged as a pragmatic

methodology of decision making.

Another popular tool in decision making is regression. It is an approach used
to study the relationships between variables, particularly for the purpose of
understanding how one variable depends on one or more other variables. By
identifying the relationship between variables, regression analysis helps to develop a

prediction equation.



1.1 Research Background

A regression model is a mathematical equation that describes the relationship
between two or more variables. The dependent variable is the one being explained,
and the independent variables are the ones used to explain the variation in the

dependent variable.

Regression techniques are associated with the fitting of straight lines, curves,
or surfaces, to set of observations. The straight line is the simplest curve that can be
fitted to a set of n paired observations (x;, y;), (x2 ¥2) --. (X yu)- The least squares
method is the most frequently used procedure for obtaining a linear function. A
problem of fitting occurs only if the fit is for some reason imperfect. To be a
statistical problem there must be some random element present in the data which
leads to this inexactitude of fit. It is the nature of this random element that
determines the appropriate method of fitting, i.e. of estimating the constants or

parameters in the equation.

In simple linear regression analysis, the estimated regression model is

J = a+ bx (y denotes the predicted dependent variable and x denotes the independent
variable). In multiple regressions, the estimated regression model is § = a + ib,x, (y
=1

denotes the predicted dependent variable and x; denotes the independent variables).
Although the method of least squares is one of the best known and probably widely
used method employed in the analyses of making predictions of dependent variables
based on independent variables, most previous efforts in this area however, suffer
from several disadvantages. One of the main problems is that the method of least
squares is biased by extreme cases (Campbell, 1972). The current study proposes GP

as an alternative to analyze such problems.



(%]

1.2 Objectives of the Study

The objectives of this study are as follows:
i.  To identify the types of problems analyzed by the least squares method that
can be solved through the GP approach.
ii.  To discuss how least squares problems can be converted into GP problems.
iii.  To develop prediction equations using both the least squares and the GP
methods.
iv.  To compare the performances of the prediction equations obtained from both

the least squares and the GP methods.

1.3 Importance of the Study

Prediction equations have been obtained using the least squares method.
These equations have been used in various areas such as educational system
planning, financial planning and economic policy analysis. This study explores GP

as an alternative method to produce prediction equations.

1.4 Scopes of the Study

This study focuses on the use of the linear GP method to produce prediction
equations in regression analysis problems. Only three data sets are considered. The
first set consists of only one independent variable, the second set has two
independent variables while the third set has three independent variables. The

analysis are done by using QM for Windows and MINITAB software package.



1.5  Organization of the Report

There are six chapters. Chapter [ discusses the research framework. It begins
with the introduction to the goal programming and the least squares method. The

objectives, importance and scope of this study are also presented.

In Chapter II, the modeling of goal programming is presented. This chapter
starts with the background of goal programming. Formulation and methodology of

the goal programming model are also discussed.

Chapter III reviews the least squares method. In this chapter, the least

squares line and multiple regression least squares are discussed.

Chapter IV starts with the discussion of outliers in data sets. It proceeds with

the analysis of data sets using both the least squares and goal programming methods.

In chapter V, comparison between the least squares and goal programming

are made.

Chapter VI summarizes and concludes the whole study and makes some

possible suggestions for future investigation.

1.6  Terminology

Box Plot
This is a graphical display to detect outliers in a data set (Mendenball, 1993).

Conflicting Goal
Two goals are conflicting if the level of achievement of one of the goals cannot be

increased without simultaneously reducing the level of achievement of the other

goal.
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Decision Variable

A decision variable, denote as x; (with / = /, 2, ..., /) is a variable that is both under
the control of the decision maker and one that can have an impact on the problem
solution. All decision variables will be assumed nonnegative unless otherwise noted

(Ignizio, 1976).

Dependent Variable
The variable of interest in a regression equation, which is said to be functionally

related to one or more independent or predictor variables (Mendenball, 1993).

Deviational Variable

Auxiliary variables in a goal constraint equation that measure the underachievement
or overachievement of the specified aspiration level. A negative deviation variable
(di" = 0) reflects the amount by which aspiration level 7 is underachieved, while a

positive deviational variable (¢;" > 0) indicates the amount by which aspiration level

i is exceeded, where d x di” = 0.

Feasible solution

Any set of nonnegative x; d; and d;” values constitute a feasible solution (Ignizio,

1976).

Goal Constraint

A set of constraints that corresponds to the goals expressed by the decision maker.

Independent Variable

A nonrandom variable related to the response in a regression equation. One or more
independent variables may be functionally related to the dependent variable. They
are used in the regression equation to predict or estimate the value of the dependent

variable (Mendenball, 1993).



Optimal Solution

The solution (X ) to a given goal programming model is considered optimal if, for
this solution (termed ¥ *), the corresponding value of g (termed g *) is the same or
preferred to the value of g for any other feasible solution. Note that the vector g *
will be preferred to the vector g if the first nonzero component of (g * - g ) is

negative, given that all elements of g * and g are themselves nonnegative (Ignizio,

1976).

Pivot Element
The element of a simplex tableau occurring at the intersection of the column

associated with an incoming basic variable and the pivot row.

Pivot Row
The row of a simplex tableau in which the minimum nonnegative ratio occurs. This

row is associated with the variable that will leave the basis in the next simplex

iteration.

Prediction Equation
In regression the equation used to predict the values of the dependent variable y for
specified values of the independent variables xy, xy, ..., x4 This equation is generally

obtained using the method of least squares (Mendenball, 1993).

Preemptive Priority Factors
Priority factors P; (j = 1, ..., K; where K is the number of objectives in the model)
that have the following relationship

P 225 Pio2 o 22 Piao Py

where >>> implies “infinitely greater than”,

Residual

The difference between the observed value of y and the value predicted (7 ) by a

model, (y — J), is referred to as the error or residual (Mendenball, 1993).



CHAPTER 2

LINEAR GOAL PROGRAMMING

2.0 Introduction

Goal programming problems can be classified according to the types of
mathematical programming models such as linear programming, integer
programming and nonlinear programming. These goal programming problems have
multiple goals instead of a single objective (Hillier and Lieberman, 2001). In this
study, only the linear goal programming model is considered. These are goal
programming problems that fit linear programming where each objective function is

linear.

This chapter will discuss the history of goal programming, advantages and
disadvantages of the goal programming, the formulation of goal programming and

the solution method of goal programming

2.1  History of Goal Programming

Goal programming was extended from linear programming. It was first
developed and introduced by A. Charnes and W.W. Cooper in 1961. It was further
refined by Y. [jiri in 1965. In 1968 B. Contini considered goal programming under

conditions of uncertainty. Major applications were developed by V. Jaaskelainen, S.



Lee and I.P. Ignizio in the 1970s. Since 1968, many goal programming related

studies have been published.

Goal programming has become a widely accepted and applied technique in
various functional areas such as academic planning and administration, accounting
analysis, advertising media scheduling, capital budgeting, decision-support system
design, economic policy analysis, energy resources planning, financial planning,
inventory management, marketing logistics, military strategies and planning,
organizational analysis, production scheduling, quality control, urban planning and

predicting student performance (Ignizio, 1976; Lee and Shim, 1986).

2.2 Advantages and Disadvantages of the Goal Programming

Goal programming is one of the popular and powerful methods for multiple

objective decision analysis (Lee and Shim, 1986).

The following are some of the advantages of goal programming (Hughes and
Grawoig, 1973): |

a) Allows for an ordinal ranking of goal, where the low-priority goals are
considered only after higher-priority goals have been satisfied to the fullest
extent possible.

b) Useful in situations where the multiple goals are conflicting and cannot all be
fully achieved.

c¢) Used to “satisfice” rather than to “optimize” the problem. In linear
programming, what one wants is to optimize the solution. But in using the
goal programming, the goal may be incorporated into the model at a value
that is judged to be satisfactory, not necessarily optimal.

d) Appropriate to find a satisfactory solution where many objectives or goals are

to be considered.



However there are some disadvantages of goal programming. These include
the following:
a) More time and thought, is required in the construction of the model.
b) More decision-maker involvement is required, that is in the establishment of
aspiration levels and weightings.
c) The subjectivity regarding the weights given to priority levels to goal

deviations may be of concern.

2.3  Goal Programming Model Formulation

The formulation of goal programming problem is very similar to that of linear
programming problems (Wu and Coppins, 1981). Goal programming extends the
linear programming formulation to accommodate mathematical programming with
multiple objectives (Charnes and Cooper, 1961). The major differences are an
explicit consideration of goals and the various priorities associated with the different

goals,

To formulate goal programming model (Ignizio, 1976), the following steps
should be followed:
i.  Define the decision variables.
ii.  State the system constraints and goal constraints.
iii.  Determine the preemptive priority factor and the relative weight (if need be).
iv.  Develop the objective function.

v.  State the nonnegative requirement.

The objective function in GP is always minimized and must be composed of
deviational variables only. It minimizes the deviations of the compromise solution

from target goals, weighted and prioritized.

In the formulation, two types of variables are used. They are decision
variables and deviational variables. There are two categories of constraints, that is

structural or system constraints (strict as in traditional linear programming) and goal
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constraints, which are expressions of the original functions with target goals set a

priori and positive and negative deviational variables.

where

The general goal programming model can be expressed as follows:

Minimize Z = i(d[ +d) \

i=]

Subject to the linear constraints;

H
Goal constraints: (Z ax,)+d —df =b,i=1,2,...,m
/=1

IA

"
System constraints: > a,x = b, i=m+1, ..., m+p
=

>
with  adpdf 20, fori=1,2, s, mand j=1,2, ... # )
there are m goals, p system constraints and n decision variables

Z = objective function

ajj = the coefficient associated with variable j in the ith goal

xj = the jth decision variable

bi = the associated right hand side value

d; = negative deviational variable from the ith goal (underachievement)

d;= positive deviational variable from the ith goal (overachievement)

Both over- and underachievement of a goal cannot occur simultaneously.

Hence, either one or both of these variable must have a zero value; that is,

d*xd =0

Both variables apply for the nonnegativity requirement as to all other linear

programming variables; that is,

d*,d =0

Table 2.1 shows three basic options to achieve various goals:
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Table 2.1 : Procedure for Achieving a Goal

Minimize Goal If goal is achieved
d- Minimize the underachievement d- =0,d'=0
d; Minimize the overachievement d; 20,d =0
d- +d; Minimize both under- and overachievement = Gl )

2.3.1 Preemptive Goal Programming

Before solving a goal programming problem, the goals need to be ranked.
Preemptive goal programming is also called non-Archimedean or lexicographic goal
programming (Ignizio, 1983, 1985a). In priority goal programming, the objectives
can be divided into different priority classes. Here it is assumed that no two goals
have equal priority. The goals are given ordinal rankings and are called preemptive
priority factors. These preemptive priority factors have the relationship

B 5% B ool e B, som P,

+1
where >>> means “very much greater than™. This priority ranking is absolute.
Therefore, the Py goal is so much more important than the P, goal and P, goal will

never be attempted until the P; goal is achieved to the greatest extent possible.

The priority relationship implies that multiplication by n, however large it
may be, cannot make the lower-level goal as important as the higher goal (i.e,

Pj > nP,

1) In formulating a goal programming model having prioritized goals,
those preemptive priority factors are incorporated into the objective function as

weights for the deviational variables.

Using equation (2.1), the preemptive goal programming model can be

presented as;

m

Minimize Z =) P,(d; +d;)
i=1

Subject to the linear constraints:
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n \
Goal constraints: Sax, +d ~d=b,,i=1,2, ...m
=1
<
System constraints: a,x,|= by i=mtl, ..., mtp > (2.2)
J=1 %,
with xj,d,.',df 20,i=1,2,...,mandj=1,2, ..., n Y.

where there are m goals, p system constraints, k priority levels and n decision
variables

Py = the priority factor of the kth goal

Here, the difference between equation (2.1) and (2.2) is the priority factor in

the objective function.

2.3.2 Weighted Goal Programming

The weighting of deviational variables at the same priority level should be
considered in the goal programming model formulation. These weights show the
relative importance of each deviation. Charnes and Cooper (1977) stated the

weighted goal programming model as follows:

Minimize Z = (W, d, +W*d}')

i=l

Subject to the linear constraints:

Goal constraints: Za,jxj +d; —-d =b,,i=1,2, ...m ~
J=l
&
System constraints: a,x,|= by, i=mtl, ..., mtp > )
J=1 o
with ch,a’,._,a"j+ 20,i=1,2,..,mandj=1,2,..,n y

where there are m goals, p system constraints and n decision variables

W, = positive numerical weight assigned to the negative deviational

r
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variable, d of the ith constraint
W, = positive numerical weight assigned to the positive deviational

variable, & of the ith constraint

While [jiri (1965) had introduced the idea of combining preemptive priorities

and weighting, Charnes and Cooper (1977) suggested the goal programming model

as:

m

Minimize Z = ) > P,(W,,d; + W d})

where

i=l k=1

Subject to the linear constraints:

¥

Goal constraints: Za ¥, +d; —d =b, 51,2 ot )
j=1

1A

System constraints: ) a,x;|= by, i=m+l, ..., mip } 2.4
=
>

with xj,df,d,.* 20,i=12,..,mandj=12,..,n
o7

there are m goals, p system constraints, k priority levels and n decision
variables
z = objective function

Py = the priority factor of the 4th goal

W,” = positive numerical weight assigned to the negative deviational
variable, d; of the ith constraint

W = positive numerical weight assigned to the positive deviational
variable, d; of the ith constraint

d; = negative deviational variable from the ith goal (underachievement)

d; = positive deviational variable from the ith goal (overachievement)

a;; = the coefficient associated with variable j in the ith goal
x; = the jth decision variable

b; = the associated right hand side value
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2.4  Solution Method of Goal Programming

In this section, two types of goal programming solution methods will be

discussed; that is, the graphical method and the modified simplex method.

2.4.1 The Graphical Method

The graphical method is useful for those goal programming problems which

involve only two decision variables.

In goal programming, we try to minimize the deviation from the goal with the
highest priority to its fullest possible extent. Then the goal with the second higher
priority factor is considered, and so on. The sequential “satisficing” procedure is

used in the graphical method.

According to Ignizio (1976), the steps of the graphical approach are:

1. Plot all the system and goal constraints in terms of the decision variables
(these will simply be straight lines or planes in a linear model).

2. Determine the solution(s) space for the priority 1 goals.

3. Move to the set of goals having the next-highest priority and determine
the “best” solution space for this set of goals, where this “best™ solution
cannot degrade the achievement values already obtained for higher-
priority goals.

4. If, at any time in the process, the solution space is reduced to a single
point, terminate the procedure since no further improvement is possible.

5. Repeat steps 3 and 4 until either we converge to a single point or we have

evaluated all the priority levels.
2.42 The Modified Simplex (Multiphase) Method
The modified simplex method is a general solution technique for all types of

goal programming problems. It is an iterative algorithm just like the regular simplex

method for linear programming. Because of the unique features of the goal



programming model, a number of modifications are necessary in the simplex

operation.

To apply this method, the first thing we need to do is to develop the initial

modified simplex tableau. The general initial modified simplex tableau is shown in
Table 2.2.

Table 2.2 : The General Initial Modified Simplex Tableau

Cj ¥ Voo ¥V, vn-{—l VJH-Z co Vim Virme vu+m+2 v Vs
1 i 5 9 o - 7= - + + +
C, Basic | Solution | x  x,... x, dyd;..d, d df.. d
variables b
‘)’.f:
”l dl_ bl y],l y],Z L yl.n yl,n+1 yl,m»m yl,uﬂuﬂ o yl,n+2m
112 dZ bz y2,l yZ.Z e yl,u y'_',m-l i y?.,u+m yZJH-HH-l e y2,n+2m
u, dﬁ bm
m ym.l ynr.l BN ym,u ym.n+] i ym,m-m ym,na-m—t—] b yur,n+2m
PK gK rK,I rK.Z b rK,n r.‘\',n-{—l b rf\',n+m i“K,n-i-m-l-l o ]‘K,n«:‘Zm
PK" gK'[ }‘K—l,l rh’—l.! r.R'—i.n r.'(-l,mll b ].K-l,nqt-m rK—l.nJrnH] . }‘K—[.n+2.~u
ZJ - C,f
2 gz ’2,] ]2,2 o ’z,n "2,"+l s ]2.n+m ]Z,Jl-i-m-i-l Ll ’2.n+2m
A g
[ 1 . " " . " .
’1 1 ’1,2 Tt ’l,u }l.n-rl R }l,n+m j'l,n+m+1 ter ’l,n-t-'_’m
where
o =1,2,...,n
i = 1y 2e50sMm
k = 142 i K
s =12,...,8
X, = the initial set of nonbasic variable
d  =the initial set of nonbasic variable

d;  =the initial set of basic variable
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v = the function of preemptive priority factors and weights associated with the

5

sth basic or nonbasic variable
u, = the function of preemptive priority factors and weights associated with the
ith basic variable
bi = the right hand side value of the ith goal

Y.,  =element in the ith row under the sth basic or nonbasic variable. That is, the

coefficient of the sth basic or nonbasic variable in goal /.

Py = kth priority level
2 = level of achievement of the goals in priority k, where g = (g1, g2, ..., i)
v, = the index number for priority & under sth basic or nonbasic variable

All the elements in the initial tableau, except for r, , and giare simply

obtained from the mathematical model (2.1). However, #,  and gy must be computed

as follows:
A H A
or
Tow = 2 ) =, 2.5)
i=] :
and
g=u,b
or
e =Z(bi ‘uf) (2‘6)
i=1

If the system constraints exist in the goal programming model, some further

steps have to be taken. The system constraint can exist in the three ways as follow:

1. If the system constraint isz a,x, <b,, aslack variable, S; will be added to

J=l

this equation. The equation will become
Zay.xj +8, =5,
J=1

The slack variable, S; will be defined as the initial basic variable.
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2. If the system constraint is Z a,x, = b,, an artificial variable, 4; will be added
=1

to this equation. The equation will become
Z a,x, + 4, =b,
=
The artificial variable, 4; will be used as the initial basic variable.
n
3. Ifthe system constraint isZa,;,.x , 2 b;, an excess or surplus variable, £; and
51
an artificial variable, 4; will be added to this equation. The equation will

become

Za,jxj ~-E +4 =b,

J=1

The artificial variable, 4; will be used as the initial basic variable.

Then, a new priority factor, Py must be introduced. The P, is defined as the
super priority factor, which is the highest priority factor among all the priority factors
where Py >>> Py >>> P, >>> | >>> P >>> Py, Py also represents the artificial
objective function. The initial simplex tableau when the system constraints exist is

shown in Table 2.3.
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Table 2.3 : The General Initial Simplex Tableau When the System Constraints

Exist
Cj vl LLrs V" L V|r+‘2m+q+r+r
i 1 . . - - + + 7
& Basic | Solution | x,...x, dJ...d, d}...d}S,...S, E,...E, 4,.. 4,
variables b
xh
I dlﬁ bl yl,l B yl,n """ yl‘1:+2rr:+q+r+r
u, : : Yai coo Yo eeres Yo nsamegers
d"—, bm
Sl bm+l
q mt
Al bm+r]+l
ym+q+1,l """ ym+q+r,n+2m+q+r+l
A
um i LR
PK gK r.'-.'.] ey Ir.'\’,n """ r.‘\',n+2m
PK—] gi\'—l rK—l,l "'}'K—!,n+2m
Z,=C,
P : .
1 gl ][.] """ ’],u+2m
I% &
¢ 4 rO.l VR ]l],n “““ ]U.JH-ZJII
The element within the Table 2.4 can be defined as follows:
i =m+l, m+2, ..., m+p
k =0,1,2,...,K
S = slack variable for ith goal
E; = excess or surplus variable for the ith goal
A = artificial variable for the ith goal
Py = the super priority factor which assigned to the artificial variable, 4; in the

objective function
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By following the steps given below, the optimal solution to the goal

programming model may be derived (Ignizio, 1976).

Step 1:

Step 2:

Step 3:
Step 4

Step 5:

Initialization. Establish the initial modified simplex tableau and the index
row for priority level 1 only. Set k = 1 and proceed to Step 2.
Check for optimality. Examine gi. If gx is zero go to Step 7. Otherwise,
examine each positive valued index number 1y ¢ in the kth index row. Select
the largest, positive 1y for which there are no negative valued index numbers,
at a higher priority, in the same column. Designate this column as s’. Ties in
the selection of r s may be broken arbitrary. If no such r, s may be found, go
to Step 7. Otherwise, go to Step 3.
Determining the pivot column and incoming nonbasic variable.
Determining the pivot row and outgoing basic variable. Determine the row
associated with the minimum nonnegative value of

bi/ yis
In the event of ties, select that row having the basic variable with the higher
priority level. Designate this row as i’. The basic variable associated with
row i’ is the outgoing basic variable.
Establishment of the new tableau.

(i) Set up a new tableau with all y;;, b;, rsand g, elements empty.
Exchange the positions of the basic variable heading in row i* (of
the previous tableau) with the nonbasic variable heading in
column s (of the previous tableau).

(i)  Row 7" of the new tableau (except for y;-,°) is obtained by dividing
row i” of the previous tableau by y;-;.

(iif)  Column s’ of the new tableau (except for y;-;") is obtained by
dividing column s° of the previous tableau by (-y;:s).

(iv)  The remaining element are computed as follows:

By = 3y, = LI Por) @7
yi',.r'
[;j =y _M (2.8)
yi'..s"

where l;, and y,, represent the new set of elements to be computed
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and b, and y;, represent the previous values for these element
(from previous tableau).

(v) The new values for r; and g are then established. These values
must be computed for the 4th priority level and all higher priority
levels. These can be obtained simply through the use of equations
(2.5) and (2.6).

(vi)  Return to Step 2.

Step 6: Check the optimality for the new solution.
Step 7: Evaluate the next-lower priority level. Set k= &+1. Ifk exceeds X (the total
number of priority levels) then stop as the solution is optimal. If & < K, establish the

index row for P, and go to Step 2.

In the next section, the relative between goal programming and least square

method will be presented.

2.6  Regression Analysis for Determining Relative Weighting or Goal

Constraint Parameter Estimation

Goal programming in the form of a constrained régression model was used
quite some time ago by Charnes, Cooper and Ferguson (1955). By minimizing
deviation, the goal programming model can generate decision variable values that are
the same as the beta values in some types of multiple regression models. In Charnes,
Cooper and Sueyoshi (1986, 1988) it was suggested that their goal programming
model serves a valuable purpose of cross checking answers from other
methodologies. Likewise, multiple regression models can also be used to more
accurately combine multiple criteria measures that can be used in goal programming

model parameter (Schniederjans, 1995).

2.7  Summary

In this chapter the goal programming method was presented. The relative

between goal programming and least square method was also made.



CHAPTER 3

LEAST SQUARES METHOD

3.0 Introduction

The method of least squares is a powerful technique for regression in statistics
(Wonnacott and Wonnacott, 1981). This chapter will first discuss the basics of

regression followed by the least squares method.

34 Regression

Regression analysis is an approach or a research tool in statistics that is used
to study the relationships between variables, especially for the purpose of
understanding how one variable relates or depends on one or more of other variables

(Wittink, 1988).

3.1.1 Definition of Regression

‘Regression’ is often used to indicate “the return to a mean or average value”
(Wittink, 1988). More than one hundred years ago, the term regression was

introduced to statistics by Francis Galton in a series of paper. The most famous
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being Galton (1886) is to describe a hereditary phenomenon. In these papers, he
reported that the average height of sons with tall fathers is less than the father’s
height (both measured at adult ages). Similarly, the average height of son with short
fathers was reported to be greater than their fathers’ height. In his data, Galton
emphasized the “regression toward the mean” phenomenon. He also found a positive
relationship between the height of fathers and the height of their son which lay

approximately on a straight line.

Galton’s paper is well worth reading as an example of the many practical
considerations that have to be kept in mind in collecting and interpreting data. For
Galton, the important point that justified his calling this a regression line was the
slope was less then unity (implying the regression, or movement towards the

population mean).

Today, any study of relations between variables is often accomplished and
referred through regression analysis (Wittink, 1988). The technique is used heavily
in business and government activities, and social sciences, especially in economics
and related disciplines. It is also a technique for quantifying the relationship between
a criterion variable (dependent variable) and one or more predictor variables
(independent variables). In particular, the quality of decisions often depends on the

quantification of relationships between variables.

3.1.2 The Purposes and Benefits of Regression Analysis

Regression may be used for two main purposes. They are

6))] to predict the criterion variable based on specified values for the
predictor variable(s), and

(ii)  to understand how the predictor variable(s) influence or relate to the

criterion variable.

The following are the benefits of using regression analysis. This tool



() suggests and quantifies the nature of relations between variables,
(i)  provides consistent predictions,

(iii)  may provide superior predictions, and

(iv)  may save time or allow a decision maker to focus more time and

energy on nonquantifiable aspects.

3.2  Simple Regression

Definition 3.1
The simple linear regression model assumes that there is a line with vertical or y
intercept @ and slope b, called the true or population regression line. When a value
of the independent variable x is fixed and an observation on the dependent variable y
is made,

y=at+bx+e
Without the random deviation e, all observed (x, y) points would fall exactly on the
population regression line. The inclusion of e in the model equation allows points to

deviate from the line by random amounts.

Simple regression has only two variables that is a criterion variable and one predictor

variable.

3.2.1 Possible Criteria for Fitting a Line

What is a good fit? A Good fit is a fit that makes the total error small
(Wannacott and Wannacott, 1981). One typical error (deviation) is shown in Figure

3.1. It can be defined as the vertical distance from the observed ¥; to the fitted value
ﬁ on the line, that is, ¥; - f’, . The error is positive if the observed ¥; is above the line

and negative when the observed ¥; is below the line.
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fitted line

l |

Xy X2 Xi
Figure 3.1: Typical Error in Fitting Points with a Line

To minimize the total error, the following criteria should be considered
(Wannacott and Wannacott, 1981):

(a) A fitted line that minimizes the sum of all these errors can be presented as
Y -F)
i=l

Using this criterion, two type of fit lines are shown in Figure 3.2 which fit
the observations equally well. The fit in panel (a) is intuitively a good
one and the fit in panel (b) is a bad one. The problem is concerned with
sign’s where in both cases, positive error just offset negative errors and
leaving their sum equals to zero. This criterion must be rejected because

no distinction between bad fits and good ones.
T +F +
st f =+

(a) (b)
Figure 3.2 : The Weakness of Using Z (7, - I;,) to Fit a Line

v
v
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(b) One of the ways to overcome the sign problem is to minimize the sum of

the squares of the errors, that is:

Y& -1)

This criterion is called least squares, or ordinary least squares (OLS). Its

advantages are:

(1) In overcoming the sign problem by squaring the errors, least squares
produces very manageable algebra to the geometric theorem of
Pythagoras.

(ii) There are two theoretical justifications for least squares, that is the
Gauss-Markov theorem and the maximum likelihood criterion for a

normal regression model.

3.2.2 Using Residuals to Test the Assumptions of the Regression Model
One of the major uses of residual analysis is to test some of the assumptions
underlying regression. The following are the assumptions of simple regression
analysis.
a) The model is linear.
b} The error terms have constant variance.
¢) The error terms are independent.

d) The error terms are normally distributed.

3.3  Multiple Regression

Multiple regression is the extension of simple regression. It takes account of
more than one independent variable X. The appropriate technique should be used
when we want to investigate the effect on Y of several variables simultaneously.
Many times, we wish to include the other variables influencing ¥ in a multiple
regression analysis. The reason is:

(i) To reduce stochastic error and hence reduce the residual variance s°. This

makes confidence intervals more precise.
(ii) To eliminate bias that might occur if we just ignore a variable that

substantially affects Y.
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3.3.1 The Mathematical Model

Y is now to be regressed on the two independent variables X; and X,. Our

model which includes X5 as a predictor variable is
Y=a+bX, + bXa 3.1)

where b is geometrically interpreted as the slope of the plane as we move in the X;-
direction, keeping X, constant. Thus b, is the marginal effect of X; on Y. Similarly
b, is the slope of the plane as we move in the X,-direction, keeping X; constant; thus
b is the marginal effect of X3 on ¥. More generally,

a = the increase in Y if X is increased one unit, while all other regressions are

held constant (3.2)

Proof:
Suppose that, in addition to X}, there is only one other regressor X3; that is
Y=a+ bhX + bX>
To establish (3.2), take the partial derivative of ¥ with respect to X; in the equation
above, i.e.,
oY
ar, "
We can easily confirm that this simple interpret of b is valid because the regression is

linear. If it is not, then a_Y zb.
ox

For example, if the regression is of the non-linear form
Y=a+bX+bX +cZ
Then 2—; =b +2b,X
To establish (3.2) without calculus, hold Z constant at its initial value Zp, and
increase X from its initial Xp to (Xp + 1). Substituting into the equation above, we
may write
Initial Y =a+ bXy + ¢Zy
New Y=a+bX)+ 1) +cZy

Difference = increase in Y= 15
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It is easy to confirm that this is still true if there are several Z variables.

To generalize the regression model for problems involving any number of
predictor variables, we use
Y=a+bX +bXs+ .. +bX +e (3.3)
where
Y = dependent or response variable,
X\, Xy, ..., X;=independent or predictor variables,

e;is the random component of the model and is called the random error.

This model is often referred to as the general linear model. It is general
because it allows for an arbitrary number, /, of predictor variables. And, for each of

the i predictor variables specified, the effects are assumed to be linear.

3.4  The Method of Least Squares

Least squares method is a computational technique for determining the ‘best’
equation describing a set of points, (x1, y1), (x2, ¥2),... .and (x,, ¥), Where best is
defined geometrically (Larsen and Marx, 2001). It assumes that the best-fit curve of
a given type is the curve that has the minimal sum of the deviations squared (least

squares error) from a given set of data.

Given data that are relevant to the problem on ¥ and X, the most common
procedure for computing the intercept, a, and the slope coefficient, b, is called least
squares method. When the values of @ and 4 are obtained, we can compute a

predicted value for Y.

Suppose the data points are (x|, y1), (x2, 32), -.., (xn, ¥u) Where x is the
independent variable and y is the dependent variable. The fitting curve or the desired

polynomial, p(x), can be written as
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=3 A (3.4)
where fiy, B, ..., B are to be determined. The method of least squares will choose as
‘solution’ those £’s that minimize the sum of squares of the vertical distances from
the data points to the presumed polynomial. It means that the fitting curve p(x) has
the deviation (error) d from each data point, i.e., di = y;—p(x1), d» = y2—p(xa), ..., d,
= yu —p(xy). The label ‘best’ is given to the polynomial p(x) whose coefficients

minimize the function L, where

L=di+d; +..+d} =>d' =) [y,-p(x)=min  (3.5)
i=] i=|

3.4.1 Polynomials Least Squares Fitting

Polynomials are one of the most commonly used types of curves in
regression. The applications of the method of least squares curve fitting using

polynomials are briefly discussed as follows:

The Least Squares Line

The least squares line method uses a straight line y = a + bx to approximate a given

set of data, (x1, y1), (X2, ¥2), ..., (X, ¥u), Where n> 2.

The Least Squares Parabola
The least squares parabola methods uses a second degree curve y = a + bx + ¢x’ to

approximate a given set of data, (xy, y1), (x2, ¥2), ..., (xu ¥n), where n> 3.

The Least Squares ™ degree Polynomials

i degree polynomials y = ayp

The least squares 7™ degree polynomials method uses 2
+ax + ax” + ... " to approximate a given set of data, (x1, 1), (X2 32), +.., (¥,

Vn), Where n = m+1.
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Multiple Regression Least Squares
Multiple regression estimates the outcomes which may be affected by more than one
control parameters or there may be more than one control parameter being changed

at the same time, e.g., y = a + bjx; + baxs.

In the next section, linear least squares and multiple regression least squares

are discussed in more detail.

3.5  The Least-squares Line

The method of least squares can be applied to a special case where p(x) is a
linear polynomial. In the least squares line, it involves one dependent variable, ¥ and

one independent variable, X.

The least squares line uses a straight line
y=atbx+te (3.6)
where
a =y intercept of the line,
b = slope of the line, and
e = error term

to approximate the given set of data, (x|, y1), (x2, ¥2), ..., (Xu Yu), Where n> 2.

Theorem 3.1

Given # points (x1, y1), (¥2, ¥3), ..., (Xm Yu), the straight line y = g + bx minimizing
L= 200, = p()F = 2, ~(a b
has slope
DRSEOIRIIND
) n(i[:xf) - (2 x)?

b



30

and y-intercept

iyi _bixr'
a:u___zjj_bj
n

Note that @ and b are unknown coefficients while all x; and y;are given. To obtain
the least squares error, the unknown coefficients @ and » must yield zero first

derivatives.

Proof:
The proof is accomplished by the usual device of taking the partial derivatives of L
with respect to a and b, setting the resulting expressions equal to zero, and solving.

By the first step we get
aL 1l
—=(-2 —(a+bx,)]=0
o ( );[J’, (a+bx,)]
and
- —(—2)2 v,y —(a+bx,)]=0
i=l

Expanding the above equation, we have:

Sy=aSiesds o |

i=l

3, :na+bj'ljx, 3.7)
= £
and
S x, =a'zrlxj +bixﬁ (3.8)
5 -
From (3.7):
iy,- - bi x,
a=i T (3.9)

Then, substitute (3.9) into (3.8). We will get

n Zyl bzx n
2y = () +be?
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nixr‘yr' = ixiiyr‘ —b(ixj)l +nbi‘,x:2
i=l i=l i=l i=l i=l
b[(zxi)z _”ix.‘z] = ixfiyi _’7ixiyi
i=l i=l i=1

i=| i=]

1

Zx:‘ ny = nzxiyi
i=1

b - i=l i=l

" . " "
(Z x,) - an,.'
1= i=1

nixly, - (i x; )(i )
ph= il i=l i=l
n(Zx,-z) —(Z-’»‘;-)z

(3.9) and (3.10) gives the solution for @ and b which are stated in Theorem 3.1.

or

(3.10)

A line that fits the data well makes the residuals small. Requiring that the

sum of residuals, Zei , be small is futile, since large negative residuals can offset

i=l

large positive ones. Indeed, any line through the point (X, y ) has Ze, =1,

1=l

3.6 Residuals of Least-squares Line

Residuals are also called “goodness of fit”. The difference between an
observed or dependent variable y; and the value of the least-squares line when x = x;

is called the ith residual. In other words, residual is the difference between an actual
value (1}) in the sample and the fitted value (I;, ). With the sample data for ¥ and X,

we can obtain @ and b. With these estimates we can obtain fitted values for ¥ using
the sample data. Its magnitude reflects the failure of the least-squares line to ‘model’

that particular point.

Definition 3.2

Let a and b be the least-squares coefficients associated with the sample (x1, y1), (x2,

V2), o, (Xu, ¥u). For any value of x, the quantity y = a + bx is known as the predicted
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value of y. Foreachi, i=1, 2, ..., n, the difference y; - 3,= yi— (a + bx;) is called a

residual.

A residual plot is a graph of the ith residual versus x;, for all ;. Applied
statisticians find residual plots to be very helpful in assessing the appropriateness of

fitting a straight line through a set of points.

Theorem 3.2
The sum of the residuals equals zero. Using the definition for the simple linear
model applying the least squares method

i~ 3,)=Yi—(a+bX)

=Y;— (Y -bX +bX,)

then

- §)=ZY;-E¥ +b) X -b) X,

=2Y;—nY +bnX - bLX,

=2Y,~-nZY" +anX’-bEX,»
h h

=YY, - XY+ bZX; - bLX;
=0

3.7  Linear Multiple Regression Least-squares

Linear multiple regression predicts the outcome (dependent variables) which
may be affected by more than one control parameter (independent variables) or there

may be more than one control parameter being changed at the same time.

In this section, only the multiple regression least-squares with two predictor
variables will be discussed. The model for one dependent variable, ¥, and two

independent variables X; and X, is



33

y=a+bx +bxyte (3.11)
for a given data set (yy, x11, X21), (V2 X12, X22), -+ » Vi, X1m X24), Where 1> 3. The best

fitting curve P(x) has the least squares error
" H
L=3[y, = PCx, 5 = 2y, —(@+bx, +b,%,)F =min  (3.12)
=1 i=|
Note that a, b), and b, are unknown coefficients while x;, x2;, and y; are given. To
obtain the least squares error, the unknown coefficients a, by, and b; must yield zero

first derivatives. That is

aL n
i (-0 [y, ~(@+bx, +b,x,)]=0 ,
a =l
aL "
T— (_2)2 x, [y, —(a+bxy +b,x,)]=0,
0b, i=l
BL n
and TR (-2)sz,. v, —(a+bx,; +b,x,)]=0.
2 =1

Expanding the above equations, we have

L

> :ai1+bl>ix“+b2ix2,, (3.13)
i=] i=1 i=1

i=1

i‘,xnys = aixli +blix:2: 'J"bzixuxzf : (3.14)
i=1 i=l i=1 i=.l
and

n n n 1
Zijzr = aler‘ +blleix21‘ '*‘bzzxzzf . (3.15)
=l =1 i1 =1

The unknown coefficients a, b;, and b, can hence be obtained by solving the above
linear equations simultaneously. This is a system of three linear equations in three
unknowns, so it usually provides a unique solution for the least-squares regression

coefficient, a, b; and b,. These value a, l;l and b, are called the least squares

estimates of the coefficients.

The formula for b, estimates the effect of X} on ¥, holding X5 constant.
Similarly, the formula for b, estimates the effect of X; on ¥, holding X; constant.
Finally, a is the intercept, the estimated value for the criterion variable when both X,

and X; are zero.
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One of the differences between fitting a straight-line regression and a
multiple regression is the computational difficulty. One needs to solve (i+1) linear
equations simultaneously and this will be vary cumbersome working with a

calculator.

The slope coefficients for the explanatory variables in the multiple regression
are partial coefficients, while the slope coefficient in simple regression gives the
marginal relationship between the response variable and a single explanatory
variable. That is, each slope in multiple regression represents the ‘effect’ on the
response variable of a one-unit increment in the corresponding explanatory variable
holding the value of the other explanatory variable. The simple-regression slope

effectively ignores the other explanatory variable (Fox, 2004).

3.8  Residuals of Multiple Regression Least-Squares

Residuals for multiple regression least-squares are actually the same as those
for least-squares line. That is,
Y, =a+bx, +b,x, +e,
or
Vi =a+bx, +b,x,

where J is the predicted value of y.

Then, the difference
ei=y, -3, =y, —(a+bx, +b,z,) (3.16)

is called a residual.
3.9  Summary
In this chapter, the regression analysis for simple and multiple have been

presented. Then, the method of least squares method for simple and multiple

regression were also discussed. Finally, residuals were explained.



CHAPTER 4

DATA ANALYSIS

4.0 Introduction

In this chapter, the least squares method and the goal programming method
will be used to analyze the same data sets so that conclusions concerning the
relationship of these two methods can be made. This chapter will begin with the

description of the data.

4.1 Background of Data

Three data sets were chosen for analysis. All of the data sets contained
outliers. Set 1 relates one dependent variable (¥) with one independent variable (X),
set 2 relates one dependent variable (¥) with two independent variable (X), X2) while
set 3 relates one dependent variable (¥) with three independent variable (X;, X3, X3).

The data set are as follow:

Data Set 1

Carbon aerosols have been identified as a contributing factor in a number of
air quality problems. In a chemical analysis of diesel engine exhaust, X = mass

(;tg/cm") and ¥ = elemental carbon (ug/cm’) were recorded (“Comparison of Solvent
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Extraction and Thermal Optical Carbon Analysis Methods: Application to Diesel
Vehicle Exhaust Aerosol” Environment Science Technology (1984): 231 —234).

Table 4.1 : Data Set I

Observation X, Y, elemental | Observation X, Y, elemental
number mass carbon number mass carbon

1 164.2 181 16 78.9 86

2 156.9 156 4 387.8 310

3 109.8 115 18 135.0 141

4 111.4 132 19 82.9 90

5 87.0 96 20 117.9 130

6 161.8 170 21 108.1 102

7 230.9 193 22 89.4 91

8 106.5 110 23 76.4 97

Y 97.6 94 24 131.7 128

10 79.7 77 25 100.8 88

11 118.7 106

12 248.8 204

13 102.4 98

14 64.2 76

15 89.4 89

Carbon aerosol is dangerous to our health because it influences the number of
air quality. This set of data has 25 pairs, (x;, ;) of observations as tabulated in Table
4.1. In this set, mass (X) is an independent variable while elemental carbon (¥) is a

dependent variable. So, this is a simple linear regression problem.

Data Set 2

The administrator for an organization that conducts management seminar
programs is interested in examining the relationship between seminar enrollments

(Y), the number of mailings (X)), and the lead time of mailings (X3) of seminar
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announcements. Data were obtained from a sample of n = 25 management seminars

offered by the organization and are listed in Table 4.2,

Table 4.2 : Data Set I

Obser- | Enrollment, | Num. of | Lead | Obser- | Enrollment, | Num. of | Lead

vation Y Mailings, | Time, | vation Y Mailings, | Time,

number X X, number X; X,
(* 1,000) | (weeks) (% 1,000) | (weeks)

1 27 6.5 3 16 19 3.7 6

2 29 6.5 2 17 36 9.1 12

3 41 13.0 15 18 43 23.0 13

3 36 8.1 13 19 40 235 10

5 22 4.0 6 20 38 9.0 9

6 40 11.5 13 21 40 7.0 12

7 52 18.0 17 22 42 12.5 16

8 39 10.0 12 23 21 5.0 6

9 27 7.1 4 24 29 6.8 12

10 28 6.5 10 25 35 7.2 14

11 24 7.0 5

12 25 7.3 11

13 43 7.5 12

14 35 Tad 12

15 27 4.9 9

The second set of data is about management seminar program. 25 pair (y;, x1,

x2;) of observations were recorded. The relationship between enrollment and number

of mailings and lead time is deterministic if the value of enrollment is completely

determined, with no uncertainty, once values of the number of mailings and lead time

have been specified.
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Data Set 3

The U.S. Bureau of Mines produces data on the price of minerals. Table 4.3

shows the average prices per year for several minerals over a decade.

Table 4.3 : Data Set ITI

Observation | ¥, Gold (§ per oz) | Xj, Copper | X3, Silver ($ X3,
number (cent per /b) per oz) Aluminium
(cents per /b)
1 161.1 64.2 4.4 39.8
2 308.0 93.3 11.1 61.0
3 613.0 101.3 20.6 71.6
4 460.0 84.2 10.5 76.0
5 376.0 72.8 8.0 76.0
6 424.0 76.5 11.4 77.8
7 361.0 66.8 8.1 81.0
8 318.0 67.0 6.1 81.0
9 368.0 66.1 5.5 81.0
10 448.0 82.5 - 7.0 72.3
11 438.0 120.5 6.5 110.1
12 382.6 130.9 5.3 87.8

There are four variables (minerals) — gold, copper, silver and aluminium in
this data set. Gold and silver are measured by § per oz while copper and aluminium
are measured by cents per /b. The objective here is to predict the average price of
gold. Here, gold is the dependent variable denoted by Y while copper, silver and

aluminium are independent variable denoted by X;, X5 and XG.

4.2 Outliers

Definition 4.1

The outlier is an unusually small or large data value (Devore and Peck, 2001).




Definition 4.2
Outliers are data points that lie apart from the rest points, or are data points that are

apart, or far, from the mainstream of the other data (Black, 2001).

Definition 4.3
Outliers are observations with a unique combination of characteristics identifiable as

distinctly different from the other observations (Hair et al, 1998).

Outliers can be classified into four classes. The first class arises from a
procedural error, such as a data entry error or a mistake in coding. These outliers
should be identified in the data cleaning stage, but if overlooked, they should be
eliminated or recorded as missing value. The second class of outlier is the
observation that occurs as the result of an extraordinary event, which then is an
explanation for the uniqueness of the observation. The researcher must decide
whether the extraordinary event should be represented in the sample. If so, the
outlier should be retained in the analysis; if not, it should be deleted. The third class
of outlier comprises extraordinary observations for which the researcher has no
explanation. Although these are the outliers most likely to be omitted, they may be
retained if the researcher feels they represent a valid segment of the population. The
fourth and final class of outlier contains observations that fall within the ordinary
range of values on each of the variables but are unique in their combination of values

across the variables (Hair et al, 1998).

In linear regression, an outlier is defined as an observation for which the
studentized residual (»; or #") is large in magnitude compared to other observations in
the data set. Observations are judged as outliers on the basis of how unsuccessful the

fitted regression equation is in accommodating them (Chatterjee and Hadi, 1988).

Potential outliers are observations that have extremely large residuals. They
do not fit in with the pattern of the remaining data points and are not at all typical of
the rest of the data. As a result, outliers are given careful attention in regression
analysis in order to determine the reasons for the large fluctuations between the

observed and predicted responses (Richard & Robert, 1980).
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Both the predictor and dependent variables will have their parts to play in
deciding whether an observation is unusual. The predictor variables determine
whether a point has high leverage. The value of the dependent variable, ¥, for a

given set of X values will determine whether the point is an outlier,

As every data point has an influence on the regression model, outliers can
exert an overly important influence on the model because of their distance from other
points. Thus an examination of outliers is worth considering before a set of data is
analyzed. In the next section, box plot which is a simple technique to identify

outliers in a data set will be presented.

4.2.1 Box Plot (Box and Whisker Plots)

A box plot is a diagram that utilizes the upper and lower quartiles along with
the median and the two most extreme values to depict a distribution graphically. It is
one technique to detect an outlier in data set. This technique is used in many
statistics and management texts book. There are two types of box plot: the skeletal

and the modified box plot (Devore and Peck, 2001).

Definition 4.4

Lower quartile = median of the lower half of the sample

Upper quartile = median of the upper half of the sample

The interquartile range (igr), a resistant measure of variability, is given by

igr = upper quartile — lower quartile

Definition 4.5

An observation is an outlier if it is more than 1.5 igr away from the closest end of the
box (the closest quartile). An outlier is extreme if it is more than 3 igr from the
closest end of the box, and it is mild otherwise. A modified box plot represents mild
outliers by shaded circles and extreme outliers by open circles. Whiskers extend on

each end to the most extreme observations that are not outliers.
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The box plot is determined from the following:
1. The median (0>).
The lower quartile (Q;).
The upper quartile (Q;).

The smallest value in the distribution.

LR W

The largest value in the distribution.

The box of the plot is determined by locating the median and the lower and
upper quartiles on a continuum. A box is drawn around the median with the lower
and upper quartiles (Q; and Os) as the box endpoints. These box endpoints (Q; and

(;) are referred to as the hinges of the box.

At a distance of 1.5 * igr outward from the lower and upper quartiles are what
are referred to as inner fences. A whisker, a line segment, is drawn from the lower
hinge of the box outward to the smallest data value. A second whisker is drawn from
the upper hinge of the box outward to the largest data value. The inner fences are
established as follows.

O —-15 igr
Os+1.5-igr
If there are data beyond the inner fences, then outer fences can be constructed:
O,-3"igr
O3+ 3 - igr

Figure 4.1 shows the features of a box plots.

Hinge Hinge

L5 - iq 1.5 igr

A

h 4
A
\ 4

3-igr 3-igr

Figure 4.1 : Box plots
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Data values that are outside the mainstream of values in a distribution are
viewed as outliers. Outliers can be merely the more extreme values of a data set.
Values in the data distribution that are outside the inner fences but within the outer
fences are referred to as mild outliers. Values outside the outer fences are indicated

by zero on the graph. These values are extreme outliers.

4.2.2 Existence of Outliers

Using the box plot technique, data set 1, 2 and 3 will be shown to contain

outliers. It only tests the independent variable, X.

Data Set 1

First, the data need to be arranged from the smallest value to the largest value
or vice versa as follows:
x;: 64.2,76.4, 78.9, 79.7, 82.9, 87.0, 89.4, 89.4, 97.6, 100.8, 102.4, 106.5, 108.1,
109.8, 111.4, 117.9, 118.7, 131.7, 135.0, 156.9, 161.8, 164.2, 230.9, 248.8, 387.8

The quantities needed for constructing the modified box plot are as follows:
Median = 108.1, Lower quartile = 88.2, Upper quartile = 145.95
igr = upper quartile — lower quartile
= 145.95 - 88.2=57.75
1.5 igr=15-57.75=86.625and 3 igr=3'57.75=173.25
Thus,
Upper edge of box (upper quartile) + 1.5 - igr=145.95 + 86.625 = 232.575
Lower edge of box (lower quartile) — 1.5 * igr = 88.2 — 86.625 = 1.575
So 248.8 and 387.8 are both outliers at the upper end, and there are no outliers at the
lower end.
Since,
Upper edge of box + 3 * igr = 145.95 + 173.25=319.2

387.8 is an extreme outlier and 248.8 is only a mild outlier.
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The MINITAB box plot is presented in Figure 4.2.

Figure 4.2 : Comparative Box Plot for Mass (pg/cmz)

Data Set 2

Here the data of independent variable, X; (number of mailings/x1000) and X

(lead time/weeks) would be tested.

For independent variable number of mailings,
x1;:3.7,4.0,4.9, 5.0, 6.5, 6.5, 6.5,6.8,7.0,7.0,7.1,7.2, 7.3, 7.5, 7.5, 8.1, 9.0, 9.1,
10.0, 11.5, 12.5, 13.0, 18.0, 23.0, 23.5

The quantities needed for constructing the modified box plot are as follows:
Median = 7.3, Lower quartile = 6.5, Upper quartile = 10.75, igr = 10.75 - 6.5 =4.25
1.5-igr=15-425=6375and 3 - igr=3-4.25=12.75
Thus, Upper edge of box + 1.5 - igr=10.75 + 6.375 = 17.125
Lower edge of box — 1.5 - igr=6.5-6.375=10.125
So, 18.0, 23.0 and 23.5 are both outliers at the upper end.
Since, Upper edge of box +3 “ igr=10.75+12.75=23.5

There are no an extreme outlier for this data set.

The MINITAB box plot is presented in Figure 4.3.

Figure 4.3 : Comparative Box Plot for Number of Mailings (x 1000)
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For independent variable lead time of mailings,

x::2,3,4,5,6,6,6,9,9, 10,10, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 14, 15, 16, 17

The quantities needed for constructing the modified box plot are as follows:
Median = 12, Lower quartile = 6, Upper quartile= 13, igr=13-6=7
1.5 igr=15"-7=105and3 " igr=3-7=21
Thus, Upper edge of box -+ 1.5 - igr=13+10.5=23.5
Lower edge of box — 1.5 * igr=6-10.5=-4.5

So, there are not outliers for lead time of mailings, X>.

Data Set 3

The data of independent variable, X| (copper/cent per /b), X» (silver/$ per oz)

and X3 (aluminium/cents per /b) would be tested.

For independent variable copper,
x1i 1 66.1, 64.2, 66.8, 67.0, 72.8, 76.5, 82.5, 84.2,93.3, 101.3, 120.5, 130.9

The quantities needed for constructing the modified box plot are as follows:
Median = 79.5, Lower quartile = 66.9, Upper quartile = 97.3
igr=973-669=304,1.5"igr=15"304=456and3 ' igr=3-304=91.2
Thus, Upper edge of box + 1.5 - igr=97.3 +45.6 = 142.9

Lower edge of box — 1.5 ' igr=66.9-45.6 =21.3

There are not outliers for independent X).

For independent variable silver,
x5 :4.4,5.5,55,6.1,6.5,70, 80,81, 10.5,11.1, 11.4, 20.6
The quantities needed for constructing the modified box plot are as follows:
Median = 7.5, Lower quartile = 5.8, Upper quartile = 10.8, igr=10.8 - 5.8 = 5.0
1.5 igr=15-50=75and 3 igr=3-5.0=150
Thus, Upper edge of box + 1.5 * igr=10.8 +7.5=18.3

Lower edge of box — 1.5 - igr=5.8-7.5=-1.7

So, 20.6 is an outlier at the upper end.
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Since, Upper edge of box + 3 - igr=10.8 + 15.0 = 25.8, 20.6 is a mild outlier.

The MINITAB box plot is presented in Figure 4.4,

Figure 4.4 : Comparative Box Plot for Silver (§ per 0z)

For independent variable aluminium,
x3:39.8,61.0, 71.6, 72.3, 76.0, 76.0, 77.8, 81.0, 81.0, 81.0, 87.8, 110.1

The quantities needed for constructing the modified box plot are as follow:
Median = 76.9, Lower quartile = 71.95, Upper quartile = 81.0
igr=81.0-71.95=9.05, 1.5 igr=1.5-9.05=13.575 and3 - igr=13 - 9.05 =27.15
Thus, Upper edge of box + 1.5 * igr=81.0 + 13.575 = 94.575
Lower edge of box — 1.5 - igr="71.95-13.575 = 58.375
So, 110.1 is an outlier at the upper end and 39.8 is an ouﬂier at the lower end. Since
Upper edge of box + 3 * igr=81.0 + 27.15=108.15
Lower edge of box -3 - igr=71.95-27.15=44.38

39.8 and 110.1 is an extreme outlier.

The MINITAB box plot is presented in Figure 4.5.

45 60 75 90 105

Figure 4.5 : Comparative Box Plot for Aluminium (cents per /)
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4.3  Analysis Using Least Squares Method

In this section, the three data sets will be analyzed using the least squares
method to produce the best polynomial,
4.3.1 Analysis on Data Set 1

In this data set, only the first 20, 19 and 18 pairs (y;, x;) of observations will
be used for analyzing the data in the following conditions: outliers included, mild
outlier or extreme outlier removed, and both mild and extreme outliers removed.
The last five observations will be used to predict or estimate using the least squares
line equations obtained from this data set.

(i) Outliers included

Recall Table 4.1. It is calculated that

20 20
3% =27318 > x} =484531.16
i=l 1=]
20 20
>y, =2654 > x,y, =444011.2

i=1 i=l

Using equations (3.9) and (3.10), we have
my Xy, —(Qx)(Qy)
b — i=| i=1 i=l
M) - (3
i=1 i=1

_ 20(444011.2) - 2731.8(2654)
20(484531.16) — (2731.8)°

=0.7316

and
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_ 2654-0.7316(2731.8)
20

=32.7708
Then, the least-squares line is

y, =a+bx, +e

v, =32.7708+0.7316x, +e, or y, =32.7708 +0.7316x, (4.1)

The scatter plot for this best straight line is shown in Figure 4.6.

é_ 400
8 < 300 .
i i§] 200 F
2 2 100 | it
m 0 ‘ ‘
0 200 400 600

Mass (ug/cm?)

Figure 4.6 : The Scatter Plot for Data Set I

(ii) Remove mild outlier

Here, the 12" observation (upper end mild outlier), (y12, x12) = (204, 248.8),

will be removed. Only the first 19 pairs of observations will be used for analysis.

Recall Table 4.1. It is calculated that

19 19 19 19
Dx, =2483 , > x] =422629.72, )y, =2450, ) x,y, =393256
] =1

i=l i=1 i=]

Using equations (3.9) and (3.10), we have b = 0.7446 and a = 31.6345.
Then, the least-squares line is ¥, =31.6345 + 0.7446x, 4.2)

(iii) Remove extreme outlier

Now, the 17" observation (upper end extreme outlier), (7, x17) = (310,
387.8), will be removed.
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Recall Table 4.1. It is calculated that

19
S =
i=1

Zga. =334142.32, Zy,_2344 Z;y,_3237932
i=1

Using equations (3.9) and (3.10), we have b =0.7698 and a = 28.3933
Then, the least-squares line is 3, = 28.3933 + 0.7698x (4.3)

(iv) Remove both mild and extreme outliers

Now, the 12" and 17" observation (mild and extreme outlier), will be
removed.

Recall Table 4.1. It is calculated that

> x, = 20952, Zx

i=l

18 18
=272240.88, >y, =2140, > x,y, = 273038
i=] =1
Using equations (3.9) and (3.10), we have b = 0.8442 and a = 20.6206

Then, the least-squares line is y, = 20.6206 + 0.8442x (4.4)

4.3.2 Analysis on Data Set 2

For this set of data only 20 triplets (y;, x1;, x2;) of observations will be used for

analysis. Then 19 and 17 triplets of observations will be used to analyze the data
when the first, second or third mild outlier and all of the three mild outliers are

removed from the data set using MINITAB software package

(i) Outliers included

Recall Table 4.2. It is calculated that

20 20 20
>ox, =193.7, > xi =2481.57, > x, =194, D x;, = 2206
i=l

i=1
20
>y, =665,
i=1

i=1 =l

o= TR, ixhxy =2111.5, ixyy, = 6959
i=1 i=]
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Using equations (3.13) to (3.15), we have

n n N
an+b, ler +bzz.t3, = Zy,
i=1 i=l 1=l

20a + 193.76; + 194h5 = 665 (4.5)
aix“ +blix,2, £ bzixnxg, = ix[,y,

i1 = = =
193.7a + 2481.57b, +2111.5h,=7127.2 (4.6)
aixz, +b, ix“xy +b, ix;;’,. = ixz,.yi

=l i=1 =1 =1
1944 +2111.5b; + 22065, = 6959 “.7)

Solving equations (4.5), (4.6) and (4.7) simultaneously, we get
a=222,b=1.1and b, =0.0167.
Thus, the least-squares line is
¥, =a+bx, +b,x, +e,
»=22.241.1%;, +0.0167x,, +e, or
$,=222+1.1x, +0.0167x,, (4.8)

(ii) Remove first mild outlier

The first mild outlier is (y7, x17, x27) = (52, 18.0, 17). Only 19 triplets of
observations will be used for analysis. Using MINITAB software package, the least-

squares line is J, = 23.1+0.932x,, +0.02x,, 4.9)

(iii) Remove second mild outlier

The second mild outlier is (ys, 1,18, X2.18) = (43, 23.0, 13). Only 19 triplets
of observations will be used for analysis. Using MINITAB software package, the
least-squares line is y, =21.0+1.27x, +0.0134x,, (4.10)
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(iv) Remove third mild outlier

The third mild outlier is (y19, x1,19, x2,19) = (40, 23.5, 10). Only 19 triplets of
observations will be used for analysis. Using MINITAB software package, the least-

squares line is p, =19.9+1.42x, +0.0101x,, (4.11)

(v) Remove all the three mild outliers

Here, only 17 triplets of observations will be used for analysis. Using
MINITAB software package, the least-squares line is
¥, =10.3+2.80x, —0.0176x,, (4.12)

4.3.3 Analysis on Data Set 3

For this data set, only outliers in independent variable X3, aluminium, would
be analyzed. MINITAB, a statistical software package is used to perform all the
multiple regression analysis. 10, 9 and 8 pairs (y;, x1; X2, x3;) of observations were
used for analyzing the data in the following conditions: outliers included, first or

second extreme outlier removed, and both extreme outliers removed.
(i) Outliers included

From the MINITAB output,the least-squares line is
¥, =-40.9-0.23x, +18.6x,, +3.83x,, (4.13)

(ii) Remove first extreme outlier

The first extreme outlier (lower end), x3; = 39.8, will be removed from data
set 3. From the MINITAB output, the least-squares line is
¥, =30-0.13x, +17.1x,, +3.03x,, (4.14)



(iii) Remove second extreme outlier

The second extreme outlier (upper end), x31; = 110.1, will be removed from
data set 3. From the MINITAB output, the least-squares line is
¥, ==100-0.102x,, +17.7x,, +4.56x,, (4.15)

(iv) Remove both extreme outlier

From the MINITAB output, the least-squares line is
¥, =—125-0.03x, +18.1x,, +4.86x,, (4.16)

44  Converting Least Squares Problem into a Goal Programming Model

From the least-squares method, we have
P, =a+bx, (4.17)
and the error/residual is y, -y, = e, or
V=Y —e, (4.18)
(4.17) = (4.18); |
¥y, —e, =a+bx,

y,=a+bx, +e, (4.19)

From the goal programming model, we have
i
o 3 .
Minimize Z=>Y(d +d)
i=1

Subject to the linear constraints:



h
9]

Goal constraints: Qla,x)+d; —df =b,,i=12,...,m N
J=1
<
System constraints: Zau.\‘l =\, i=m+l, ..., mtp f (4.20)
i=l
>

with xj,d,',d.*' 20,fori=12 .., mandj=12,....n

i

From (4.19) and (4.20),
e,=d —d (4.21)

4.4  Analysis Using Goal Programming

In this section, the data analysis were performed using goal programming.

The solutions were obtained using QM for Windows.

QM for Windows is a package for quantitative methods, management science
or operational research. This package is a user friendly software package available
in its fields. The software can be used to either solve problems or check answers

(http://www .prenhall.com).

4.4.1 Analysis on Data Set 1
(i) Outliers included

The formulation of data set 1 is presented as follows:

20
Minimize ~ Z=PR) (d'+d,)

i=1
Subject to 164.2x, +x, +d; —d =181

156.9x, +x, +d; —d; =156



with

Here, we only have one goal that is P, for data set 1. The goal, P, is to

109.8x, +x, +d; —d; =115
111.4x, +x, +d; —d; =132
87x, +x, +d; —d; =96
161.8x, +x, +d, —d, =170
230.9x, +x, +d; —dF =193
106.5x, + x, +dg —dy =110
97.6x, +x, +d, —dy =94
1995+ %, vdg—dy=T7
118.7x, +x, +d;, —d;, =106
248.8x, +x, +d5, —d} = 204
102.4%, +x, +d, —d, =98
64.2x, +x, +d, —d’, =76
89.4x, +x, +d, —d; =89
78.9x, +x, +d, —d’, =86
387.8x, +x, +d; —d}; =310
135x; + x, +d;; —d; =141
82.9x, +x, +dy ~d}; =90
117.9x, +x, +d5, —d =130

x,d",d" >0,i=12,..20

predict elemental carbon. This goal programming model is solved by using QM for

Windows software. The results are x; = 0.7215 and x> = 30.1839.

From these results, we can write the predicted equation as

$, =0.7215x, +30.1839

(ii) Remove mild outlier

The formulation of data set 1 without mild outlier is presented as follows:
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20
Minimize Z=PY (d +d])

i=1

Subject to 164.2x, +x, +d; —d, =181
156.9x, +x, +d; —d =156
109.8x, +x, +d; —d} =115
111.4x, +x, +d; —d} =132
87x, +x, +d; —d] =96
161.8x, +x, +d; —d? =170
230.9x, +x, +d; —d; =193
106.5x, +x, +dy —d; =110
97.6x, +x, +dy —dy =94
719.7%, + 2, +dyy —dyy =77
118.7x, + x, +d;, —d;; =106
102.4x, +x, +dj; —d;;, =98
64.2x, +x, +d, —d;, =76
89.4x, +x, +d; —d; =89
78.9x, +x, +d; —d,; =86
387.8x, +x, +d,; —dj; =310
135x, +x, +dy —d; =141
82.9x, +x, +d;;, —djy =90
117.9x, +x, +dy, —d;, =130

with x,d;,d 20,i=12,..,20

This goal programming model is solved by using QM for Windows. The
results are x; = 0.7215 and x; = 30.1837
Thus, the predicted equation is p, = 0.7215x, +30.1837. (4.22)



(iii) Remove extreme outlier

The formulation of data set 1 without extreme outlier is presented as follows:
20
Minimize Z=P) (d' +d)
i=l1

Subjectto  164.2x, +x, +d; —d* =181
156.9%, +x, +d; —d} =156
109.8x, + x, +d; —dj =115
1114x, +3x, +d; —dF =132
87x, +x, +d7 —dF =96
161.8x, +x, +d- —d* =170
230.9%, +x, +d; —dF =193
106.5x, +x, +d; —d! =110
97.6x, +x, +dy —d; =94
79.7x,+x, +dy—dyy =77
118.7x, +x, +d;, —d, =106
248.8x, +x, +d; —d, =204
102.4x, + x, +d, —d*, =98
64.2x, +x, +d;, —d; =76
89.4x, +x, +d —d, =89
789x, +x, +d;, —d;;, =86
135x, +x, +d g —d g =141
82.9x, +x, +d, —d; =90
117.9%, +x, +d5, —dl, =130

with x,d”d* 2 0,i=12,..,20

The results are x; = 0.8038 and x; = 24.3972.
Thus, the predicted equation is », = 0.8038x, +24.3972. (4.23)



(iv) Remove both mild and extreme outliers

The formulation of data set 1 without both mild and extreme outliers is

presented as follows:
Minimize

Subject to

with

20

Z=PY (d +d)
i=1

164.2x, +x, +d; —d* =181
156.9%, +x, +d; —d! =156
109.8x, +x, +d; —d; =115
1114x, +x, +d; —d; =132
87x, +x, +d; —d; =96
161.8x, +x, +d; —d; =170
230.9x, +x,+d; —d; =193
106.5x, +x, +d; —d; =110
97.6x, +x, +d, —dy =94
79.7x, +x, +dy —dih =77
118.7x, + x, +d;, —d}; =106
102.4x, +x, +d; —d; =98
64.2x, +x, +d;, —d;, =76
89.4x, +x, +d; —d); =89
78.9x, +x, +d-, —d’ =86
135x, +x, +d —dh =141
829x, +x,+dy—d; =90
117.9x, +x, +dp —di =130

x,d",d" 20,i=12,.,20

The results are shown x; = 0.8919 and x; = 16.0622.

Thus, the predicted equation is y, = 0.8919x, +16.0622.

(4.24)

56
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4.4.2 Analysis on Data Set 2

(i) Outliers included

The complete model of data set 2 can be presented as follows:

Minimize

Subject to

with

20
Z=RY\(d; +d)

P
6.5x, +3x, +x, +d; —d; =27
6.5x, +2x, +x, +d; —d, =29
13.0x, +15x, +x, +d —di =41
8.1x, +13x, +x, +d; —d; =36
4.0x, +6x, +x, +d; —d; =22
11.5%, +13x, +x, +d; —d =40
18.0x, +17x, +x, +d; —d} =52
10.0x, +12x, +x, +d; —d; =39
7.1y, +4x, +x, +d; —d) =27
6.5x, +10x, +x, +d, —dj; =28
7.0x, +5x, +x; +d;, —d}, =24
7.3%, +11x, +x, +d —d}; =29
7.5x, +12x, +x, +d; —d}; =33
7.5x%, +12x, +x; +d;, —d;, =35
4.9%, +9x, +x; +d; —d}; =27
3.7x, +6x, +x;, +d;; —djg =19
9.1x, +12x, + x, +d; —d; =36
23.0x, +13x, +x; +dyg —d;; =43
23.5x, +10x, + x, +djg —dj5 =40
9.0x, +9x, +x; +d —d;, =38

Xiy dj., df+20, i= I, 2, — 20
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Data set 2 have only one goal, P;. This goal is to predict seminar enrollment.

This goal programming model is solved by using QM for Windows software. The
results are x; = 0.5055, x; = 1.2615 and x5 = 15.5055.
Thus, the predicted equation is p, = 0.5055x,, +1.2615x,, +15.5055. (4.25)

(ii) Remove first mild outlier

The complete model of data set 2 without first mild outlier can be presented

as follows:
Minimize

Subject to

20
Z:PIZ(df +d)

i=1
6.5x, +3x, +x, +d] —d| =27
6.5x, +2x, +x, +d, —dy; =29
13.0x, +15x, + x; +d; —d; =41
8.1x, +13x, +x; +d; —d; =136
4.0x, +6x, +x; +d; —d; =22
11.5%, +13x, +x, +d; —d =40
10.0x, +12x, +x, +d; —d; =39
T0x, +4x, +x, +d, —dy =27
6.5x, +10x, +x, +d;y —d =28
7.0x, +5x, +x, +d;, —d,, =24
7.3x, +11x, +x, +d, —d;; =29
7.5x, +12x, +x, +d; —d; =33
7.5x, +12x, + x, +d,, —d,, =35
4.9x, +9x, +x, +d; —d)5 =27
3.7x, +6x, +x,+d; —d;; =19
9.1x, +12x, +x, +d; - d; =36

23.0x, +13x, +x; +d;; —dyy =43



23.5x, +10x, +x, +d;, —dyy =40
9.0, +9x, +x; +d5, —dy, =38

with x,d,d >0,i=1,2,...,20

The results are x; = 0.4698, x; = 1.0783 and x3 = 18.1767.
Thus, the predicted equation is y, = 0.4698x,, +1.0783x,, +18.1767. (4.26)

(iii) Remove second mild outlier

The complete model of data set 2 without second mild outlier can be

presented as follows:

20
Minimize =~ Z=PR) (d +d,)

i1

Subject to 6.5x, +3x, +x;, +d; -d; =27
6.5x, +2x, + x5 +d; —d; =29
13.0x, +15x, +x, +d; —d} =41
8.1x, +13x, +x, +d, —d; =36
4.0x, +6x, +x, +d; —di =22
11.5x, +13x, + x, +d; —di =40
18.0x, +17x, +x; +d; —d; =52
10.0x, +12x, +x; +d; —dy =39
70x, +4x, + %, +d, —dj =27
6.5x, +10x, +x; +dy —d;y =28
7.0x, +5x, +x, +d;, —d], =24
73x, +11x, +x, +d;, —d;; =29
7.5%, +12x, +x; +d;; —d}; =33
7.5x, +12x, +x; +d;, —d], =35

4.9%,+9x, +x; +dy; —djs =27



with

3.7x, +6x, +x, +d, —dy; =19
9.1x, +12x, + x, +d, —d; =36
23.5x, +10x, +x, +dy —dyy =40
9.0x%, +9x, +x; +d;; —dy; =38

xodi,d>0i=12,...,20

The results are x; = 1.4878, x, = 0.6756 and x;=13.7342.

Thus, the predicted equation is p, =1.4878x,, +0.6756x,, +13.7342.

(iv) Remove third mild outlier

The complete model of data set 2 without third mild outlier can be presented

as follows:
Minimize

Subject to

20
Z=PR)(d +d))
i=l

6.5x, +3x, +x, +d; —d; =27
6.5x, +2x, +x; +d; —d; =29
13.0x, +15x, +x, +d; —d; =41
8.1x, +13x, +x;, +d, —d; =36
4.0x, +6x, +x; +d; —df =22
11.5x, +13x, + %, +dg —d; =40
18.0x, +17x, +x, +d; —d} =52
10.0x, +12x, + x, +d; —dy =39
7.0x, +4x, +x,+d, —dy =27
6.5x, +10x, +x, +diy —d;; =28
7.0x, +5x, + x, +d;; —d;, =24
73x, +11x, +x, +d, —d}, =29

7.5%, +12x, + x; +dj;, —d}, =33
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7.5x, +12x, +x, +d, —d, =35
4.9x,+9x, +x; +d; —dy; =27
3.7x, +6x, +x, +ds —djg =19
9.1x, +12x, +x, +d;, —d;; =36
23.0x, +13x, + x, +djy —djy =43
9.0x, +9x, +x; +dy —dy =38

with  xpdid’20,i=1,2,...,,20

The results are x; = 1.4878, x, = 0.6756 and x;=13.7342.
Thus, the predicted equation is p, =1.4878x,, + 0.6756x,, +13.7342 (4.28)

(v) Remove all of the three mild outliers

The complete model of data set 2 when all the mild outliers are removed can

be presented as follows:

20
Minimize Z=P Z‘(aff,+ +d])

4=l
Subject to 6.5x, +3x, +x; +d; —d;} =27
6.5x, +2x, +x, +d; —d, =29
13.0x, +15x, +x, +d; —di =41
8.1x, +13x, +x; +d; —d; =36
4.0x, +6x, +x; +d; —d; =22
11.5x, +13x, +x, +d; —d =40
10.0x, +12x, +x, +dy —d; =39
7.0x, +4x, +x, +dy —dj =27
6.5x, +10x, +x, +d;, —d}, =28
7.0x, +5x, +x, +d;, —d;, =24

73x, +11x, +x; +d, —d}, =29
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7.5%, +12x, +x, +d, —d;; =33
7.5%, +12x, +x; +d;, —d,, =35
4.9x, +9x, +x; +d; —d); =27
3.7x, +6x, +x, +d;; —d; =19
9.1x, +12x, + x, +d; — d;, =36
9.0x, +9x, +x; +d, —dyy =38
with xndidi=0,i=1,2,...,20

The results are x; = 1.875, x, = 0.6563 and x3 = 11.0625.
Thus, the predicted equation is j, =1.875x,, +0.6563x,, +11.0625 (4.29)

4.4.3 Analysis on Data Set 3

As in the case of analyzing using least squares method, the analysis using

goal programming is also done for independent variable, X3, aluminium only.

(i) Outliers included

From data set 3, the complete goal programming model can be presented as

follows:
10
Minimize Z=F Z d’ +d)
i=1

Subjectto  64.2x, +4.4x, +39.8x, +x, +d] —d; =161.1
93.3x, +11.1x, + 61x; +x, +d; —d} =308
101.3x, +20.6x, + 71.6x; +x, +d; —d =613
84.2x, +10.5x, + 76x; +x, +d; —d; =460
76.5x, +11.4x, + 77.8%; +x, +d; —d =424

66.8x, +8.1x, +81x, +x, +d; —d; =361
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66.1x, +5.5x, +81x, +x, +d; —d} =368
82.5x, +7x, +72.3x;, + x, +d; —d; =448
120.5x, +6.5x, +110.1x; +x, +dy —d, =438
130.9x, +5.5x, +87.8x, +x, +d, — d}, =382.6

With Xi, d,-',a’,-*'ZO,f=l,2,..., 10

The only goal, P, in data set 3 is to predict value of gold. This goal
programming model is solved by using QM for Windows. The results are
x;=0.7848, x5 = 18.9434, xy =2.0009 and x4 = 0.

Thus, the predicted equation is p, = 0.7848x, +18.9434x, +2.0009x,,  (4.30)

(ii) Remove first extreme outlier

From data set 3, the complete goal programming model without first extreme

outlier can be presented as follows:
10
Minimize Z=P) (' +d)
i=l

Subject to 93.3x, +11.1x, +61x, +x, +d; —d; =308
101.3x, +20.6x, + 71.6x, +x, +d; —d{ =613
84.2x, +10.5x, +76x; +x, +d; —d; =460
76.5x, +11.4x, + 77.8x, +x, +d; —d; =424
66.8x, +8.1x, + 81x, +x, +d; —d; =361
66.1x, +5.5x, +81x, +x, +d; —d; =368
82.5x, +7x, +72.3x; + x, +dy —d; =448
120.5x, +6.5x, +110.1x; +x, +dy —dy =438
130.9x, +5.5x, +87.8x, +x, +d; —d; =382.6

with x,d,d >0,i=12,...,10

The results are x; = 0.0434, x,=17.2028, x3=1.7331 and x, = 130.1294.
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Thus, the predicted equation is

$, = 0.0434x, +17.2028x,, +1.7331x;, +130.1294 4.31)

(iii) Remove second extreme outlier

From data set 3, the complete goal programming model without second

extreme outlier can be presented as follows:

10
Minimize =~ Z=PR) (d +d,)

i1

Subject to 64.2x, +4.4x, +39.8x; +x, +d; —d| =161.1
93.3x, +11.1x, +61x; +x, +d; —di =308
101.3x, +20.6x, +71.6x, +x, +d; —di =613
84.2x, +10.5x, + 76x; +x, +d; —d; =460
76.5x, +11.4x, +77.8x, +x, +d; ~d; =424
66.8x, +8.1x, +81x; +x, +d; —d; =361
66.1x, +5.5x, + 81x, +x, +d; —d; =368
82.5x, +Tx, + 72.3x; +x, +dy —dy =448
130.9x, +5.5x, +87.8x, +x, +dy —dj, =382.6

with gadi,di 20,i= 1,2, v, 10

The results are x; = 0, x, = 18.6781, x3 =3.1876 and x, = 0.
Thus, the predicted equation is p, = 18.9434x,, +2.0009x;, (4.32)

(iv) Remove both extreme outliers

From data set 3, the complete goal programming model when both extreme

outliers are removed can be presented as follows:
10

Minimize =~ Z=PR) (d'+d])
i=l

Subject to 93.3x, +11.1x, +61x, +x, +d; —d; =308
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101.3x, +20.6x, + 71.6x; +x, +d; —d; =613
84.2x, +10.5x, + 76x, +x, +d; —d; =460
76.5x, +11.4x, + 77.8x; +x, +d; —d; =424
66.8x, +8.1x, +81x; +x, +d; —d; =361
66.1x, +5.5x, +81x, +x, +d; —d; =368
82.5x, +7x, +72.3x, +x, +d; —di =448
130.9x, +5.5x, +87.8x, + x, +dj — dj, =382.6
with xpdi,d20,i=1,2,...,10

The results are x; =0, x2 = 18.6781, x3=3.1876 and x4 = 0.
Thus, the predicted equation is p, =18.6781x,, +3.1876x;, (4.33)

4.5 Concluding Remarks

This chapter described the data analysis using least squares method and goal
programming method. The analysis were done for data sets in the following
conditions: outliers included and outlier(s) removed. Outliers and the box plot

technique that can be used to identify outliers were also discussed.



CHAPTER 5

COMPARISON BETWEEN THE LEAST SQUARES AND GOAL
PROGRAMMING METHOD

5.0 Introduction

In chapter 4, the least squares and the goal programming methods have been
used to analyze data sets that contain outliers and without outlier(s). The objectives
of the analysis were to obtain prediction equations. This chapter will compare the
prediction values obtained using the least squares and the goal programming
methods. Mean absolute percentage error (MAPE) will be used to analyze the

comparison.

5.1  Mean Absolute Percentage Error (MAPE)

When choosing between competing models or when evaluating an existing
model, we need to use measures that summarize the overall accuracy provided by the
model(s) (Mendenball et al, 1993). Generally, the closer the estimates 3, are to the
actual y; of the series, the more accurate the f model is. Thus, the quality of a model

can be evaluated by examining the series of errors (yi—3,).

Since MAPE is measured as a percentage, it is particularly useful for
comparing the performance of a model on many different time series. The mean
absolute percentage error (MAPE) is the average of the absolute values of the

percentage errors.
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The formula for MAPE is as follow:

ooy

[
MAPE =22
n

(5.1)

where » is number of predictions. A large value of MAPE means that the value of

error is large.

5.2 MAPE for Data Set 1

(i) Outliers included

Predictions will be calculated for the 21 to 25" observations.

For the 21* observation; x21=108.1, y; =102

From (4.1), we have  J, , =32.7708+0.7316x,

Substitute xy; = 108.1 into this equation, p,, =32.7708+0.7316(108.1)= 111.86

From (4.21), we have ¥, ,, = 0.7215x, +30.1839

Substitute x;; = 108.1 into this equation, y,, = 0.7215(108.1)+30.1839 =108.18

The complete predicted values and errors/residuals are shown in Table 5.1.

Table 5.1 ;: The Predicted Values and Errors for Set 1

Observation Xi Vi j;,_' s €iLs f’;,c;p eiGr
number

21 108.1 102 111.86 -9.86 108.18 -6.18

22 89.4 91 08.18 -7.18 94.69 -3.69

23 76.4 97 88.67 8.33 85.31 11.69

24 131.7 128 129.12 -1.12 125221 2,79

25 100.8 88 106.52 -18.52 102.91 -14.91
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MAPEs =

_Z:l[(|_ |(100)) (| |(100)) (| |(100)) (I 1|(100))+(| s |(100))]
5

=0.62%

MAPEgp =

i[(—10 I(100)) (| |(100)) (| |(100)) (F |(100)) (l |(100))]

i=21

=8.26 %

(ii) Remove mild outlier

The complete predicted values and errors/residuals with mild outlier removed

are shown in Table 5.2.

Table 5.2 : The Predicted Values and Errors for Set 1 with Mild Outlier

Removed
Observation Xi Vi Vi €i,Ls Yigr eiGp
number
21 108.1 102 112.13 -10.13 108.18 -6.18
22 89.4 91 98.20 -7.20 94.69 -3.69
23 76.4 97 38.52 8.48 85.31 11.69
24 131.7 128 129.70 -1.70 125.21 2.79
25 100.8 88 106.69 -18.69 102.91 -14.91

MAPEs = 9.83 % and MAPEGgp = 8.26 %




(iii) Remove extreme outlier
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The complete predicted values and errors/residuals with extreme outlier

removed are shown in Table 5.3.

Table 5.3 ;: The Predicted Values and Errors for Set 1 with Extreme Outlier

Removed
Observation X W JA”:'. L5 €iLs y, o €GP
number
21 108.1 102 111.61 -9.61 111.29 -9.29
22 89.4 91 97.21 -6.21 96.26 -5.26
23 76.4 97 87.21 9.79 85.81 11.19
24 131.7 128 129.78 -1.78 130.26 -2.26
23 100.8 88 105.99 -17.99 105.42 -17.42

MAPE,; s = 9.63 % and MAPEgp = 9.60 %

(iv) Remove both mild and extreme outliers

The complete predicted values and errors/residuals with both mild and

extreme outliers removed are shown in Table 5.4.

Table 5.4 : The Predicted Values and Errors for Set 1 with Both Mild and

Extreme Outliers Removed

Observation Xi Vi Pirs €iLS Vi eiGp
number

21 108.1 102 111.88 -9.88 112.48 -10.48

22 89.4 91 96.09 -5.09 95.80 -4.80

23 76.4 97 85.12 11.88 84.20 12.80

24 1317 128 131.80 -3.80 133.53 -5.53

25 100.8 88 105.72 -17.72 105.97 -17.97

MAPE s = 10.13 % and MAPEgp = 10.70 %
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5.2.1 Discussion of Data Set 1 Results

Table 5.5 : MAPE for Data Set 1

MAPE,s (%) MAPEgp (%)
With outliers 9.62 8.26
Mild outlier removed 0.83 8.26
Extreme outlier removed 9.63 9.60
Both mild and extreme outliers removed 10.13 10.70

From Table 5.5, MAPE of the least squares method is always higher than the
goal programming mode! except when both mild and extreme outliers are removed.
The case when both outliers are removed, MAPE of goal programming model is
10.70% and 10.13% for least squares method. MAPEgp is 0.57% higher than
MAPE,s. For cases without extreme outlier and both outliers, MAPE,s and

MAPEG is closer. That is, 9.63% versus 9.60% and 10.13% versus 10.70%.

From the analysis, the average of MAPE for all cases is 9.50%. This means
that the error in data set 1 is high. One of the reasons is the number of data points is

very small. In data set 1, only 20 pairs of observations are used for analysis.

However, we can conclude that goal programming model is better than least
squares method when outliers are included in the data sets. If outlier(s) is removed,
sometimes least squares method is better than goal programming model, or vice

versa.

5.3 MAPE for Data Set 2

(i) Outliers included

For this data set, the 21 to 25" observations will be analyzed. The

lst

calculations for the 21 observation is shown as follows:
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For the 21% observation;
x121=7.0,x221= 12, 2, =40

From (4.8), we have p,,, =22.2+1.1x; +0.0167x,,

Substitute x; 3; = 7.0 and x; ;= 12 into this equation,

9, = 22.2+1.1(7.0) +0.0167(12) =30.10

From (4.25), we have J, g, = 0.5055x,, +1.2615x,, +15.5055

Substitute xy 2; = 7.0 and x>, = 12 into this equation,

¥, =0.5055(7.0) +1.2615(12) + 15.5055 = 34.18

The complete predicted values and errors/residuals are shown in Table 5.6.

Table 5.6 : The Predicted Values and Errors for Set 2

Observation X X2 Vi j;‘.‘ s eiLs }";LGP €iGP
number
21 7.0 12 40 30.10 9.90 34.18 -4.08
22 12.5 16 42 36.22 5.78 42.01 -0.01
23 5.0 6 21 27.80 | -6.80 25.60 -4.60
24 6.8 12 29 29.88 -0.88 34.08 -5.08
25 7.2 14 35 30.35 4.65 36.81 -1.81
MAPEs =

Z[(l i(100)) (| |(100))+(| |(100)) (| |(100)) (| |(100))]

i=21

5
=17.44 %

MAPEGP =

Z[(I_ o0y + (' |(100)) (' |(100>) (' |(100)) (' '(100))]

i=21

=10.96 %
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(ii) Remove first mild outlier

The complete predicted values and errors/residuals with the first mild outlier

removed are shown in Table 5.7.

Table 5.7 : The Predicted Values and Errors for Set 2 with First Mild

Outlier Removed

Observation Xy X2 Vi Yiux eiLs Viop eiGp
number

21 7.0 12 40 29.86 10.14 34.40 5.60

22 12.5 16 42 35.07 6.93 41.30 0.70

23 5.0 6 21 27.88 -6.88 27.00 -6.00

24 6.8 12 29 29.68 -0.68 34.31 -5.31

25 1l 14 35 30.09 4.91 36.66 -1.66

MAPE 5= 18.20 % and MAPEgp = 13.46 %
(iii) Remove second mild outlier

The complete predicted values and errors/residuals with the second mild

outlier removed are shown in Table 5.8.

Table 5.8 : The Predicted Values and Errors for Set 2 with Second Mild

Qutlier Removed
Observation Xy X2 Vi j}J‘ o5 €iLs }"}LGI, €iGP
number
21 7.0 12 40 30.05 9.95 32.26 7.74
22 12.5 16 42 37.09 4.91 43.14 -1.14
23 5.0 6 21 27.43 -6.43 25.23 -4.23
24 6.8 12 29 29.80 -0.80 31.96 -2.96
25 1.2 14 35 30.33 4.67 33.90 1.10

MAPE 5= 16.66 % and MAPEgp = 11.11 %
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(iv) Remove third mild outlier

The complete predicted values and errors/residuals with the third mild outlier

removed are shown in Table 5.9.

Table 5.9 : The Predicted Values and Errors for Set 2 with Third Mild

Outlier Removed

Observation Xy X2 Vi s €iLs /- eiGp
number

21 7.0 12 40 29.86 10.14 34.40 5.60

22 123 16 42 Fa07 6.93 41.30 0.70

23 5.0 6 21 27.88 -6.88 27.00 -6.00

24 6.8 12 29 29.68 -0.68 34.31 -5.31

25 1.2 14 35 30.09 4.91 36.66 -1.66

MAPE,; 5= 15.96 % and MAPEgp=11.11 %

(v) Remove all of the outliers

The complete predicted values and errors/residuals with all mild outliers

removed are shown in Table 5.10.

Table 5.10 : The Predicted Values and Errors for Data Set 2 with All the
Mild Qutliers Removed

Observation Xjj X2 Vi - eiLs . eiGp
number

21 7.0 12 40 29.69 10.31 32.06 7.94

22 123 16 42 45.02 -3.02 45.00 -3.00

23 5.0 6 21 24.19 -3.19 24.38 -3.38

24 6.8 12 29 29.13 -0.13 31.69 -2.69

25 72 14 35 30.21 4.71 33.75 1.25

MAPE ;5= 12.41 % and MAPEgr = 11.19 %
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5.3.1 Discussion of Data Set 2 Results

Table 5.11 : MAPE for Data Set 2

MAPE 5 (%) MAPEGp (%)
With outliers 17.44 10.96
First mild outlier removed 18.20 13.46
Second mild outlier removed 16.60 1111
Third mild outlier removed 15.96 11.11
All outliers removed 12.41 11:19

From the table, we get that all the MAPE is over than 10%. From this result,
the average of MAPE for all cases is 13.84%. This means that the error in data set 2
is very high. One of the reasons is the number of data points is very small. In data

set 2, only 20 triplets of observations are used for analysis.

MAPE), s is decreased when the outliers are removed one by one until all the
three mild outliers are thrown away. This shows that the least squares line is better
when the outlier is removed. But, MAPE of goal programming model with outliers
is better than the case without outlier.

In this analysis, we can conclude that goal programming model is better than

the least squares method in all cases. All of the MAPE of goal programming model

are less than the MAPE for least squares.

5.4 MAPE for Data Set 3

(i) Outliers included

For this data set, the 5™ and 8™ observations will be analyzed. The

calculations for observations number 5 are as follows:

For the 5" observation;




\,]5—728 X35= 80 135—760 y1:5“376

From (4.13), we have p,,, =-40.9-0.23x, +18.6x,, +3.83x,,

Substitute x; 5 = 72.8, x>5= 8.0, x3 5= 76.0 into this equation,

s =—40.9-0.23(72.8) + 18.6(8.0) + 3.83(76.0) =382.24

From (4.30), we have J, ., = 0.7848x,, +18.9434x,, +2.0009x;,

Substitute x; 5 = 72.8, x25= 8.0, x3 5= 76.0 into this equation,
55 =0.7848(72.8) + 18.9434(8.0) + 2.0009(76.0) = 360.75

75

The complete predicted values and errors/residuals are shown in Table 5.12.

Table 5.12 : The Predicted Values and Errors for Set 3

Observation Xy X3i X3 Vi JA’;, s eiLs j;,.' i eiGp
number
5 72.8 8.0 76.0 376 | 382.24 | -6.24 | 360.75 | 15.25
8 67.0 6.1 81.0 318 | 367.38 | -49.38 | 330.21 | -12.21
P [ 76 24 100y + (C22% 10y
MAPE, g = &2
2
=8.59%
|15 5| | |
Z[( 00)) + (——(100))]
MAPEGP='"”
2
=395%

(ii) Remove first extreme outlier

The complete predicted values and errors/residuals with the first extreme

outlier removed are shown in Table 5.13.
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Table 5.13 ;: The Predicted Values and Errors for Set 3 with First

Extreme Outlier Removed

Observation | xy X Xy Vi P €,LS g7 e;Gp
number

3 72.8 8.0 76.0 376 | 387.62 | -11.62 | 402.63 | -26.63

8 67.0 6.1 81.0 318 | 371.03 | -53.03 { 378.36 | -60.36

MAPEs= 9.88 % and MAPEGgp = [3.03 %

(iii) Remove second extreme outlier

The complete predicted values and errors/residuals with the second extreme

outlier removed are shown in Table 5.14.

Table 5.14 : The Predicted Values and Errors for Set 3 with Second

Extreme Outlier Removed

Observation Xy X2 X3 Vi y} - €18 T.ap eGP
number

5 72.8 8.0 76.0 | 376 | 386.70 | -10.70 | 391.68 | -15.68

8 67.0 6.1 81.0 | 318 | 375.99 | -57.99 | 372.13 | -54.13

MAPE]_S= 10.54 % and MAPEGP = 10.60 %

(iv) Remove both extreme outliers

The complete predicted values and errors/residuals with both extreme

outliers removed are shown in Table 5.15.
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Table 5.15 ;: The Predicted Values and Errors for Set 3 with both

Extreme Outliers Removed

Observation | xy; X2 X3 Vi Viss €iLs Do eigp
number
5 72.8 8.0 76.0 376 | 386.98 | -10.98 | 391.68 | -15.68
8 67.0 6.1 81.0 318 | 377.06 | -59.06 | 372.13 | -54.13
MAPE g= 10.75 % and MAPEgp = 10.60 %
5.4.1 Discussion of Data Set 3 Resulis
Table 5.16 : MAPE for Data Set 3
MAPEs (%) MAPEgp (%)
With outliers 8.95 3.95
First extreme outlier removed 9.88 13.03
Second extreme outlier removed 10.54 10.60
Both extreme outliers removed 10.75 10.60

From Table 5.16, MAPE of least squares method is increased from 8.59%

with outliers) to 10.75% (both extreme outliers removed). For goal programming
goal p

model, MAPE increases from 3.95% to 13.03% then decreases to 10.60%. Without

first and second extreme outlier, MAPE g is less than MAPEgp. When both extreme

outliers are removed, MAPE; s is higher 0.15% than MAPEgp.

From this result, the average of MAPE for all cases is 9.74%. This means

that the error in data set 3 is high. One of the reasons is the number of data points is

very small, In data set 3, only 10 quadraplets of observations are used for analysis.

However, we can conclude that goal programming model is better than least

squares method when outliers exist in the data sets. If outlier is removed, sometimes

least squares method is better than goal programming model, or vice versa.




5.5 Discussion of the Overall Results
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An examination of the mean absolute percentage error (MAPE) may give an

idea of how well the least squares method and goal programming are in analyzing

data points. The equations of the least squares line and linear goal programming

model are influenced by every data points used in its calculation in a manner similar

to the arithmetic mean. Table 5.17 shows the MAPE of least squares method and

goal programming model for all the three data sets with outliers.

Table 5.17 : MAPE for Data Set Containing Outliers

MAPE,s (%) MAPEgp (%) MAPEs.gp (%)
Data set 1 9.62 8.26 1.36
Data set 2 17.44 10.96 6.48
Data set 3 8.59 3.95 4.64

For data set one, there are two outliers. One is a mild outlier and the other
one is an extreme outlier. Recall section 5.2, MAPE of least square method is 9.62%
and 8.26% for goal programming. The percentage of MAPE analyzed using least
square method is higher than using goal programming model. The higher percentage
implies that error is higher. In this analysis, we can conclude that goal programming

is better than least squares method.

Data set two have three outliers. All 18.0, 23.0 and 23.5 are mild outliers at
the upper end. MAPE of least squares method is 17.44% and 10.96% for goal
programming model. The difference in the value of MAPE between these two
methods is 6.48%. This is a quite large difference. This means that

V. p = 0.5055x, +1.2615x,, +15.5055 is more accurate than

Virs =22.2+1.1x, +0.0167x,, to be used for prediction for this data set.

Data set three have two outliers for independent variable X3, aluminium.
That is, 39.8 is an extreme outlier at the lower end while 110.1 is an extreme outlier

at the upper end. After analysis, percentage of MAPE for least squares is 8.59% and
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3.95% for goal programming. MAPE for least square is 4.64% higher than goal

programming. So, ¥, = 0.7848x,, +18.9434x,, +2.0009x;, is more accurate than

P15 =0.7848x, +18.9434x,, +2.0009x,, for the prediction in this set of data points.

When an error point is removed, some MAPE of least squares method and
goal programming is greater than the MAPE when outliers exist. In this case, the
error point cannot be thrown away from the data set because it presents a valid
segment of the population. If we look at the overall analysis result, we can conclude
that these outlier data points play a key role in the data set. So, the researcher must
decide whether these extraordinary events should be presented in the sample, or can

be eliminated.

5.6 Concluding Remarks

In all the three cases, it has been shown that MAPE for predictions using goal
programming are lower than those produced using least squares method. It can be
concluded that the prediction equations obtained from goal programming are more
accurate than those obtained from least squares method when using data sets that

contain outliers.



CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE INVESTIGATION

6.0 Introduction

In this chapter the conclusion and summary of the study will be presented.

Finally, suggestions for future work are made.

6.1 Conclusions

The least squares method is used to describe the approximate relationship
between a criterion and a predictor variable, based on a sample of data. The resulting
equation can be used to predict the criterion variable based on a specified value for
the predictor variable. Prediction is one of the uses of a regression equation. For
example, given a sample of values (x; ), the regression of ¥ on X being linear, we

can predict the value of ¥ corresponding to a further observed X value.

The least squares method is affected by outliers in data sets. Outliers are data
points that lie apart from the rest of the points. In other word, outliers are
observations that have extremely large residuals or errors. They do not fit in with the
pattern of the remaining data points. The equation of the regression line is
influenced by every data point. Therefore, outliers can unduly influence the least

squares equation. As a result, the least squares equation developed from data sets
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which contains outliers cannot predict the future values of ¥ very well. Something
need to be done with these outliers. We can either delete them, or find other
techniques to create a new prediction equation. It depends on the researcher whether

these error points should be represented in the sample.

The current study proposes the goal programming approach to solve the
problem of outliers when developing prediction equations. Goal programming is one
of the techniques to solve multiple-objective decision making problems. Decision
making in modern organizations often involves more than one goal or objective.
Generally, goal programming deals with decision problems involving conflicting
objectives. The basic idea of the technique is to transform the multi objective
problem into one or more problems with one objective each. The goal approach is
not the ultimate solution for all managerial decision problems. It requires that the
decision maker be capable of defining, quantifying and ordering objectives. The
technique simply provides the best solution under the given constraints and priority
structure of goals. The quality of the final solution is influenced by the decision
maker’s ranking of the different objectives as well as by the “tightness” of the limits
set for the goals. In this regard, goal programming seeks an efficient solution that

attempts to meet all the goals of the problem.

The first step in problem solving using the goal programming method is to
formulate the complete goal programming model. This formulation include the
development of an objective function, goal and system constraints, deviational
variables and decision variables. In this context, deviation is the failure to achieve a
particular goal which will result in a positive or negative deviation from the goal. In
the goal programming formulation, the deviational variable is the same as the error
term in the least squares equation. Thatis e; = d/ - d;” (refer equation (4.2)). By
comparing these two equations, it can be concluded that the constraints @ and b, in
the least squares model, are equal to X; and X3, in the goal programming formulation
(with only one predictor variable). For example, given a pair observation (x;, y;) =
(2, 4), the least squares equation is 4 = a + 2b, while the goal programming

formulation/equation is 2x; + x>+ d; - d,”" = 4.
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In the current study, Quantitative Method or QM for Window package was
used in solving the goal programming problems. QM for Window is a friendly
software which is easy to use. The least squares model was either solved by manual
or using MINITAB software. In the case with one or two independent variables, the
problem was solved manually while MINITAB software was used when there are at
least two independent/predictor variables. Other software packages can also be used,
such as S-Plus, Microsoft Excel and SPSS. From these analysis, predicted equations

for both the least squares and goal programming were obtained.

In this study, after obtaining predicted equations from each method, estimates
for some dependent variables were calculated. For example, the last five
observations from data set | were predicted from each equation. Then, these five

predicted values (7, to y,5) were compared with the actual values (y3; to y»s). The

main purpose for computing the predicted value was to obtain the errors or residuals.
Here, we did not compare the error between the least squares and goal programming
one by one for each data point. This is because the single residual cannot show
which method is more superior for that data set. For example, from data set 1, three
predicted values from the least squares were closer to the actual values while only
two for goal programming. In data set 2, four predicted values from the goal

programming were closer to the actual values while only one for the least squares.

In this study, the mean absolute percentage error (MAPE) was used to
compare the errors obtained using the least squares and goal programming. MAPE is

the average of the absolute value of the percentage errors of the percentage error.

The results in chapter 5 showed that the goal programming technique is a
better method in developing a prediction equation from a set of data points with
outliers included. Ifthe outlier(s) is removed, sometimes least squares method is
better than goal programming model or vice versa. Although the least squares is a
powerful method in regression, the outliers in the data sets will make the equation
lose its accuracy. This is clearly shown in the scatter and residual plots. The outliers

in the scatter and residual plots are far from the normal pattern. So, we can conclude
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that the goal programming approach can be an alternative way for the problems

analyzed using the method of least squares.

6.2 Suggestions for Future Investigation

The current discusses two popular approaches in decision making: goal
programming and least squares. The scope of this study is focused on the linear goal
programming. However, there are other aspects in linear goal programming that are
not covered such as the duality in linear goal programming, the primal-dual
algorithm for linear goal programming, a reordering and/or permutation of the
original priority levels for sensitivity analysis in linear goal programming and the
continuous variations over a range or parametric linear goal programming. A study

in these areas might improve the level of decision making made.

A number of important advances have also been made in the area of goal
programming. Some of the prominent new developments include zero-one
programming, integer programming, interative systems, decomposition goal
programming, nonlinear goal programming, interval goal programming and fuzzy

linear programming. Therefore, further study can also be done on such topics.

Future study should also be undertaken to cover other multiple regression
models such as polynomial regression, nonlinear multiple regression mode,
interaction between variables and multicollinearity. This is because, in the current
study, the least squares method discussed is only focused on the linear least squares
and multiple least squares analysis. A comparison between other aspects in goal

programming and also other multiple regression models can be explored.
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