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ABSTRACT 
 

 
Shape memory alloy  (SMA) wires are embedded within laminated composite plates 

to improve structural behaviours such as buckling and vibration. A simple linear finite 

element model and its source codes were developed to study the effect of SMA on  

these structural behaviours. Two methods of improvements are used here: The active 

property tuning (APT) and the active strain energy tuning (ASET). Studies are 

conducted on the antisymmetric angle ply SMA laminated composite plates. The 

effects of several parameters such as the geometric, mechanical and transformation 

effects on the SMA improvements of critical loads and eigen frequencies of the SMA 

composite plates are studied. The plate-bending model used in this study was 

developed based on the first order shear deformation theory (FSDT) and the finite 

element model used is the serendipity quadrilateral element with  40 degree of 

freedom per element. The results show a significant improvement of critical loads of 

the SMA composite plates for the simply supported boundary condition. In the case of 

eigen frequencies, the level of effect comes in couples where the improvements are 

more significant for frequency couples of modes I and IV and III and VI while 

frequency couple of modes II and V shows less significant effect. 
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ABSTRAK 
 

 
Aloi memori bentuk (AMB)  telah dibenam di dalam plat rencam berlapis dalam 

usaha memperbaiki kelakuan seperti ledingan and getaran bagi struktur tersebut. Satu 

permodalan kaedah unsur terhingga berserta kod puncanya telah dibangunkan untuk 

mengkaji kesan AMB ke atas kelakuan struktur berkenaan. Dua kaedah pembaikan 

telah dilaksanakan: Kaedah penalaan sifat aktif and kaedah penalaan tenaga terikan 

aktif. Kajian telah dijalankan ke atas plat rencam AMB berlapis dari jenis lapis sudut 

tak simetri.  Kesan parameter-parameter seperti geometri, mekanikal dan penjelmaan 

ke atas pembaikan SMA terhadap beban kritikal dan frekuensi eigen telah dikaji. 

Permodelan plat-lenturan dalam kajian ini adalah berasaskan teori ubah bentuk ricih 

tertib pertama dan unsur lapan nod dengan 40 darjah kebebasan bagi setiap unsur 

telah digunakan. Keputusan dari kajian menunjukkan pembaikan yang 

memberangsangkan pada beban kritikal bagi keadaan sempadan yang disokong 

mudah. Bagi pembaikan frekuensi eigen pula, tahap kesan pembaikan adalah 

berpasang-pasang seperti pasangan frekuensi bagi mode I dan IV serta III dan IV 

menunjukkan pembaikan yang besar manakala pasangan frekuensi bagi mode II dan 

V, pembaikan adalah kecil. 
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1. INTRODUCTION   
 
1.1. Background and Motivation 
 
The importance of fibre reinforced composite (FRC) related products cannot be 

denied in today’s world. FRC has been used to replace traditional materials in many 

industries such as automotive, aerospace, marine and architectural structures [1]. We 

also frequently come across to FRC products such as sporting goods like tennis 

racquets and golf clubs in our daily life. The main advantages of the FRC is its 

outstanding high strength and stiffness to weight ratios which can result in weight 

saving. Furthermore the properties of composites such as thermal expansion and 

damping characteristic can be controlled by changing the fibre orientation and the 

stacking sequences of the laminated composites to suit designers’ need [2]. One area 

that the weight efficiency and controllable properties of the FRC are crucial is the 

aerospace industry. This is because much portions of the structure in aircraft 

structures designed to be load carrying capacity components are made of thin flat or 

curved panels. Examples of these components are aircraft stabilizers, fuselage 

sections, missile nose and body sections. These components are subjected to both 

mechanical loads such as lateral pressure and edge compression loads and thermal 

load. As these loads are responsible for failures such as yielding and buckling failure, 

it is important to study the state of stress beside other behaviours such as vibration, 

buckling and post buckling of FRC plates. 

The structural behaviours of FRC can be optimised by using the correct 

combination of FRC parameters such as lamination angle, number of layers, aspect 

ratios etc. However the improvement based on this optimization procedure is rather 

fully utilised. One method that can give improvement to structural behaviours is by 

employing passive treatment such as using structural stiffeners. This however can 
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override the weight efficiency advantage obtained from using the FRC.  Researchers 

in the last decade have turn to new material technology such as the smart materials as 

an active treatment for improving structural behaviours of FRC plates. 

Smart material is a class of materials that has inherent intelligence to react 

toward external stimuli such as heat, electrical field and electromagnetic field. This 

reaction will produce the desired functions such as changing the shape and modifying 

structural behaviours of a structure. Smart materials that react by inducing an amount 

of strain can be classified into several types: piezoelectric material, shape memory 

alloys (SMA), magnetostrictive materials, electrorheulogical fluids, electro-optic 

materials, electroacoustic materials and electromagnetic materials.  SMA is a new 

type of functional materials that has been a subject of  intensive researches in the last 

decade.  This is due to its unique properties of one way shape memory effect (SME), 

two way shape memory effect, pseudoelasticity and high damping capacity. These 

properties allow the SMA to have functional abilities such as the high strain and stress 

recoveries that no conventional materials can provide [3].  

Since the well-known finding of the Nickel-Titanium SMA in 1963 by 

Buehler and coworkers [5], intensive researches have made it possible for practical 

and theoretical applications of the SMA  that cover a diversity of areas such as 

aerospace, automotive, medical, commercial appliance, sports, toys and apparels. 

Today, SMA has attracted much interest due to its ability to function as sensors and 

actuators simultaneously [6]. This property leads  the SMA to the application of the 

smart or intelligent structure. A smart structure as shown schematically in figure 1 

combines actuators, sensors and a control mechanism that allow them to sense 

external stimuli and response in a predetermined manner [7].  
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SMA is a widely preferred smart material since through its shape memory 

effect (SME) property it offers the advantage of high recovery stress and/or strain 

upon heating the material above a critical temperature. Generally the high recovery 

strain provides shape change while the high recovery stress increases strain energy 

and thus improves structural behaviours of a structure. A high recovery strain of up to 

10% and recovery stress of up to 800 MPa can be obtained for nitinol SMA [8].  

Table 1 shows the advantages and disadvantages of the SMA as compared to 

the piezoelectric and magnetostrictive materials. It shows that the SMA is better for 

high stress or strain applications while the others are more suited in high frequency 

applications.   

 

Table 1: Comparing SMA, piezoelectric (PZE) and magneto restrictive (MR)  
material (5). 
 

 SM
A 

PZE MR 

Stress (Mpa) 200 35 35 
Strain 0.1 0.001 0.002 
Frequency (Hz) 0-5 1-20000 1-20000 
Efficiency, η (%) 5 50 80 
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Fig. 1 : Schematic of a smart structure [4] 
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However there are setbacks of the SMA for having a slow response time and low 

working efficiency. To overcome this and other weaknesses, the shape memory alloy 

composite has generated much interest [2]. By embedding SMA wires within 

laminated composites, the behaviour of the SME can be applied in the following 

ways. Restraining the SMA to recover its strain will allow the shape control of the 

structure it is embedded into. Constraining the strain recovery however will induce 

the internal stress that can strengthen structures while improving structural problems 

such as vibration, buckling and post buckling, impact loading, fracture, noise and 

acoustic.  

SMA composite is either a polymer laminated composite or a metal-matrix 

composite that has SMA embedded into it in a form of wires or ribbons. The current 

technology allows the processing of a high quality SMA with diameter below 0.2 mm 

for wire form and 25 µm thickness for film which allows direct integration without 

disturbing the structural integrity of the composite material [9]. Most importantly the 

constraint of the matrix allows the generation of  the high recovery stress.  

It is inevitable that the new generation of smart material and structures 

technologies will not only have a tremendous impact upon the design, development 

and manufacture of the next generation products in diverse industries but also the 

economic climate in the international marketplace [10]. As to be seen in the literature 

review next, the study on the structural behaviour improvements of SMA plates are 

still considerably few. More studies on several parameters are still required for further 

understanding on these subjects. The study of structural behaviours of composite 

plates usually starts with the calculation of stress and deflection. It then follows with 

the studies on vibrations and buckling, with the linear part comes first followed by the 

nonlinear vibrations and post-buckling. Realizing the importance of the smart material 
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technology as the future design base provides the motivation for this research to be 

conducted. In this research the study on the structural behaviours of SMA plates are at 

the initial stage of calculating the stress and deflections effects of SMA on composite 

plates.  Several parameter studies are conducted. At the end it is hope that this study 

will improve the overall understanding of the postbuckling behaviour of SMA plates.   

  
1.2. Literature reviews  
 
This literature review will give an overview on what has been done on the subjects 

that lead to the current work. Five areas of researches will be reviewed: Structural 

behaviours of composite plates, history of the SMA, constitutive models of the SMA, 

structural applications of the SMA and the structural applications of the SMA plates. 

 
1.2.1 Structural behaviours of composite plates 
 
In this section a review is given on the development of the study of the structural 

behaviours of composite plates especially in the development of the displacement 

theories of laminated composites. Studies on structural behaviours of laminated 

composite plates has been studied since the early nineteen sixties. During the early 

studies, the analytical method was employed. Jones [1] in 1973 gave the exact 

solutions of the buckling loads and vibration frequencies for the unsymmetrically 

laminated cross-ply rectangular plates that consider the effects of bending and 

extension couplings. These early studies of buckling of plates with rather simpler 

geometry, boundary conditions and loading are well documented in Jones [3] and 

Whitney [4]. With the advent of computers and the development of displacement 

based laminated plate theories ranging from the classical lamination theory (CLT) to 

the higher order shear deformation theory, the approximate methods especially the 

finite element method has gained the most attention.  
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It is well known that the behaviour of laminated plates can be accurately 

predicted if each layer is analysed by the three dimensional theory of elasticity. For 

example, buckling analysis based on this theory was conducted by Srinivas and Rao 

[5] and Pagano [6] where the results were comparable to the results of the analytical 

method. However due to its computational complication and cost, the equivalent 

single layer 2D theory was developed. In this theory, the displacements are expanded 

as a linear combination of the thickness co-ordinate and a laminated composite plate 

is represented as an equivalent single layer with anisotropic properties.  This theory 

started with the classical lamination theory (CLT), which is the extension of the 

Kirchoff’s classical plate theory. The CLT assumes the plane sections prior to 

deformation remain plane and normal to the deflected reference surface and the 

thickness does not change during deformation. This implies that it ignores transverse 

shear deformation, which is actually significant especially in thick laminated 

composites due to the high ratio between in-plane elastic modulus and transverse 

shear modulus. As a result, the CLT over predicts the critical loads and under predicts 

the stress and free vibrations compared to the exact values. This condition is improved 

by considering the transverse shear deformation in the shear deformation theories.  

The first order shear deformation theories (FSDT) or Mindlin’s plate theory is 

based on the assumption that normal to the mid-plane remains straight during plate 

deformation, but not necessarily normal. However since transverse shear strains are 

constant throughout the thickness of the plate, this theory does not comply with the 

actual physical case where the shear strain at the top and bottom surfaces must be 

zero. This inaccuracy of the solution can be improved by introducing the shear 

correction factor. Kam and Chang [7] derived the shear correction factor from the 

exact expression for orthotropic material for the buckling and vibration analysis of 
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laminated plates using the FSDT and obtained results that were closed to the exact 

values. In this study, the shear correction factor of 5/6 is used as Leissa [8] mentioned, 

this factor is generally accepted for laminated composite plates. Another problem is 

that the solutions from the numerical methods can be too stiff especially for thin 

plates. This so called shear locking phenomenon though can be solved partly by 

applying selective or reduced integration, it is still a problem in many cases. With 

these problems in the FSDT, the higher order shear deformation theories (HSDT) that 

expands further the displacement in terms of the thickness direction were developed. 

Various theories of HSDT were proposed such as the third order theories of Lo et al 

[9], Reddy [10,11], Moita et al [12] and Zabaras and Pervez [13]. The theories of Lo 

et al and Moita et al consider the second order displacement but the theories of Reddy 

and Pervez omitted that term. The third order theory of Reddy accommodates the 

parabolic distribution of transverse shear stress along the thickness of the plate and 

thus forces the transverse shear stresses on the top and bottom of the laminate to 

vanish which results in the omitting of the second order displacement term. The third 

order theory of Zabaras and Pervez however explained the third order displacement as 

the warping of the normal in the x and y directions and the second order 

displacements are omitted to meet the condition that the transverse shear stresses σxz 

and σyz vanish on the top and bottom surfaces of plate as in Reddy’s theory.  Studies 

on structural behaviours such as stress, deflection, vibration and buckling  of 

laminated composite plates using several HSDT were conducted by researchers such 

as Moita et al [12], Phan and Reddy [14], Noor and Peter [15], Reddy and Khdeir [16] 

and Kozma and Ochoa [17]. In most cases the studies were conducted by varying the 

effects such as the level of anisotropy, plate thickness, the number of layers etc. 

Luccioni and Dong [2] conducted an intensive study on vibration and buckling of 
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rectangular plates using the semi-analytical (Levy-type) finite element method. The 

study on linear buckling that includes the thermo-mechanical effects are also studied 

such as by Shankera and Iyenger [18] and Chen and Mei [19].  

 The extension to the geometric non-linear effect on the study of the composite 

plates was however studied by few researchers. Reddy [20] included the von 

Karman’s non-linear effect in his study to calculate stresses and frequencies of 

composite plates while Chandrashekhara and Bangera [21] used the same method for 

their study on beams. Understanding the post-buckling behaviour of laminated plates 

is important in order to know the load carrying capacity of plates after buckling. By 

this, the strength of the plate can be fully utilised and the weight of the plate can be 

reduced. Kapania and Raciti [22], Noor [23] and Liessa [8] investigated the methods 

and aspects of post-buckling study in their review of the buckling and post-buckling 

of the laminated plates. Most post-buckling studies concerned to the relation of in-

plane compressive force versus transverse deflection assuming no changes in the 

buckled pattern of the plate. Stein [24] studied the post buckling behaviour of simply 

supported and clamped, on long, rectangular orthotropic plates using the finite 

difference method. Zhang and Matthews [25] investigated the effect of shear direction 

on post-buckling behaviour of plates under combined shear and compressive loading. 

Shiau and Wu [26] conducts the detailed analysis of the plate response over a wide 

post-buckling load range while considering changes in buckled pattern of the plate 

using the simplified FSDT.  Barbero and Reddy [27] using the generalised laminated 

plate theory showed that, inclusion of the effect of geometric non-linearity, do not 

exhibit any bifurcation in certain composite laminates with bending-extensional 

coupling in contrast to the prediction of the eigen-value problem when it is loaded 

under compression. In this study, the effect of the geometric non-linearity using the 
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von Karman strain terms is studied to compare the critical load obtained from the 

eigen-value problem.  The effect of geometric non-linearity has been studied based on 

the HSDT of Zabaras and Pervez.  

1.2.2 History of SMA 
 
The understanding of SMA started relatively late as compared to traditional materials 

such as metals and concrete. The first reported SMA behaviour is the pseudoelastic 

behaviour of the gold-cadmium SMA that was discovered by a Swedish scientist in 

1932 [34]. Chang and Read later discovered the shape memory effect behaviour of the 

gold-cadmium in 1951 [35]. It is however not until 1963 when Buehlers and 

coworkers at the Naval Ordnance Laboratory, USA discovered the shape memory 

effect of the nickel-titanium (Nitinol) that the understanding and the use of the SMA 

started to flourish [36]. The SMA behaviours was later found in many other alloys 

such as CU-Zn, Cu-Zn-Al, Cu-Zn-Sn, Ni-Al and Fe-Pt.  A great deal of effort was 

expanded after this time to characterize the property of the SMA and to exploit those 

properties to the applications of the SMA. As the understanding on the subject grows, 

various constitutive relationship were proposed and tremendous amount of 

applications were suggested. Since the first large scale application of SMA which was 

a coupling to connect titanium hydraulic tubing in the Grumman F-14 aircraft in 1971 

[37-humbeek], the SMA products has grown vastly in the field of actuators, coupling 

and fastners, medical applications, smart composites, earthquake-supression related 

applications, fashion, decoration and gadgets, appliances and many others. Reviews 

on this subjects can be obtained in books such as Funakubo [38] and papers such as 

Humbeek [37], Birman [39],Wada et al [40] and C.S.Rogers [41]. 

 

1.2.3 SMA constitutive models 
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This section is to give a review of some of the SMA constitutive models that are 

available in the literature. The aim of the constitutive model is to formulate 

mathematically the unified  behaviours of SMA such as  shape memory effect, 

quassiplasticity and pseudoelasticity. Several constitutive models have been and are 

still proposed to predict the thermomechanical response of the SMA. One of the 

earliest model is the one dimensional Tanaka’s model [42]. It is the macroscopic 

model that is derived from thermodynamic concepts and through experimental 

observations. The SMA behaviours in this model are constituted into two equations: 

constitutive equations and kinetic equations. The constitutive equation is obtained by 

minimization of free energy using the energy equation and the Clausius-Duhem 

inequality. Martensitic transformation is considered progressive and  this progress can 

be explained thru an internal variable, the volume fraction of martensite, ξ,. The 

evolutionary equation is determined by considering transformation micro-mechanism 

and it  is expressed using exponential function in the form of ξ=ξ(σ,T). Tanaka’s 

model was found to be able to characterize most of the behaviours of the SMA. Liang 

and Rogers [43] improved the Tanaka’s model by directly matching experimental 

result to get the evolutionary equation and this equation is expressed using the cosine 

function.  The constitutive equation remains the same while parameters of the 

equations can be determined through experiments. A major improvement of the 

Tanaka’s model was made by Brinson [44,45]. Brinson recognized that not all 

martensite that are converted to austenite will produce the recovery stress. Only the 

stress induced martensite that is responsible for the shape memory effect. As such, 

martensite fraction is divided into two: stress induced and temperature induced 

martensite. This model also does not assume constant material functions in the 

constitutive relationship. Furthermore Brinson’s made some amendment so that the 
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constitutive equation will be valid at any temperature. This model was found to give a 

better representation of the SMA behaviours than the Liang and Rogers’s model [46, 

ford,hebda,white].  

 In a different approach, the so called thermodynamic model was developed by 

Boyd and Lagoudas [47]. This model start with a free energy equation and by 

utilizing a dissipation potential in conjunction with the second law of thermodynamic, 

the evolution law for the internal state variable i.e. the volume fraction can be derived. 

This model is a 3-dimensional model that can be reduced to a 1-dimensional model 

[48]. This model has been used to solve the problem of SMA actuators embedded in 

metal matrix composites where a multi-axial stress state exist [49,50-

logoudas,bo,qidwai].  

 The Muller-Achenbach model was initially proposed by Achenbach [51], 

Achenbach  & Muller [52] and Muller & Xu [53].  The earlier model can capture the 

pseudoelastic phenomena only. The model was then improved to include the 

thermoelastic and reorientation processes by  Seelecke [54] and Huo & Xu [55]. This 

model views SMA mesoscopically since the basic elements involve are lattices of 

martensite and austenite. It is also actually a phenomenological model since the 

postulates made are basically based on experimental observations. As in Bo and 

Lagoudas [47] model, this model is based on thermodynamic principles of free energy 

and dissipation potential. For any phase to be in equilibrium, the free energy  must be 

minimum and the dissipation potential must be satisfied. This model then goes into 

deep in utilising statistical thermodynamics principles in order to determine the rate of 

transformation and finally by equating the energy balance equation for the SMA, the 

solution of the force-deformation plot can be obtained. An important finding of this 

model is that the pseudoelastic process is an unstable process for having equilibrium 
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downward slope force-deformation curve. A conjecture was made that hysteresis 

occurs due to this. This downward slope line is actually a diagonal that determine the 

turning point for the internal yield and recovery processes. Even though this model 

can accurately represent thermoelastic behaviour, the disadvantage of this model is its 

highly mathematical formulation that make it difficult to be incorporated to finite 

element method.    

 

1.2.4 Structural applications of SMA 
 

 The improvement made by the SMA on structures can be classified into two 

categories: active property tuning (APT),  and active strain energy tuning (ASET) 

[56]. APT refers to the increase of the Young’s modulus, yield strength and other 

properties of the SMA during the transformation of  martensite to austenite phase. 

However the damping capacity is reduced upon transformation [57]. On the other 

hand, ASET involves the embedment of the prestrained martensite into laminated 

composite. This pseudo-plastic SMA is therefore an integral part of the composite. 

When the heat is increased, the fibers are constrained from returning to their 

memorized length and thus creating the recovery force. This recovery force is used to 

increase the strain energy and the stiffness of the structure  and thus improving  

structural problems such as shifting natural frequency, suppress vibration, increase 

critical and thermal buckling loads, control post-buckling and thermal post-buckling 

deflections and prevent cracks and fatigues.  If the fibers is located eccentrically to the 

natural exist, the recovery force of the SMA will provides the structure a bending 

moment that can change the shapes or positions of SMA structures.  This type of 

ASET is called the active shape control (ASC). Note that the APT is always there for 

each occurrence of the ASC and ASET and it was found that the effect of APT is 
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much smaller as compared to the effect of the other two [56]. Researches on this SMA 

structures especially  beams are rather extensive. Though each research is to prove the 

effect of SMA in improving structural behaviours, all are differs in terms of structural 

configuration, form of SMA, number of SMA training cycles conducted and the  

method of analysis.  

C.A.Rogers et al [56] was one of the earliest researchers to formulate several concepts 

of structural improvement of SMA composite plates. In their paper, they discuss the 

concepts of ASET and APT and then suggest the geometric form of the SMA 

composite plates. After proposing the constitutive relationship, they developed the 

general dynamic model and formulation of the SMA composite plates. Finally they 

solve  the linear problems of bending deflection, free vibration, buckling analysis and 

acoustic transmission using the Raleigh-Ritz method. The results on effectiveness of 

the concepts of APT and ASET in improving structural behaviour of the SMA plates 

were encouraging.  

Zak et al [58] studied several parameters such as the orientation and location of SMA 

wires, the orientation and relative volume fraction of reinforcing fibres, the thickness 

to length and length to width ratios and boundary conditions  that effect the free 

vibration and critical load performances of SMA composite plates. Both concepts of 

APT and ASET were studied. It was found that the greatest changes in the natural 

frequencies and the critical loads are observed not for the lowest modes of vibration 

but generally for those modes where the nodal lines are perpendicular to the 

orientation angle of the SMA wires. Furthermore it was found that the changes in 

natural frequencies and critical loads also a function of the orientation of the SMA 

wires as well as the length to width ratio. 
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Positioning pre-strained SMA wires or strips eccentrically to the neutral axis of a 

beam or plate will give the SMAHC a moment recovery upon activation of the SMA. 

SMA wires can also be placed on the neutral axis of the beam if the wires have been 

trained to deflect upon activation. The amount of the recovered bending moment will 

depend on several factors such as the amount of transformation, the amount of pre-

strain and the volume fraction of the SMA wires. The concept of the ASC can be used 

in applications such as the strict precision pointing requirement of the spacecraft, 

space-based radar and  laser, stern shape control for submarines and the adaptive 

hydro- or aerodynamic lifting surface [59].  Shape control of beams was applied to 

have large deflections in flexible beams [60-66]  or small deflections in beams [67] or 

SMA composite beams [68-74]. Icardi [41] in his recent paper gave the analytical 

modeling, numerical simulation and experimental validation of the analysis of a 

flexible composite beam having bending moment actuated by SMA wires. He then 

applied his model to the elastomeric SMA beam that upon heating will act as large 

bending actuators. Similarly, Wang and Shahinpoor [42] modeled a structure that 

consisted of SMA wires embedded externally between a flexible beam and a soft 

plastic tube. A moment equation was derived based on a flexible cantilever beam with 

a concentrated follower load at the free end and a uniformly distributed follower load 

along the beam. This moment equation was incorporated to the Euler-Bernoulli beam 

equation to give the mathematical model of the problem. Wang and Shahinpoor 

proved that SMA wires could be used to cause large bending in elastomeric beams.  

 Baz et al [50] embedded  nitinol strips that were trained to deflect at temperature 

higher than As  inside sleeves, which are placed on the natural axis of the beam. A 

mathematical model via FEM was developed to study the dynamic effect of the SMA. 

Also a thermal finite element model was developed to study the thermal gradient 



 15

across the cross-section of the beam. Most theoretical results showed close agreement 

with the experiment finding. Choi et al [51-52] conducted an analytical and 

experimental study to control the shape of a SMA composite beam. They used Euler’s 

formulation of lateral deflection and the ‘cut and paste’ method to determine the 

deflection due to the bending of the SMA. Kim et al [53] enhanced the effect of the 

SMA on the active shape control of beams by applying the concept of elastic tailoring 

to give the coupling effect such as bending-twisting and extension–bending that will 

act as passive shape control of the beams. The recovery forces were calculated 

independently using the procedures developed by Brinson and Lammering [75]. 

Ghomsei et al [76] however combined constitutive equation of the Brinson’s SMA 

model with displacement fields of a polymer beam loaded axially and laterally to 

obtain the finite element model for the composite actuator.  

 By the ASET of SMA composite structure, critical natural frequencies can be 

increased away from the operative frequencies [77-80]. Furthermore the mode shape 

can be shifted away from the critical positions [81]. Increasing the stiffness thru 

ASET control can also suppress vibrations [82-84]. However vibrations can also be 

suppressed  by increasing the damping capacity of the SMA. This can be done thru 

active or passive ways [85-87]. The critical buckling and thermal buckling load can be 

increased while the post- and thermal post buckling can be controlled  thru ASET 

control [88-90]. 

 Epps & Chandra [58] modeled the SMA composite beam  as a beam on elastic 

foundation where the characteristic of this elastic foundation depended on the 

recovery forces. The governing equations of a uniform composite beam on an elastic 

foundation undergoing bending vibration were solved using Galerkin’s method. It was 

found that the natural frequencies depended upon the beams stiffness, mass, length 
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and the recovery forces. The recovery forces were predicted using the Liang and 

Rogers model [58]. Experiments were carefully conducted considering the effect of 

curing temperature. The results showed that the first natural frequency could be 

increased by 22% if one 20 mils diameter wire is used. The increase grew to 176% if 

50 wires of 10 mils diameter wire were used. 

Baz et al [59] studied the control capability of the nitinol SMA on the natural 

frequencies of clamped-clamped composite beams. SMA wires were embedded on the 

natural planes thru a vulcanised rubber sleeves. Two sets of SMA were used; one with 

250 cycles of SME training and the other was without training. The Euler-Bernoulli’s 

thin beam was assumed neglecting shear deformation and rotary inertias. The 

individual contribution to the beam stiffness was determined and formulated.  The 

contribution includes the flexural rigidity of the beam, geometric stiffness of the axial 

and thermal loading and the elasticity stiffness of the nitinol. The finite element 

analysis was conducted and the results were validated thru experiment. It was shown  

that the natural frequencies could be shifted to higher values by activating nitinol 

wires. 

Lau et al [60] in their research determined analytically and experimentally the 

natural frequencies of clamped-clamped smart composite beams without considering 

the effect of the curing temperature of the matrix and SMA temperature on 

surrounding. Combining the stress recovery equation of the Brinson’s model [60] and 

lateral vibration equation of the beam, the differential equation was solved 

analytically to give the roots of the natural frequency of the beams. The experimental 

results showed close agreement with the analytical results. It was found that at low 

volume fraction of SMA, natural frequencies decreased because of the thermal 
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compressive stress that existed. As the volume fraction increased, tension recovery 

stress overrode the compressive stress and thus increasing the natural frequencies. 

A study by Baz et al [63] demonstrated theoretically and experimentally the 

feasibility of using SMA in suppressing the flexural vibrations of a flexible 

cantilevered beam. Connecting the nitinol actuators externally  between two points of 

the beam, the SMA of the actuators were utilized to memorize the desired distance 

between the two points. At the instance when the deviation of the desired spacing 

occurred, the activation of the SMA will create recovery forces and moments that will 

bring back the beam to the memorized shape.  By placing the actuators external to the 

beams, natural cooling of the actuators to ambient temperature will return the SMA to 

martensite phase. The problem was modelled using the finite element method where 

the effect of the SMA came as the control moment developed by the nitinol actuator. 

The phase transformation process was assumed to be sudden. Thus the Young’s 

modulus of the SMA was assumed to shift instantaneously from the Young’s modulus 

of the martensite to the Young’s modulus of the austenite. The results obtained 

showed close agreement between theory and experiments. The result showed that two 

nitinol actuators were required for effective vibration damping for each degree of 

freedom to be controlled. 

Chen and Levy [67] studied the effect of changing the Young’s modulus of 

isotropic beams by overlaying the beams with SMA layers. It was demonstrated that 

the approach could change the natural frequencies and adjusting the excitation of the 

beams. The method was aimed for completed structures where there was no possible 

modification can be made. Thermal bending moment was derived from the 1D 

unsteady heat condition problem of the beam. Assuming Euler’s beam, the governing 

equation of the beam was developed and modified to equations constituted the 
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transverse displacement terms using coefficient of non-dimensional parameters. 

Transverse displacements were then solved assuming the variable separable solution.  

 Baz et al [69] studied the buckling characteristic of flexible fiberglass composite 

beams that were controlled by SMA wires. Nitinol wires inside rubber sleeves were 

embedded along the neutral axis of a composite beam. Prior to that nitinol wires were 

trained to memorize the shape of the unbuckled beam. Once buckling occurs, the 

SMA wires were activated and tried to bring the beam to return to its original shape. 

Finite element model was developed and individual contribution of fiberglass-resin 

laminate, nitinol wires, thermal stress and the SME to the buckling of the beam was 

analysed. The stiffness matrix consists of the conventional transverse and geometric 

stiffness matrices. The external axial and thermal loads contributed negatively to the 

total stiffness matrix while the geometric stiffness matrix due to nitinol wires added 

positively to the stiffness matrix. It was shown that for the given SMA beam, 

embedding eight SMA wires would increase the buckling load three times. The result 

from experiments correlated well to the finite element results. 

 The study on the post buckling of the composite SMA plates due to compressive 

load is rather few even though more studies on the thermal postbuckling were 

conducted in the last decade. In their research, Thompson and Loughlan [91,92] 

proved that by embedding pre strained SMA wires into laminated plates, the out of 

plane displacement can be reduced. Two concepts of SMA control were used. Firstly, 

SMA wires were embedded at the outermost layer of the symmetric cross-ply 

composite laminate ([02/902]s) and secondly the wires were located within tubing at 

the neutral axis of the composite plate. The results obtained from the finite element 

commercial software were compared to their experimental results.  It was found that 

the post buckling deflection can be reduced for even a small volume fraction of the 
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SMA. The second concept were found to give more effect on the elevation of the post 

buckling response as compared to the first concept. 

The study on the effect of SMA on the thermal buckling and postbuckling behaviour 

of laminated composites was first studied by Zhong et al [93]. The SMA properties 

and stress recovery were taken from experimental data conducted by Cross et al [94]. 

The displacement field of the composite was based on the Kirchoff’s classical 

lamination theory. The nonlinear finite element equation was solved using updated 

Lagrangian formulation. The effect of several parameters such as the use of the non-

orthotropic and unsymmetric laminate and boundary conditions were studied. Result 

showed that SMA can greatly reduce or completely eliminate the postbuckling 

deflection at certain elevated temperature.  

Duan [95], Duan et al [96] and Tawfik et al [97] later used a different finite element 

approach to solve the thermal postbuckling of SMA quassi-isotropic plates. Using 

incremental updated lagrangian formulation and the marching method, the study 

prove that SMA fibres can significantly improve the postbuckling behaviour of 

laminated composite. Similarly,  Park et al [98] solve the postbuckling of SMA 

composite plates using the  incremental updated lagrangian formulation and the 

marching method. He however use the first order shear deformation theory to describe 

the displacement field of the laminated composites. Guo et al [99] improve the 

marching method technique by taking  strain as a cumulative physical quantity while 

the stress is an instant one. As a result the method does not need the many small 

increments as in the marching method. Lee et al [100] studied the postbuckling of 

SMA composite shells. Using the Brinson’s model the constitutive equation was  

incorporated into the finite element software of ABACUS to solve the psotbuckling of 
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SMA shells. It was found that the lateral deflection of shell was reduced due to the 

effect of SMA. 

From the  literature review it shows that various displacement theories have been 

developed to be applied in the studies of structural behaviours of composite plates. 

The trend now is to incorporate the SMA into composite layers as to improve the 

performance of the structural behaviours of composite plates through APT and ASET 

improvement methods. This is possible with the development of constitutive theories 

of SMA where the behaviours of SMA embedded within composite layers can be 

predicted. In this research these developments are used to study the effect of SMA on 

stress and deflection of composite plates. 

 
1.3 Objectives 

The objectives of this research are: 

1. To develop a linear finite element model of the shape memory alloy composite 

plates. 

2. To develop source codes for the above model. 

3. To study the effect of SMA on several structural behaviours of composite 

plates such as stress, deflection, free vibration and buckling. 

4. To conduct parametric studies on the effect of SMA on the above structural 

behaviours. 

 
1.4 Scope 

This research is to develop a linear FEM model for the SMA composite plates and use 

this model to study the effect of SMA on several structural behaviours. This study is 

limited to the following scope and assumptions. 
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• The SMA wires are nicely embedded within epoxy  matrix and as for the 

composite fibres, the bonding of the SMA wires is assumed to be perfect so 

that the rule of mixture can be applied. 

• The amount of recovery stresses are predetermined using the Brinson’s model 

where the constitutive and evolutionary equations of the model are solved for 

the cases of shape memory effect, pseudoelasticity ad quassiplastcity.. 

• The study is limited to the linear analysis where for example the buckling and 

free vibration improvements made by SMA are studied through the well known 

eigen-value problems. 

• The first order displacement theory is used as the kinematic assumption of the 

displacement behaviour of the composite plates. 

• The plates understudy are square laminated plates where each layer may be 

considered homogeneous and orthotropic in the macroscopic sense. The plates 

can be symmetric or anti-symmetric in terms of material properties and 

geometry where layers are of equal thickness. The unsymmetrical plate are not 

considered in this study. 

• The deformation behaviour of the composite matrix and fibres are assumed to 

be linear. 

• Boundary conditions applied to the plates are the combinations of simply 

supported and clamped boundary conditions. 

 
1.5 Research organization 

 
The report of this research is divided into six chapters: 

1. Chapter 1: Introduction 

2. Chapter 2: Composite plate and SMA theories 

3. Chapter 3: Finite Element Formulation of SMA composite plates 
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4. Chapter 4: Code developement 

5. Chapter 5: Structural analysis of SMA plates 
 

6. Chapter 6: Conclusions and recommendations 
 



2.0  COMPOSITE PLATES AND SMA THEORIES. 
 
2.1 Theory of laminated composite plate 

The behaviour of laminated composite plate is interesting as the material properties and 

the response to the external loading can be tailored. How laminates response to loads 

depends on many factors such as fibre angles, stacking arrangements, material properties, 

span to thickness ratios etc. As an example, referring to figure 2.1 when two laminated 

composites subjected to the same level of bending moment, M, the first laminate will 

bend much less than the second one because the stacking sequence of the first composite 

allows it to have a larger bending stiffness.   

 

 

 

 

 

         (a)  [0/90]s laminates     (b)  [90/0]s laminates 

 

Figure 2.1: Differences in bending deformation between [0/90]s and [90/0]s  

                    laminates [Hyer,1998]. 

The material properties of a laminated composite plate such as the Young Modulus, 

Poisson ratio and thermal coefficient can be tailored. Not just that, by controlling the 

stacking arrangement, the coupling phenomenon can be controlled also. To understand 

the effect of these factors, we have to understand the constitutive relationship of a 

laminated composite plate. This constitutive relationship is derived by combining the 

M M M 



constitutive relationship of a laminae and the kinematic equations of the laminated 

composite plate into the equations that define the stress resultants that occur in 

composites. Understanding the physical meaning of the constitutive relationship of a 

laminae and the kinematic behaviour of laminated composite plates is thus crucial before 

we can understand the behaviour of laminated composite plates as a whole. As such we 

go into reviewing the mechanics of a laminae first. 

2.1.1 Mechanics of a laminae  

The behaviour of laminated composites in this study is viewed globally rather than 

locally where the interaction of constituents of composites is of interest. This so called 

macro mechanical approach uses the average apparent mechanical properties to study 

global responses such as deflections, vibration frequencies, vibration damping and 

buckling loads.  

 
 
 
 
 
 
 
 
 

            

 

 

Figure 2.2:  The principal and global coordinate systems 

 

The fibres and the matrix materials are assumed to be smeared into one equivalent 

homogeneous material. Since this material is to have different properties in three 

mutually perpendicular directions, a laminated composite is called an orthotropic 

3 

1

2 

x 

y 
z 

a. Principal Coordinate System 
    1    – Direction of Fibres 
    2,3 – Direction transverse to fibre   

b. Global Coordinate System 
     



material. Setting the coordinate system based on the right hand rule, the principal 

material and the global coordinate systems are shown in figure 2.2. 

With the assumption of the orthotropic properties, the compliance matrix of the laminae 

has been reduced to nine independent constants. So we have a stress-strain relationship, 

in the material coordinate system, 
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where 
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     (2.1b)                                             

 S44 = 
12

1
G

  S55 = 
13

1
G

 S66 = 
23

1
G

  

or   

{ }ε =  [ ]{ }σS         (2.1c) 

 

where{ }σ  is the stress matrix, { }ε is the strain matrix and [ ]S  is the compliance matrix. 

In the case of a plate laminae, since in-plane stresses are usually much higher than 

stresses perpendicular to the plane, it is reasonable to make the plane-stress assumption. 



However, leaving the effect of transverse shear will be inaccurate especially in the case 

of thick plates. Thus taking into account the transverse shear stresses and strains along 

with the plane stress assumption, we have, 
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or   

{ }ε = [ ]{ }σS         (2.2b) 

where [ ]S  is the reduced compliance matrix. 

Inverting this stress-strain relationship, we have 
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or   

{ }σ =  [ ]{ }εQ         (2.3b) 

where [ ]Q is the reduced stiffness matrix  

And, 

 Q11  = 
2112

1

1 νν−
E  Q22 = 

2112

2

1 νν−
E    

 Q12  = 
2112

212

1 νν
ν
−

E    =   
2112

121

1 νν
ν
−

E      (2.3c) 

 Q33  = G12 Q44  = G13 Q55  = G23 



 

Transforming into any arbitrary global coordinate system where material coordinate axes 

are at θ degree from the global coordinate axes such as shown in figure 2.3, we have the 

stress strain relationship as followed, 
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or { }σ  =  [ ]Q  { }ε  

where [ ]Q  is the transformed reduced stiffness matrix. 

 

 

 

 

 

 
Figure 2.3: Angle of fibre orientation, θ 

 

Taking m = cos θ and  n = sin θ, we have,  

 11Q   =  Q11m4 + 2(Q12 + 2Q44 ) n2m2 + Q22n4 

 12Q  = (Q11 + Q22 – 4Q44) n2m2  + Q12 (n4 + m4 ) 

 13Q  = (Q11 – Q12 – 2Q44) nm3 + (Q12 – Q22 + 2Q44) n3m 

 22Q  =  Q11n4 + 2(Q12 + 2Q44) n2m2 + Q22m4 

θ 

x 

y 
z 

Fibre orientation 



 23Q  = (Q11 – Q12 – 2Q44) n3m + (Q12 – Q22 + 2Q44) nm3   (2.4b) 

 33Q  = (Q11 + Q22 - 2Q12 – 2Q44) n2m2 + (Q44) (n4 + m4 ) 

 44Q   =  Q44m2 +  Q55n2 

 45Q   =  (Q44 – Q55) mn 

 55Q   =  Q44n2 +  Q55m2 

Here it is clear that the constitutive relationship of a laminae depends not only on the 

properties of the fibre and the matrix but also the angle of orientation of the fibre. 

The kinematics response is totally a geometric movement of composites when 

loads are applied. The analysis of laminated composite can be based on three dimensional 

elasticity theories or lamination theories. The 3D elasticity theory treats each layer as an 

elastic continuum with possibly distinct material properties from adjacent layer. Between 

two layers are related by continuity of displacements and stress equations. However as 

the number of layers increases, the analysis becomes complicated. A better alternative is 

the lamination theory where the laminated plate is treated as a single layer.   

2.1.2 Classical Lamination Theory 

Kirchoff in the mid 1800s made assumption that has greatly simplified the analysis of 

plates, shells and beams. This later so called the classical lamination theory has been 

successfully applied to the analysis of composite plates especially for thin plates. 

Referring to figure 2.4, a laminated plate can be acted upon by loads such as bending 

moment, M, distributed load, q, in-plane load, N and point load, P. 

 

 



 

 

 

 

 

 

 
Figure 2.4: Laminated plate acted upon by loads 

 

The Kirchoff’s hypothesis stated that the line AA’ remains straight and normal to the 

geometric mid-plane after deformation as in figure 2.5 and also the length of the line AA’ 

remains the same. 

The first assumption implied that the line AA’ does not deform but instead it only 

rotates and translates. In other words, the effect of transverse shear is neglected. The fact 

that the length remains the same means that there is no strain in z direction. With these 

two implications, the strains and displacements at any points can be expressed in terms of 

the displacements of points on the composite midplane. This also implied that the 

problem has been reduced from three dimensional to the two dimensional problem.  

The total displacements can then be summarised in the following equations. 

 u(x,y,z) = u0 (x,y) – z (
x

yxw
∂

∂ ),(0 ) 

 v(x,y,z) = v0 (x,y) – z (
y

yxw
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∂ ),(0 )     (2.5) 

 w(x,y,z) = w0 (x,y)  
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Figure 2.5: Kinematics of deformation in the x-z plane - CLT 

The classical lamination theory is accurate for thin plates where the plate thickness to 

span ratio tends to zero. However, for moderately thick plates the thickness to span ratio 

is not small enough to neglect transverse shear deformation and the Kirchoff assumption 

is no longer applicable. 

2.1.3  First Order Shear Deformation Theory 

The first order shear deformation theory maintains the Kirchoff’s assumptions except that 

the line AA’ in figure 2.6 does not have to be normal to the geometric mid-plane after 

deformation occurs. This implies that constant transverse shear stresses throughout plate 

a. Undeformed 

x 

A 

A’ z 

Geometric Midplane P 

P0 

z 

z
x

w
∂
∂ 0

A 

A’ 

Geometric 
Midplane 

b. Deformed 

P 

P0 

w0 



thickness are included in the kinematic equations. However since the normal stress in z 

direction remains disregard, the analysis will remain a two dimensional problem.  

Total displacement in x and y directions will remain the combination of 

displacements due to translation and rotation. 

 u(x,y,z) = u0 (x,y) – z (
x

yx
∂

∂ ),(0θ ) 

 v(x,y,z) = v0 (x,y) – z (
y

yx
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∂ ),(0θ )     (2.6) 

 w(x,y,z) = w0 (x,y)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Kinematics of deformation in the x-z plane - FSDT 
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The FSDT provides accurate results for moderately thin plates. For the span to thickness 

ratio becomes less than 20, the accuracy of the result will become lesser. Furthermore for 

very thin plates, the FSDT will give overly stiff results for the solutions that are obtained 

from the finite element method. This so called the shear locking phenomenon is due to 

the domination of the shear stiffness in the total stiffness as compared to the bending 

stiffness when the full integration of the total potential energy is done. Even though shear 

locking can be reduced by implementing the reduced or selective integration, the results 

in many cases are still overly stiff. Another problem of the FSDT is that the assumption 

of constant transverse shear stress is actually not correct since it is known that the shear 

stresses on the top and bottom surfaces of the plate are zero. To improve this condition, 

the shear correction factor is added to the out of plane terms of the FSDT equations. The 

shear correction factor of 
6
5  is a generally accepted value even though the more accurate 

value must be calculated in a case by case manner. For all these problems, researchers 

have developed higher order theories in getting more accurate results. 

2.1.4  Higher Order Shear Deformation Theory 

The higher order theory of the laminated composite was developed for thick plates and at 

the same time improving the FSDT. This development however must maintain the two 

dimensional form of the FSDT. The improvement of the FSDT can be done by adding 

higher order terms of displacement based on the existing deformation parameters such as 

u0 , v0 , θx and θy or just adding new deformation parameters. Several deformation 

theories can be gathered in a generalised displacement field as followed. 

 



 u(x,y,z) = u0 (x,y) + z ( α1
x∂

∂ω  + α2 θx) + z3 (α3 ζx + α4 23
4
h

(θx +
x∂
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 v(x,y,z) = v0 (x,y) + z ( α1 y∂
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4
h
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 w(x,y,z) = w0 (x,y)  

where  

α1 ,α2 ,α3 and α4  are constants associated with the HSDT used  

 u0, v0   = Displacement in x and y direction respectively 

 θx, θy  =  Rotations about x and y axis respectively 

ω =  Displacement in z direction 

ζx,ζy = New displacement parameters in x and y direction 

Assigning the values of α1 ,α2 ,α3 and α4  constants as in the following table 2.1, the 

generalised displacement field will become a specific theory developed by different 

researchers.  

Table 2.1: Constants correspond to FSDT and HSDT. 
 

α1 α2 α3 α4 Theory 

-1 0 0 0 Kirchoff’s CLT 

0 -1 0 0 Mindlin’s FSDT 

0 1 0 -1 Reddy’s HSDT (11) 

0 -1 1 0 Zabaras’s and Pervez’s HSDT (13) 

 

Assigning the values of constant appropriately, the HSDT of Zabaras and Pervez is as 

followed. 



 u(x,y,z) = u0 (x,y) -  z  θx + z3 ( ζx ) 

 v(x,y,z) = v0 (x,y) -  z  θy + z3 (ζy )        (2.7) 

 w(x,y,z) = w0 (x,y)  

where this HSDT add a new displacement parameter , ζ. ζx is  defined as warping of 

laminated plates about the x-axis. 

Understanding the constitutive relationship of a laminae and the kinematic of laminated 

composite plates, the constitutive relationship of a laminated plate can be derived. 

2.1.5 Layerwise Theory 

2.1.6 Mechanic of  laminated composite plates 

Some laminates may consist of three to four layers while others may have more than a 

hundred of layers. Constructing the constitutive relationship of a laminated composite 

plate, the constitutive relationship for a laminae is incorporated into the kinematic 

equations of the HSDT of Zabaras and Pervez through the stress resultant equations of 

laminated composites. The simplified generalised kinematic equations of laminated 

composite plates are, 

 

u(x,y,z) = uo (x,y) + z θx (x,y)   +  z3βζx 

v(x,y,z)  = vo (x,y) + z θy (x,y)  +  z3βζy      (2.8) 

w(x,y,z)  = wo
 (x,y) 

Where, 

u, v, w        = displacement of a generic point (x,y,z) in x, y and z direction  

       respectively      

uo, vo, wo  = displacement of mid-plane in x,  y and z direction respectively 



z     = coordinate in thickness direction 

θx, θy       =  rotations of the normal of the reference planes about y-axis and x- 

                   axis respectively 

ζx, ζy       =  third order displacements or warping functions   

β     = a constant to differentiate the two plate theories 

    =  0 for FSDT and 

      =  1 for HSDT 

 

 

   

 

 

 

 

Figure 2.7 : Membrane Stresses 

So strain can be expressed as 
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The concept of stress resultants is employed in deriving the constitutive relationship of 

laminated composites plates. Stress resultants are membrane forces or moments that act 

along member axes and tangent to plate mid-surfaces, as shown in Figure 2.7.  

 

 

 

 

 

 

 

 

 
Figure 2.8 : Geometry of a laminated plate 

 

Referring to the geometry of a laminated plate such as shown in Figure 2.8, force and 

moment resultants are defined as follows : 

For the in-plane resultant forces and moments, 

     [N] = 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

xy

y

x

N
N
N

 = ∫
− ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
2/

2/

t

t
xy

y

x

τ
σ
σ

 dz       

 [M] =  
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

xy

y

x

M
M
M

 = ∫
− ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
2/

2/

t

t
xy

y

x

τ
σ
σ

 zdz     (2.10a) 

2
t

−  

2
t  



   [P] = 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

xy

y

x

P
P
P

 = ∫
− ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
2/

2/

t

t
xy

y

x

τ
σ
σ

  z3 dz 

where [N] is the matrix of resultant force, [M] is the matrix of resultant moment and  [P] 

is the matrix of higher order force. 

For the out of plane forces, 
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where  [V] is the matrix of resultant shear force and [W] is the matrix of the higher order 

shear force.  

So, 
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or,  

[N] = [A]{εp} +  [B]{ εf} + [E]{εw}      (2.11b)  
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or   

[M] = [B]{εp} +  [D]{εf} + [F]{εw}       (2.13b) 

and 
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or 

[P] = [E]{εp} +  [F]{εf} + [G]{εw} 

 

Combining all terms, the constitutive relationship for a laminated composite plate 

becomes, 
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or, 
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where the in-plane coefficients are, 

      { [A], [B], [D], [E], [F], [G]} =  ∑
=

∫
n

k
ijQ

1
  (1, z, z2 ,z3 ,z4 ,z6 ) dz (2.15c) 

and the out of plane coefficients are, 

{ [S1], [S2], [S3] } =  ∑
=

∫
n

k
ijR

1
  (1 ,z2 ,z4 ) dz    (2.15d) 

2.2 SMA theory 

In this section, the properties of the shape memory effect, quassiplasticity and 

pseudoelasticity of the non-embedded SMA are first described. It is then followed by the 

description of the property of the embedded SMA. The explanations on the SMA 

composite structures in terms of its configuration and construction where the former 

depends on the control strategy of the structure are given. Finally the detail description on 

the Brinson’s model is given and the constitutive and the evolutionary equations of this 

model are solved to give the plots that represent the properties of shape memory effect, 

quassiplasticity and pseudoelasticity of the SMA. This Brinson’s model parameters used 

in this study are experimental values taken from Zak et al (2001). 

 
2.2.1  Properties of the SMA 

 SMA posses unique properties of shape memory effect, quassiplasticity and 

pseudoelasticity as mentioned in section 1.2.3. At the heart of these novel properties is 

the SMA ability to undergo a solid-solid first order transformation process that is called 



the thermoelastic transformation. Thermoelastic transformation is a reversible 

diffusionless solid transition between the parent phase austenite and the product phase 

martensite.  Cooling an austenite phase will cause the movement of its crystal lattices in 

order to accommodate the minimum free energy state [Otsaka and Wayman 1998]. 

Rather than a long distance movement, atoms start to form new orientations thru a shear 

dominant mechanism called twinning. In the twinning process a strain caused by a 

martensite variant will be accommodated by its surrounding variants causing the 

orientation of alternate variants such as in figure 2.9a. The transformation is thus called 

the self-accommodated transformation and this martensite is called the temperature 

induced martensite (TIM). The first nucleation of martensite occurs at temperature Ms 

which is lower than temperature T0  where the free energy of martensite equal to the free 

energy of austenite (Funakubo 1987). By the end of transformation process at 

temperature Mf, a maximum of 24 orientations of martensite can be formed making it less 

symmetry and lower in mechanical properties as compared to the parent phase. These 24 

orientations can be divided into two variants, M+ and M- (Huo et al. 1993).  As this 

thermoelastic transformation occurs within the austenite crystal frame as shown in figure 

2.9, the process is reversible and the macroscopic shape of the martensite is the same as 

the macroscopic shape of the austenite. Heating the martensite, thermoelastic 

transformation will occur to change the multivariant martensite back to the single variant 

austenite thru a temperature hysteresis path. There are thus four transition temperatures, 

Ms, Mf, As and Af where letters s and f refer to the start and final respectively. These 

transformation temperatures are usually assumed to be linearly related to stress in 

Tanaka’s [1990], Liang and Rogers (1990) and Brinson’s model (1990). The transition 



temperatures can be controlled by changing the SMA alloy composition and conducting 

the heat treatment. For commonly available SMAs, the transformation temperatures can 

remain within a fully controllable temperature range from as low as -530C to -50C to as 

high as 590C to 1210C with a total hysteresis span of 260C to 460C in the case of binary 

alloys. The hysteresis span can be further reduced to 100C by the addition of copper, or 

alternatively enhanced to 1000C by the addition of niobium (Zak et al. 2003). 

 

 

 

 

 

 

Figure 2.9: The effect of temperature and stress on the SMA (Hornbogen 1991) 
 

 The effect of stress on the SMA is important due to the displacive nature of the 

transformation. Referring to figure 2.9c, applying an amount of force to the TIM at T < 

Mf will reorient the twinned martensite to the stress preferrential oriented martensite 

(SIM). Releasing the load will see the permanent strain in the martensite in a behaviour 

called the quasiplasticity (Müller, S. Seelecke 2001) as in figure 2.10a. The strain can be 

recovered by heating the SIM to a temperature higher than Af. At this temperature all 

martensite will change to austenite that has a macroscopic shape equivalent to the 

original temperature induced martensite thus recovering the original shape. This 

phenomena shown in figure 2.10a is called the shape memory effect (SME). Recovery 

strain of up to 6-8% can be achieved for nitinol (Gandhi and Thompson 2000). 
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Restraining the strain recovery will induce the internal stress gradually. Recovery stress 

of up to 800 Mpa can be achieved for NiTi (Thompson and Loughlan 1997). Giving a 

load to austenite phase at a higher temperature, the austenite will be converted to SIM 

after a critical stress is reached.  As in figure 2.10b, releasing the load then will return the 

SMA to its austenite phase thus recovering strain up to 8%. At a temperature above Td, 

austenite will behave like any typical metals where yielding occurs to indicate  the start 

of plasticity. 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 2.10: Quasiplasticity, SME and Pseudoelasticity 

 

2.2.2  Properties of the embedded SMA 

 Numerous studies have been conducted on the transformational behaviour of the free 

SMA but the same studies on the SMA composite are rather limited (Jonnalagada 1998). 

A review on the stress recovery behaviour of the SMA when it is embedded is given here. 

From the studies of Sittner and Stalmans (2000), Zheng et al. (2001) and Tsoi et al. 

(2002), the transformational behaviour of the SMA composite is directly related to the 

existence of the TIM and SIM and the effect of the constraining matrix on them. Both 

martensites transform to austenite upon heating but in a different manner. Referring to 

figure 2.11, the transformation of TIM to austenite require no macroscopic shape change, 
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in contrast to the transformation of SIM. As a result the constraining matrix has no effect 

on the transformation of TIM but the same matrix impedes the transformation of SIM. 

This impeding of the SIM transformation will result in the gradual inducement of the 

recovery stress.  

 

 

 

 

 

 
 

Figure 2.11: Transformation of  (a) free TIM and (b) SIM to austenite. 

 

 The transformational behaviour of the SMAHC can be studied thru the differential 

scanning calorimetry (DSC) and isolength tests  (Sittner and Stalmans  2000, Zheng et al. 

2001 and Tsoi et al.  2002). A comparison between the free and constrained recoveries of 

nickel rich Ni-Ti for different values of pre-strains is now explained. While the free 

recovery represents the isolated SMA, the constraint recovery here represents the 

SMAHC. With reference to figure 2.12, for 0% SMA pre-strain, there is no difference in 

the reverse transformation between the free and constrained recoveries because in both 

recoveries, the present martensite is the TIM and TIM is not affected by the constraint. A 

transformation in both cases releases the same amount of heat as detected by the DSC 

test. However with a pre-strain, the existence of both the TIM and SIM in the martensite 

will see them to be transformed to austenite in the case of free recovery but for the 

constrained case, only TIM is transformed to austenite resulting in the less amount of 

endothermic heat detected. Increasing the pre-strain to 8% which is the maximum 
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recoverable strain for NiTi SMA, the heat detected by the free recovery remain the same 

while in the case of the constrained recovery, zero endothermic heat is detected. This is 

because at the maximum recoverable strain, εL = 8%, all SMA have been converted to 

SIM which is impeded from transforming to austenite upon heating. 

 
   
 
 
 
 
 
 
 
 
Figure 2.12: A DSC test on (a) Free TIM (b) 8% pre-constraint TIM ( free recovery,        

constraint recovery) 

Table 2.2 shows the result of the iso-length tests on the constrained NiTi SMA for 

different pre-strain levels. At 0% pre-strain there is no recovery stress since there is no 

SIM. At 8% pre-strain, the SMA contains both the TIM and SIM. While matrix 

constraining of the SIM will result in stress recovery, the amount of SIM to be converted 

finishes before the AF temperature is reached.  

Table 2.2: Comparing free and constraint recovery for 0% and 8% pre-strained 
TIM. 
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2.2.3  SMA composite structure 

a. Control strategies 

The structure of the SMA composite plate is characterised by the location of the SMA 

fibres or wires and the way SMA wires are attached to the composites. The location of 

the SMA wires depends on the required control strategy. Referring to section 1.2.4, the 

control strategy depends on the types of SMA improvement needed: APT, ASC and 

ASET. APT is about increasing the mechanical property of the SMA such as the Young’s 

modulus and the coefficient of thermal expansion when transformation from martensite 

to austenite occurs. SMA is best situated along the neutral axis of the plates for this 

purpose. ASC requires the SMA to induce bending moment upon its activation. This can 

be achieved in two ways: Attaching or embedding SMA wires eccentrically to the neutral 

axis as in figure 2.13b and 2.13c and training the SMA to deflect upon activation while 

embedding it at the neutral axis (Baz et el. 1998). Finally in ASET, the recovery stress 

induced when SMA is activated is used to increase the stiffness of the composite. For this 

purpose SMA wires should be situated either along the neutral axis (figure 2.13a) or 

symmetrically through thickness of the plate (figure 2.13c). Notice that SMA wires can 

be directly embedded within the matrix of the SMAHC or thru sleeves as in figures 2.13d 

and 2.13e. In the direct embedding, the recovery stress is dependent on the compliance of 

the surrounding matrix. The lower the compliance, the higher the level of induced force 

(Thompson and Loughlan 2001). Direct embedding has a disadvantage of destroying the 

matrix in the case of overheating while embedding thru sleeves prevent resistive heat to 



directly transferred to the matrix. However embedding thru sleeves requires the SMA 

wires to be clamped at both ends in order to get any recovery stress. This is however in 

reality impractical (Thompson and Loughlan 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 2.13: SMA plate cross-sections for different control strategies  

b. SMA composite structures 

Rogers et (1991) proposed three layer SMA composite plates where SMA composite 

layer were located in the middle of the plates. Referring to figure 2.13, graphite-epoxy 

layers (G/E) are stacked symmetrically on top and bottom of the nitinol/epoxy (N/E) 

layer which is the SMA composite layer.  The direction of the nitinol fibres can be in the 

E11 or E22 direction. The orientations of graphite epoxy plies was not specified. Both 

APT and ASET were studied. The effect of APT and ASET were studied by Zak et al 

(2003) on  SMA composite plates of the configuration as in figure 2.13c. The plates 

consists of 12 layers: 2 Nitinol-epoxy layers and 10 graphite-epoxy layers in a 

configuration of [00/(±α)s/00]. This SMA composite plate is shown in figure 2.14. 

 

a. SMA along  
    neutral axis    

b. SMA eccentrically  
    to neutral axis         

c. SMA in sleeves 
   along  neutral axis    

sleeve 

d. SMA in sleeves  
    eccentrically to  
    neutral axis           

e. SMA located external  
    to the beam enveloped  
    by rubber tubes 

tube 

c. SMA symmetrically  
    located to neutral 



  

 

 

 

Figure 2.13 : SMA composite structures with SMA fibres in 2 different directions:  

           a) E11 direction  b) E22 direction  

 

 

 

 

 

 

 

Figure 2.14: SMA composite plates (           : N-E layer,           :G-E layer) 

 

The SMA plates in figure 2.13 and 2.14 have relatively  small number of SMA layers 

compared to composite layers. The purpose behind this is to minimize the electrical 

wiring required to activate the SMA wires. However for aerospace applications, the 

activation required can be obtained  through environmental heating. As such SMA fibres 

or wires can be embedded parallel to graphite fibres within each layer of graphite-epoxy 

layer such as shown in figure 2.15. Studies on thermal buckling and postbuckling of 

SMA composite plates using this types of SMA composite were conducted by Zhong et 

al  (1994), Tawfik et al (1998), Duan et al (2000), Pak et al (2003) and Heli (2003). 
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Figure 2.15. The SMA composite plates in thermal applications (Park 2003) 
 

2.2.4  SMA Brinson’s Model 

The Brinson’s model (Brinson 1991) made a significant improvement to Tanaka’s model 

(Tanaka 1990) and the Liang and Rogers’s model (Liang and Rogers 1990). It recognises 

the SIM as the only martensite that gives the functional property of SME and 

pseudoelasticity rather than the total martensite that contains both the TIM and the SIM. 

Brinson’s model assumes that the transformation depends only on temperature and stress 

and the amount of transformation that occurs is described using the volume fraction 

martensite, ξS. Thus solution to the Brinson’s model as in Tanaka’s and Liang and 

Rogers’s model simply involve solving 2 equations namely the constitutive equation and 

the evolutionary equations. Brinson’s model is quite popular for engineering applications 

since it is simple, accurate and easy to be implemented into numerical applications such 

as the finite element method.  
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This section will describe the Brinson’s model (Brinson 1990) in terms of its constitutive 

relation and evolutionary relationship for constant material functions. The experimental 

material parameters taken from Zak et al (2003) are specified. With this material 

parameters, the plots of behaviours of shape memory effect, pseudoelasticity, free 

recovery, restrained and constrained recovery are plotted.  

a. Brinson’s model 

Brinson (1990) made a modification so that this model can be used at low temperature by 

dividing martensitic fraction into two parts. 

  ξ  =  ξs +  ξT          (2.16) 

where ξs corresponds to the fraction of the SIM and ξT refers to the fraction of the TIM.  

Furthermore, this division is logical considering the result of the studies mentioned in 

section 2.3.2 where only SIM that is responsible for recovery stress. From Tanaka (1990) 

and  equation (1), we have 

  σ = σ( ε, ξs , ξT , T )       (2.17) 

and after simple derivation and applying a forced condition we have a constitutive 

relationship of Brinson’s model for constant material parameter.  

  )TT()()(D ososoo −+−Ω+−=− θξξεεσσ     (2.18) 

where D is theYoung Modulus, θ is thermoelastic tensor and Ω is transformation tensor.  

The effect of stress on transition temperature now must consider the conversion of TIM 

to SIM. This process of conversion starts after a TIM is given a stress up to a critical 

value, cr
sσ and finish at a stress value of cr

fσ . The values of these critical stresses can be 

determined thru experiments or theoretically by developing a model based on the 

potential energy necessary to overcome the chemical energy barrier for conversion of 



twins as in the work of Achenbach and Muller (1990). The stress temperature 

coefficients, CA and CM in Brinson’s model are not assumed to be equal and both are 

determined thru experiments. Figure 2.16 shows the effect of stress on the critical 

temperature. 

 
Figure 2.16: The effect of stress on the transformation temperature. 
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2. Martensite ↔ Austenite. 

For T>As and CA(T-Af) < σ < CA(T-AS) 
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b. Material parameters 

Table 2.3 shows the parameters correspond to the constitutive and evolutionary equations 

of the Brinson’s model. These parameters are experimental values taken from 

experiments conducted by Zak et al (2003). These parameters will be used throughout 

this study.  

Table 2.3: Parameters of the Shape Memory Alloy Brinson’s Model (Zak et al  2003) 
  

Parameters Values 
Critical Stress Start,σS (Pa) 80E6 
Critical Stress Finish,σF (Pa) 155.0E6 
Martensite Young’s Modulus (Pa) 33.0E9 
Austenite Young’s Modulus (Pa) 69.6E9 
Maximum Residual Strain, εL 0.058 
Initial Strain, ε0 0.001 
Martensite Finish Temperature (0C) 20.7 
Martensite Start Temperature (0C) 26.8 
Austenite Start Temperature (0C) 37.2 
Austenite Finish Temperature (0C) 47.0 
Stress Influence Coefficient CM (Pa 0C-1) 10.6E6 
Stress Influence Coefficient CA (Pa 0C-1) 9.7E6 

 
c. Brinson’s model result 

With these material parameters, the Brinson’s Model constitutive and evolutionary 

equations are solved in order to study the properties of quassiplasticity and SME that 

gives both full and partial stress recoveries. It starts by giving the Nitinol SMA an 



amount of stress that reaches above critical finish stress, σF for a complete detwinning 

process to occur (ξs=1). This Nitinol SMA can be fully martensite (T<Mf) or fully 

austenite (Ms<T<As). A complete unloading thereafter for each case will give the 

maximum residual strain, εL of about 0.058 m/m. These behaviours of quassiplasticity are 

shown in figure 2.17.  
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Figure 2.17: Quassiplasticity of  fully martensite Nitinol SMA   
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Figure 2.18: Quassiplasticity of  fully austensite Nitinol SMA   

 



Notice that in figure 2.17, Liang and Rogers’s model  cannot represent the detwinning 

process of martensite where the loading process becomes the infinite linear elastic 

loading. However for fully austenite case, both models provide a similar response such as 

in figure 2.18.  

The same type of SMA with a certain amount of pre-strained is now heated above the 

austenite start temperature, As while it is prohibited from recovering its strain. The full 

stress recovery or restrained recovery occurs when the SMA wires are totally prohibited 

to recover its strain i.e. there is no change in strain (Liang and Rogers 1990).  As a result 

a huge amount of recovery stress can be generated even for a small amount of pre-strain 

given. Figure 2.19 provides the amount of recovery stress over an increase in temperature 

for different values of SMA initial strains, e. Notice that in figure 2.19, the incomplete 

Liang and Rogers’s curve is shown where in the complete one, an enormous amount of 

recovery stress of more than 4000 MPa can be recovered.  
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Figure 2.19. Full stress recovery of SMA for different initial strains. 

  



This full recovery assumption is suitable if SMA wires are fixed at both ends. A better 

assumption for the SMA composite plates is the controlled recovery where some 

recovery strain may occur during the heating process of the SMA wires. The SMA and 

the composite can be modeled as a SMA-spring structure such as in figure 2.20 where the 

amount of recovery strain allowed to occur depends on the stiffness of spring.  

 

 

 

 
Figure 2.20: SMA-spring representation of SMA composite plates. 

 
 
Figure 2.21 shows the reduction of the recovery stress in the control recovery for 

different values of SMA-spring property, kL/s where k is the spring constant, L is the 

length of the wire and s is the cross-sectional area of the wire (Liang and Rogers 1990). 
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Figure 2.21: Controlled stress recovery of SMA for different spring parameters. 
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2.2.5  Approach to SMA structure’s mathematical formulation 

The mathematical formulation for composite plates is rather established. For example in 

the case of finite element method, the formulation involves combining the assumed 

displacement field and the constitutive relation into the principle of virtual work equation 

(Cook 1985). By embedding SMA into composite plates, the effect on the material 

constants and the addition of the recovery stress in the case of ASET applications need to 

be considered. For two constituent SMA composite layers such as the nitinol-epoxy layer 

in figure 2.14, the layer is treated as an orthotropic layer similar to typical graphite/epoxy 

layer (Rogers et al. 1990). There are two approaches in incorporating SMA recovery 

stress to the formulation. Firstly the recovery stress values are inserted into the governing 

equation either as the external force (Zak et al 2003) or internal stress (Zhong et al  (1994), 

Tawfik et al (1998), Duan et al (2000), Pak et al (2003) and Heli (2003) while secondly the 

constitutive relation of the SMA such as  the equation 2.3 for Brinson’s model is 

incorporated to the constitutive equation (Ghomsei et al 2004, Rasani 2003). In the first 

approach, the recovery stress values can be either taken from experiment or form the 

model such as Brinson’s model. This approach is used in the majority cases and also will 

be used in the present study. 

2.3 Closure 

 

 

 

 

 
 



3.0 FINITE ELEMENT FORMULATION OF SMA COMPOSITE PLATES 

3.1 Introduction 

The approach to the finite element formulation in this study as mentioned in section 

2.2.5, is of the first type where the recovery stress values are inserted into the governing 

equation either as the external force or the internal stress. This approach was initially 

proposed by Jia and Rogers [1993] and later refined by several researchers (Zhong et al. 

1994, Tawfik et al. 1998, Duan et al. 2000, Park et al. 2003 and Heli 2003). The 

Brinson’s model is used to obtain the recovery stress correspond the temperature given to 

the SMA composite plates. As for the SMA layer, the effective properties are determined 

through employing the rule of mixture. Since the tensional recovery load will be in the 

direction along the SMA wire, the orientation of the SMA wire should be in the principle-

1 direction. Using the effective properties, the global transformed reduced stiffness 

matrix [ ]Q  and the material stiffness ABD matrix of the SMA composite plates can be 

determined through the usual way as in the derivation for the same stiffness of the FRC. 

The kinematic of the SMA composite plates  in this study is based on the FSDT where 

the von Karman’s nonlinear moderate strain term is added to the strain equation. 

Combining the kinematics and constitutive relations of the SMA composite into the 

Hamilton’s principle using the FEM approach, the governing equations that dictate the 

structural behaviours of SMA plates can be obtained. Note that even though the 

derivation of the FEM formulation here is to include the non-linear structural analysis 

where the total Lagrangian formulation is used., the scope of this research is limited to 

the linear analysis only. Furthermore, the thermal effect of heating is neglected in this 



study. As such, the obtained formulation will be reduced to specifically meet the required 

linear analysis such as the stress, deflection, free vibration and buckling analysis. 

3.2 Effective properties 

 Referring to figure 3.1 [23], assuming a perfect bonding, both SMA and matrix 

stretches the same amount in the 1-direction. A perfect bonding results in only a global 

strain that involves SMA or actuator and matrix together. The local strain of the SMA 

will be prohibited by surrounding matrix thus resulting in recovery stress. So 

 am 111 εεε ==          (3.1) 

where 1ε , m1ε and a1ε  are the total strain, matrix strain and actuator strain in 1-direction 

respectively.  

 

 

 

 

  Figure 3.1. A volume representation of a SMA layer [Zhong et al 1994] 

Since total force in 1-direction is contributed by both the matrix and SMA,  

 am FFF 111 +=  

    aamm AA 11 σσ +=         (3.2a) 
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where Vm and Va are the volume fractions of the matrix and SMA respectively.  

The calculation for volume fractions of SMA and matrix can be calculated, for example 

in a lamina of SMA-matrix such as shown in figure 3.2, total area A 

 abA=           (3.3a) 

So   

 
A

d
nV a

a

2

π=   and  am VV −=1        (3.3b) 

where n and da are the number of SMA wires and the diameter of the SMA wire 

respectively. 

 

 

 

   Figure 3.2 A SMA composite layer  

In 1-direction, the stress-strain relation can be defined as 

 ( ) raaa TE σαεσ +∆−= 11           (3.4) 

where σ1a is the stress in the SMA direction, Ea is the SMA Young’s modulus which can 

be obtained from Brinson’s model, ε1 is the strain in 1-direction, αs is the thermal 

expansion coefficient of the SMA, ∆T is the change of temperature and σr is the recovery 

stress obtained through SMA activation. The values of σr can be obtained from Brinson’s 

model. For matrix material, 

 ( )TE mmm ∆−= 1111 αεσ           (3.5) 

where σ1m is the stress of the matrix material in 1-direction, E1m is the matrix Young’s 

modulus in 1-direction and α1m is the thermal expansion coefficient of the matrix in 1-

Composite 
matrix 

a 

b

SMA wires 



direction. Inserting equations (3.4) and (3.5) into (3.2), we have a stress-strain 

relationship for 1D SMA-matrix system. 

 aamm VV 111 σσσ +=          

  ( ) ( ) )( 111 raaammm TEVTEV σαεαε +∆−+∆−=   

  arVTE σαε +∆−= )( 111         (3.6) 

where the effective properties, 

 aamm EVEVE += 11          (3.7a) 

 ( ) 1111 / EEVEV aaammm ααα −=        (3.7b) 

where σr
1 is the recovery stress.  

For Poisson’s ratio, by definition 
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where w is width of the lamina. Thus 

 am www +=  and am www ∆+∆=∆      (3.9) 

With the perfect bonding assumption, 

 am LL ∆=∆          (3.10) 
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Inserting into (3.9), 

 ( )
L
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Dividing both side by w, 
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So, 

 mmaa VV υυυ +=12          (3.12) 

The effective properties in 2-direction are determined using the same concept.  Stress are 

equal for SMA and matrix in 2-direction. So we have 

 ma 222 σσσ ==          (3.13) 
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Total elongation is a combination of the matrix and SMA elongation. 
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where, 

maam

am

EVEV

EE
E

2

2
2

+
=                     (3.20b) 

aamm VV 222 ααα +=                    (3.20c) 

Similarly for modulus of rigidity,  
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3.3 Stress-strain  Relationship 
 
Based on the above analysis and the plane stress assumption of the plate, the constitutive 

relationship for a SMA laminated composite plate  is 
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or in short form, 

 [ ] { } { }( ) { }rVaTQ 1111 σαεσ +∆−=                   (3.21b) 

where  [Q] is the reduced stiffness matrix whose elements are as followed. 

 2112111 1 vvEQ −=    2112121211221212 11 vvEvvvEvQ −=−=  

 2112222 1 vvEQ −=                     (3.21c) 

 1233 GQ =  

For transverse shear strain, 
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where 1344 GQ =  and 2255 GQ = . 

The constitutive relation for a general orthotropic layer can be obtained by transforming 

the orthotropic stress using the transformation matrix. We have 

 { } [ ] { }1
1 σσ −= Tx  or  [ ]{ } { }1σσ =xT      
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[ ]T  is the transformation matrix,  
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where c=cos θ and s = sin θ. 

For the generally orthotropic layer, transforming equation (21b), 
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where [Q ] is the transformed reduced stiffness matrix and 
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3.4 Displacement field and strains 
 
Using the Mindlin’s first order shear deformation theory [Mindlin 1970] i.e. equation 

(2.8) for β =0, displacement at any points on a laminated composite plate can be 

expressed as, 

 u(x,y,z,t) =  uo (x,y,t) -  z θx (x,y,t)     

 v(x,y,z,t)  = vo (x,y,t) -  z θy (x,y,t)         (3.26) 

 w(x,y,z,t)  = wo
 (x,y,t) 

Strain can be expressed as  
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    (3.27) 

or {ε}= {εm} +{εnl} + z{εb}        (3.28) 

 



where  {εm}, {εnl}and {εb } are the inplane linear strain vector, the inplane nonlinear strain 

vector and the curvature strain vector, respectively. Furthermore, u, v and w are the 

displacements in the x, y and z directions respectively.  

The incremental transverse shear strain vector is as follows 
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3.5 Stress Resultant Constitutive Relationship 

Stress resultants are defined as 
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Combining equations (3.24d), (3.27), (3.29) and (3.30) we have the constitutive relation 

for the SMA composite plates. 
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and 
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where [A], [A’], [B] and [D] are the laminate stiffness matrices. {N},{M} and{Q} are the 

in-plane, moment and transverse shear resultant vectors, respectively. {Nr} and {Mr } are 

the resultant force and moment due to recovery stress respectively, i.e.  
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3.6 Finite element implementation 

A continuum square plate is discretised into several elements. The optimum number of 

elements is determined through the convergent tests.  Eight noded isoparametric 

quadrilateral elements are used in this study. The elements and nodes are numbered 

locally and globally in a way such as shown in figure 3.3.  Each node carries 5 degrees of 

freedoms per node. The generalized displacement matrix for each node is : 

{ }a  =  ∑
=

8

1i
iN { }id         (3.34a) 

where { }a   and { }id  are the generalised and nodal displacements and Ni is the ith shape 

function.  

   { }a   =   {u  v  w  θx  θy  }T 

{ }ia  =   {uoi  voi  woi  θxi  θyi  }T      (3.34b) 

N1 =  -
4
1 (1- ζ  ) (1 - η )(1 +ζ + η ) 

N2 =   
2
1 (1- ζ 2  ) (1 - η ) 

N3 =  -
4
1 (1 + ζ  ) (1 - η )(1 -ζ + η ) 

N4 =   
2
1 (1+ ζ   ) (1 - η2 )      (3.34c) 

N5 =  -
4
1 (1 + ζ  ) (1 + η )(1 -ζ - η ) 

N6 =   
2
1 (1- ζ 2  ) (1 + η ) 

N7 =  -
4
1 (1 - ζ  ) (1 + η )(1 +ζ - η ) 

N8 =   
2
1 (1- ζ   ) (1 - η2 ) 



 

 

 

 

 

 

  (a)             (b)                                                     

 

 

 

Figure 3.3 : Quadratic quadrilateral element with natural coordinate system 

The strain-displacement relationships are: 

{εm}  =  [Bm]{ ia }        (3.35a) 

{εb}  =  [Bb]{ ia }        (3.35b) 

{εs}  =  [Bs]{ ia }        (3.35c) 

where [Bm] is the extensional strain displacement matrix, [Bb] is the flexural strain 

displacement matrix and [Bs] is the shear strain displacement matrix. 
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The non-linear strain can be grouped such as, 
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where matrix {θ} is such as, 
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 = [G] { ia }  (3.37b) 

In variational terms, equation (3.35a-c) and (3.37a), (3.38a) become 

 {δεm}=[Bm]{ δd}     

 {δκ} =[Bb] {δd}     



 {δγ} = [Bs] {δd}]         (3.38)  

 {δεnl} = [AL] [G]{ δd}     

 
Using equation (3.31), resultant vectors {N}, {M} and {Q} can be written as 

 {N} = [A]{εm+εnl}+ [B]{εb} + {Nr} 

     = ([A][Bm]+ 
2
1 [A][∆AL][G] + [B][Bb]){d}+{Nr}           (3.39) 

 {M} = [B]{εm+εnl+εo}+ [D]{εb} + {Mr}  

     = ([B][Bm]+ 
2
1 [A][ AL][G] + [B][Bb]){d}+{Mr}                        (3.40) 

 { }Q = [ ]'A { }γ∆  

    = ([A’][Bs]{d}                      (3.41) 

Specifically for later purpose, we definej 

 {Nm} = [A][Bm]{d}                              (3.42a) 

 {Nb} = [B][Bb]{d}                   (3.42b) 

   

 
3.7 Principle of virtual works 

The Hamilton’s principle is used to formulate the governing equation for linear structural 

behaviours. Hamilton’s principle requires that 

 ∫ =+−
2

1

0))((
t

t

dtWUT δδ         (3.43) 

where T and U are the kinetic and strain energy of an element and W is the external 

work. Inserting the formulations for T, U and W for a plate bending element, 
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where σij and εij  are stress and strain components, σij
0 is initial stress components and us 

refer to displacements u, v and w. 

a. Evaluating the first term of variational statement: 

The inclusion of the non-linear terms into the variational principle for isotropic plates is 

derived in Zienkiewicz & Taylor [30] and simplified here. 

  1Uδ  =   δ
2
1 ∫

V

σij εij dV        (3.45a) 

  = δ
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A
m εεεε +++∫ dA                                    (3.45b) 

From (3.38-41), we have 
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Equation (3.47c) will cause unsymmetric matrix and need to be rearranged. 
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where referring to equation (3.42b), 
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Equation (3.47e) can be arranged such as, 
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L
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Naming the stiffness and forces terms, we have 

from (3.47a), the linear stiffness matrix 
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From (3.47b), the shear stiffness matrix, 
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From (3.47c) and (3.48), the first order nonlinear stiffness matrix, 
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From (3.47d), the second order nonlinear stiffness matrix, 
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From (3.47e) and (3.50), the geometric stiffness matrix due to recovery stress, 
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From (3.47f), the recovery load vector, 
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Combining all terms, the first strain energy term is  
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b. Evaluating the second term of the Hamilton’s principle: 
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        = 
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            + σ zx u,z u,x +  σzx v,z v,x + σzx w,z w,x + σzyu,z u,y + σzyv,z v,y    



                       + σzyw,z w,y + σzzu,z u,z + σzzv,z v,z + σzzw,z w,z    (3.56) 

But the generalized displacement, 

u = uo (x,y) + z θx (x,y)   

v = vo (x,y) + z θy (x,y)   
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+ 2σyz(vo,y- z θy,y + z3 ζy,y) (3z2ζy - θy )      (3.57) 

 

Defining, 
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So we have, 
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This equation can be reduced to the form of  
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1 { d }T [KG] { d }       (3.60a) 

where, 

[KG] = ∫∫ T
sG ][ [τ] [ ]sG dA       (3.60b) 

and through arrangement,  
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and the value of [τ ] is  
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c. Evaluating the third term of the Hamilton’s principle: 

Tδ = dVuu
v

T

∫ ⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧ ••

ρδ
2
1          (3.63) 

    = δ
2
1
∫ ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ••••••

v

dVwwvvuuρ       (3.64) 

But the generalized displacement, 

u = uo (x,y) + z θx (x,y)  f 

v = vo (x,y) + z θy (x,y)         (3.65) 
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where 
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−
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Inserting the statement of shape function in equations (8.34a-c), equation (3.68) can be 

rearranged in the following form. 

Tδ = δ
2
1 {

•
d }T [M] {

•
d }        (3.70) 

where 

 [M] =[N]T[m][N]        (3.71a) 

where [m] is the mass matrix and [N] is the matrix of shape function. 
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and the value of [m ] is  
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d. Evaluating the fourth term of the Hamilton’s principle: 

Assuming three types of loading, 

 Wδ = { } { }dAfa s
A

T∫δ  + { } { }dVfa v
V

T∫δ       (3.72) 

where   { }sF  and { }VF   are surface and body loads.  Using the statement of shape function 

in equations (8.34a-c),    

          Wδ = { } { }dAfNd s
A

TT ∫ ][δ  + { } { }dVfNd v
V

TT ∫ ][δ = { } { }Fd Tδ    

 (3.73) 

So, combining equation (3.52), (3.60a), (3.70) and (3.73) the Hamilton’s principle is 

reduced to  
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With the application of Lagrange’s equation, equation 3.74 can be simplified to the 

sought governing equation:G 
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Equation (3.75) can be reduced to governing equations of several structural problems: 

Linear Stress and Deflection analysis: 

[ ] [ ] [ ]( ){ }dKKK rsL ++  ={F}      (3.76)  

Linear buckling  analysis: 

[ ] [ ] [ ]( ){ }dKKKK GrsL λ+++ ][  = 0     (3.77) 

where λ is the critical load coefficient. 

[ ] [ ] [ ]( ){ }dMKKK rsL
2][ ω+++  = 0     (3.78) 

where ω is the natural frequency of the plates. 

3.6 Closure 

Applying the constitutive relationship equations and implementing the FEM into the 

Hamilton’s principle, we can derive the standard equations for both linear and non-linear 

structural behaviours while converting that equations into Lagrange’s equation. This 

standard equation is then reduced to simple linear structural behaviour equations to be 

analysed in this thesis.  

 
 



 
5.0 BUCKLING AND VIBRATION  ANALYSIS OF SHAPE MEMORY ALLOY 
PLATES 
 
 
5.1 Introduction 

In this chapter, equations (3.77) and (3.78) were solved to study the effects of several 

parameters on the critical loads and free vibrations of SMA composites. The study is 

conducted on anti-symmetric angle ply composites. The effect of several parameters such 

as the geometric, mechanical and transformation effect on the SMA improvements of free 

vibrations and critical loads are studied. Relative critical loads and relative eigen 

frequencies are used to measure how much the effect of SMA in improving the buckling 

loads and free vibration of the SMA composite plates. In the following sections the 

buckling problem is discussed first followed by the results and discussions of the 

vibration problem. 

 
5.2 Buckling of SMA plates 

5.2.1 Convergence Test: 

In this study, the convergence tests are conducted on three SMA composite plates to 

determine the appropriate mesh size for the buckling analysis while at the same time to 

provide the validation to the model developed. Similar to the convergence test for the 

vibration analysis, the SMA wires are not activated for this validation purpose. The 

results are compared to the analytical results that are calculated based on the classical 

lamination theory (CLT) and first order shear deformation theory (FSDT) of plates [23]. 

The results in table 5.1 show a quick convergence that occurs in the finite element 

analysis for all three SMA composites. It was decided in this study to use the 6x6 mesh.  

 



 

Table 5.1 : Convergence test for simply supported anti-symmetric SMA composite plates.  

Lay-ups CLT# 

 
FSDT# 2x2 3x3 4x4 5x5 6x6 7x7 8x8 

[0/(45/-45)2/0] 235.75 233.80 299.64 236.49 234.07 233.78 233.72 233.70 233.69 

[0/(45/-45)4/0] 

[0/(45/-45)6/0] 

264.43 

269.88 

261.98 

267.33 

329.14 

334.72 

264.70 

270.06 

262.29 

267.645 

261.99 

267.34 

261.92 

267.27 

261.88 

267.25 

261.88 

267.24 

 #Reddy, J.N. [23]   

5.2.2 The effect of the thickness of the SMA layer 

The objective here is initially to get a general idea on the required thickness of SMA 

layers with respect to the thickness of plate in order to give a certain impact to the 

buckling load of the SMA composite plate. Later, the effect of the ratios of thickness to 

side length of the plates are also studied. The SMA plates with configuration [0/(45/-

45)5/0] are used in both studies. 

Firstly the thickness of SMA layers are increased while the thickness of other layers stay 

constant. SMA with initial strain, εo =0.001 is used here. At the activation temperature of 

600C, the Brinson’s model will give the recovery stress of 91.6 MPa where full 

martensite transformation has occurred. The studies are conducted on all three types of 

boundary conditions. The plots of relative critical loads vs ratios of thickness of SMA 

layers to thickness of other layers  (ts/t) correspond to the three boundary conditions are 

shown in figure 5.1. 
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Figure 5.1: The effect of thickness of SMA layers on the relative critical loads 

 
It shows in figure 5.1 that as the thickness of SMA layers is increased, the relative critical 

load will increase too for the all six cases. In easier words, the effect of SMA on the 

critical loads is increased with the increase of ts/t. In the case of SS boundary condition, 

the increase of the critical load in the ASET improvement can be up to 1.7 times at SMA 

layer thickness equal to one fourth of the thickness of other layers. The increase of 

relative critical loads can be understood by the fact that as the ts/t is increased, the volume 

fraction of the SMA is increased too. As a result the effect of the SMA in increasing the 

buckling load can be felt more. Figure 5.1 also shows that the effect of SMA is much 

more significant in the SS boundary condition. The SC and CC boundary conditions 

provides almost the same responses for ASET improvement. In any boundary conditions 

however, improvements made through ASET are always greater than the improvements 

made through APT. This is because in ASET the effect of recovery stress is considered 



along with the effect of the increase in Young’s modulus while in APT only the effect of 

the increase in Young’s modulus is considered. 
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Figure 5.2: The effect of thickness of SMA layers on the critical loads for different fibres 
 
The study was also conducted on different types of composite fibres to see the effect of 

different Young’s modulus on the relative critical loads. Figure 5.2 shows that boron 

fibres provide the highest critical loads for SMA plates. The reason is obvious since the 

Young’s modulus of boron is the highest among the Young’s modulus of others in the 

group. In figure 5.3 however it can be seen that the effect of SMA is most significant if 

we use the glass fibres rather than other fibres. This can be easily understood as the ratio 

of Young’s modulus of the glass fibre to the Young’s modulus of Nitinol SMA is the 

lowest among ratios that involve other fibres. Furthermore as the ratio of ts/t is increased, 

the effect of SMA on critical loads of glass fibre plates becomes greater compares to the 

effect of SMA on other fibre plates. 

Next a study was conducted to see the effect of thickness to length ratio (TLR) on the 

APT and ASET improvements of the critical loads of SMA plates. Here, the thickness of 



each SMA layer is set to remain constant at 0.6 mm while the thickness of other layers 

are varied according to the assigned values of TLR. The configuration of [0/(45/-45)5/0] 

is retained while SMA with initial strain, εo =0.001 that gives recovery stress of 91.6 

MPa is also used. 
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Figure 5.3 : The effect of thickness of SMA layers on the relative critical loads for different 

composite fibres 

 
This study shows that the effect of SMA on the critical loads is decreased as the TLR is 

increased such as shown in Figure 5.4. This is due to the fact that as the thickness of the 

glass-epoxy layers is increased, the volume fraction of the SMA will be decreased. At 

high volume fractions of SMA, the increase in critical load after SMA activation is high. 

It should also be mentioned that while the relative critical loads are decreased with the 

increase of TLR, the critical loads are actually increased. The reason here is that the 

Young’s modulus of glass is higher than the Young’s modulus of the SMA and as the 



volume fraction of the glass is increased, the critical loads are still increased regardless to 

the effect of the SMA. 
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 Figure 5.4: The effect of thickness to length ratio on the relative critical loads. 

Figure 5.4 again shows that the effect of SMA is more significant for SS boundary 

condition while the CC and SC boundary conditions give almost the same responses for 

ASET improvement. 

5.2.3 The effect of the volume fraction of Nitinol 

The effect of volume fraction of SMA wires on the critical loads of the SMA composite 

plates can be studied by varying the volume fractions of the nitinol wires in the N-E 

layers while the volume fractions of glass fibres in the G-E layers are kept constant. Just 

like in the previous studies, SMA with initial strain of 0.005 m/m that gives recovery 

stress of  170.2 MPa at the activation temperature of 600C is used. The thickness of a N-E 

layer is 0.6 mm. The results of the effect of the volume fraction of the SMA on the 

relative critical loads can be seen in Figure 5.5.  
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Figure 5.5: The effect of volume fraction of Nitinol fibres on critical loads 

It shows that as the volume fraction of the SMA increases, the effect of SMA on the APT 

and ASET improvements increases too. This can be seen in the increase of the relative 

critical loads in the all six cases. As in the previous study, it should be mentioned that the 

actual critical loads are increased with the increase of the volume fraction of the SMA 

since the effective Young’s modulus of the SMA plates will be increased too. Notice also 

that the improvement made by APT is very small compare to the improvement made by 

ASET. Furthermore, the effect of boundary condition is similar to the one shown in 

previous studies where the effect is more significant in the SS boundary condition as 

compared to the other two boundary conditions.  

5.2.4 The effect of the number of layers 

In this study, SMA layers remain the outermost layers with a constant thickness of 0.6 

mm per layer. However the number of inner G-E layers is varied for the same total 

thickness of 8 mm. This means that n in the configuration [0/(45/-45)n/0] is set to vary 

from 1 to 9 for the same amount of thickness. The objective here is to see the effect of 



bending-extension coupling stiffness that presents in the anti-symmetric composites on 

the APT and ASET improvements of the SMA composites.  
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Figure 5.6: The effect of number of layers on critical loads of SS SMA composite plates 

It is well known that this coupling stiffness reduces buckling loads of anti-symmetric 

composite plates and this coupling stiffness will reduce to zero with the increase in the 

number of layers [23]. Figures 5.6 and 5.7 show how the actual critical loads and the 

relative critical loads, respectively vary with the change in the number of layers. It can be 

seen in figure 5.6 that critical loads are increased with the increase of the number of 

layers for SS plates before SMA activation and after activation corresponds to APT and 

ASET improvements. It shows that with higher bending-stretching coupling stiffness 

values, plates with lower number of layers have lower critical loads. The values of this 

coupling stiffness is reduced to almost zero when the number of layers is about 8. As 

such the critical loads correspond to number of layers greater than 8 remains almost 

constant. 



 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 5 10 15 20 25

No. of Layers

R
el

at
iv

e 
C

rit
ic

al
 L

oa
ds

SS-APT 

SS-ASET 

SC-APT

SC-ASET

CC-APT

CC-ASET

  
Figure 5.7: The effect of number of layers on relative critical loads of SMA composite plates 

Figure 5.7 shows that the effect of SMA is reduced with the increase of the number of 

layers. It shows that the present of coupling stiffness is in fact enhances the effect of 

SMA in improving the critical loads. As in figure 5.6, the effect of coupling is reduced to 

almost zero when the number of layers is about 8. It can also be seen that the effect of 

boundary condition remains consistent where SS boundary condition gives the highest 

effect on the relative critical loads while the SS and CC boundary conditions show almost 

the same responses in the ASET improvement cases. 

5.2.5 The transformation effect 

In this section, the martensite transformation behaviour of SMA is studied through its 

effect on the critical loads of the SMA plates. The transformation effects to be considered 

here are the activation temperature and the amount of initial strain. To study the effect of 

activation temperatures on the APT and ASET improvements of SMA composites, the 

Brinson’s model is used to determine the recovery stresses and the corresponding 

Young’s modulus of SMA at several temperatures during the transformation process. 



Data in table 5.2 shows the amount of recovery stress, σ1
r, SIM volume fraction, ξs and 

Young’s modulus, Es at several activation temperatures, Tact for SMA with initial strain, 

εo =0.001. Full stress recovery is assumed here. These data shows, while the activation 

temperature is increased as the martensite transformation is progressing, the Young’s 

modulus and the corresponding recovery stress are increased too. Recall from table 2.3,  

the austenite start temperature, As and the austenite finish temperature, Af are 37.20C and 

47.00C respectively. However, with the effect of stress, the actual austenite start 

temperature, Asm and the austenite finish temperature, Afm become 38.20C and 58.20C 

respectively [17]. Figure 5.8 shows the effect of increasing activation temperatures on the 

APT and ASET improvements of critical loads for the three cases of boundary 

conditions. 

Table 5.2: The restrained recovery stress results based on Brinson’s model at  εo =0.001 

Tact (0C) σ1
r (MPa) ξs Es (GPa) 

20 0 0.01724 33 
30 5.5 0.01724 33 
40 12.92 0.01628 35.05 
50 61.23 0.00441 60.23 
60 91.6 0 69.6 
70 97.1 0 69.6 

 
It can be seen from figure 5.8 that as the temperatures are increased, the relative critical 

loads are increased for all APT and ASET cases where the effect of SMA is greater 

between temperature of 400C and 600C. These are the range of temperatures where stress 

is mostly recovered and Young’s modulus is increased quickly as the martensite 

transformation takes place within this range. Notice the small effect of SMA can be seen 

even before the transformation starts due to the temperature effect that results in the 

presence of stress. 
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 Figure 5.8 : The effect of activation temperatures on relative critical loads  

Figure 5.8 also shows that the effect of SMA in ASET improvement is more significant 

for SS boundary condition  while the effect of SMA in ASET improvement for SC and 

CC boundary conditions shows almost similar responses just as in the previous studies. 

In studying the effect of initial strains on the APT and ASET improvements of SMA 

composites, the Brinson’s model is used to determine the recovery stresses and the 

corresponding Young’s modulus of the SMA for several values of initial strains at a fixed 

temperature of 550C. Data in table 5.3 shows the amount of recovery stress, σ1
r, SIM 

volume fraction, ξs and Young’s modulus, Es for several initial strains, e0 for SMA at Tact 

= 550C. It can be seen from table 4 that the increase in initial strain will result in the 

increase in recovery stress and the decreased in the Young’s modulus. This is due to the 

fact that a higher initial strain value require a higher temperature for the transformation to 

complete. As a result at a fixed temperature of 550C, the transformation that occur is less 

complete as the initial strain is increased. This behaviour patterns can be seen in figure 

5.9 that shows the effect of initial strains to the relative critical loads. 

 



Table 5.3 : The restrained recovery stress results based on Brinson’s model at  Tact = 550C 

e0 (0C) σ1
r (MPa) Es (GPa) 

0.001 86.49 68.82 
0.003 118.84 55.10 
0.005 128.53 49.28 
0.008 135.95 44.93 
0.01 139.08 43.20 

 
In figure 5.9, the reduction of Young’s modulus is obvious when the effect of SMA in 

APT improvement can be seen to be declining as the initial strain is increased. However 

since the recovery stress is increased, the effect of SMA in the ASET improvement can 

be seen to increased as the initial strain is increased. Typically, the effect of SMA is at 

the greatest in the case of SS boundary condition. 
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Figure 5.9 : The effect of initial strains on relative critical loads  

5.2.6 The effect of SMA fibres orientation angles 

The effect of SMA orientation angles on the improvement of critical loads can be studied 

by changing the angle of orientations of the SMA fibres. It is interesting to compare the 

effect of the orientation angles of the SMA fibres between the cases of anti-symmetric 

and symmetric composites. As such the configurations of [0/(θ/-θ)4/0] and [0/(θ/-θ)2]s 



correspond to anti-symmetric and symmetric composites are used here. Both composites 

have the same number of layers. The angle of θ varies from 00 to 900.  
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Figure 5.10: The effect of orientation angles on the relative critical loads for APT 
improvement. 
 
SMA with initial strain of 0.005 m/m are used in this study. At the activation temperature 

of 600C, the Brinson’s model will give in the SMA recovery stress of 170.2 MPa while 

the Young’s modulus is 53.58  GPa. Figure 5.10 and 5.11 show the change of relative 

critical loads as the orientation angles of the SMA fibres are varied for APT and ASET 

improvements respectively. 

It can be seen in figure 5.10 that the relative critical loads are maximum at 450C for both 

symmetric and anti-symmetric composites. Notice the difference between the two curves 

at temperatures between 0 and 15 degree and 75 and 90 degrees. Furthermore the 

maximum relative critical load for anti-symmetric composite is higher than the maximum 

relative critical load for symmetric composite.   
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Figure 5.11: The effect of orientation angle on the relative critical loads for ASET 
improvement. 
 

The effect of orientation angles is strongly influenced by the change of Young’s modulus 

and the presence of recovery stress. In the case of APT improvement, only the change in 

the Young’s modulus is considered. With the existence of recovery stress in ASET 

improvement, the trend for the effect of orientation angle has reversed to curves with 

minimum values such as shown in figure 5.11. Now the minimum relative critical load 

value for the symmetric composite is lower than that of the anti-symmetric composite. 

The switch from concave up curve to concave down curve as the recovery stress effect is 

added can be explained in the following study. Assuming at a fully transformed state 

(austenite, E=69.9 GPa), for different values of initial strains, we can have a set of 

corresponding values of recovery stresses.  
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Figure 5.12: The effect of orientation angle on the relative critical loads for different values 
of recovery stress in the ASET improvement of symmetric composites. 
 

Figure 5.12 shows that as the recovery stress effect is increased to the symmetric SMA 

composite, the relative critical loads vs orientation angle curve changes from having a 

maximum value to having a minimum value quite early i.e. only after the recovery stress 

is about the value of 75 MPa. In contrast, the anti-symmetric SMA composite requires a 

higher value of recovery stress of 125 MPa for the relative critical loads vs orientation 

angle curve to change from having a maximum value to having a minimum value such as 

shown in figure 5.13. 

In the case of APT improvement, the curves will remain in having a maximum value for 

the increase of the Young’s modulus. This can be seen in the following study on SMA 

composites with a pre-strained SMA of ε0=0.005 m/m. Obtaining through the Brinson’s 

model, table 5.4 shows the results of the martensite transformation process in the 

restrained recovery process of SMA composites. 
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Figure 5.13: The effect of orientation angle on the relative critical loads for different values 
of recovery stress in the ASET improvement of anti-symmetric composite. 
 

Table 5.4: The restrained recovery stress results based on Brinson’s model at  εo =0.005 

Tact (0C) σ1
r (MPa) ξs E (GPa) 

30 5.5 0.0862 33 

40 16.40 0.0834 34.20 

50 87.82 0.0586 44.72 

60 170.23 0.0382 53.38 

70 254.67 0.0214 60.52 

80 337.79 0.0072 66.57 

90 386.5 0 69.6 

 
With these data, the critical loads are determined in the APT improvement method for the 

symmetric composites. Figure 5.14 shows that the relative critical loads vs orientation 

angle curves remain to have a maximum value for the whole range of temperatures. 
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Figure 5.14: The effect of orientation angle on the relative critical loads for different values 
of temperature in the APT improvement. 
 
As a conclusion to this section , the curves of relative critical loads vs orientation angles 

for APT improvement remain to have a maximum value at 450 even for an increase 

values of Young’s Modulus. However  the curves of relative critical loads vs orientation 

angles for ASET improvement change from having a maximum value to having a 

minimum value at the same 450 as the recovery stress is increased.  

5.2.7 The effect of the locations of the SMA layers 

In this study, two SMA layers are located  symmetrically with respect to mid- surface of 

the SMA composite as in previous studies. However the distance between the two SMA 

layers is now varied to see its effect on the critical loads of the SMA composite plates. 

Here the fully recovered SMA with initial strain of 0.001 m/m that gives recovery stress 

of 91.6 MPa and Young’s modulus of 69.6 GPa is used. The thickness of the SMA layers 

remain 0.6mm each. 



Figure 5.15 shows that in cases of no activation of SMA wires (NA), APT and ASET 

improvements, as the distance between SMA layers are increased, the actual critical loads 

are decreased.  
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Figure 5.15: The effect of the distance between SMA layers on critical loads 
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Figure 5.16: The effect of the distance between SMA layers on relative critical loads  
 
On the other hand, the effect of SMA on critical loads of the SMA composites is 

increased with the increase of the distance between SMA layers. This can be seen from 



the increase of the relative critical loads in figure 5.16 for the cases of APT and ASET 

improvements.  

 
5.2.8 Conclusion to the buckling analysis 

A simple linear finite element model for SMA composite plates was developed to study 

the effect of SMA on critical loads of composite plates. The effect of recovery stress in 

this model is represented by the additional geometric stiffness matrix. The values of SMA 

Young’s modulus and recovery stress were pre-determined from the Brinson’s model 

through either constrained or controlled recovery assumptions. Studies were conducted to 

see the effect of  geometric, mechanical and transformation factors on the APT and 

ASET improvements of critical loads of SMA composite plates. It can be concluded that 

1. The effect of SMA on the critical loads is increased with the increase of the ratio of 

SMA thickness to thickness of other layers. In the case of simply supported boundary 

condition, the increase of the critical load can be up to 1.7 times at SMA thickness 

equal to one fourth of the total thickness of other layers. Thus in terms of the required 

thickness of SMA layers to give an impact on the critical loads of composite plates, 

the ASET improvement of the critical loads of SMA plates can be considered as a 

good method.  

2. Even though Boron fibre gives the highest critical loads of the SMA composite plates, 

it is the glass fibre that responses the greatest to the effect of SMA on the critical 

loads of the composite plates. This is because the ratio of the Young’s modulus of the 

glass fibre to the Young’s modulus of nitinol is the lowest of all ratios that involve 

other fibres.  



3. The increase in the thickness to length ratio of the G-E layers will result in the 

decrease of the effect of SMA on the critical loads of the SMA plates. This is due to 

the increase of the volume fraction of the glass fibre as the thickness to length ratio is 

increased. Even though the relative critical loads are decreased, the actual critical 

loads are increased since the volume fraction of the glass fibres is increased. 

4. The effect of the volume fraction of the nitinol in the SMA layers is quite significant 

where at the SMA volume fraction of 0.5,  the relative critical load is about 1.5.  

5. The presence of coupling stiffness of the composite enhances the effect of SMA even 

though it lowers the critical loads of the SMA plates. This can be concluded when the 

relative critical loads are decreased when the number of layers of the SMA plates is 

increased while in reverse, the critical loads are increased as the number of layer is 

increased. 

6. In general as the activation temperature is increased, the effect of SMA on buckling 

loads is increased too since the Young’s modulus of the SMA and the recovery stress 

are increased. However the effect of SMA can be seen to increase greatly between 

certain SMA activation temperatures where martensite transformation  occurs greatly.  

7. The increase of initial strains of the SMA at a fixed value of an activation temperature 

will cause the increase in the recovery stress and the decrease in the Young’s 

modulus. As a result, the relative critical loads for APT improvement are seen to be 

decreasing as the initial strains are increased while the relative critical loads for 

ASET improvement are increased as the initial strains are increased. 

8. The effect of orientation angle is strongly influenced by the change of Young’s 

modulus and the presence of recovery stress. In APT improvement, the relative 



critical loads are maximum at the angle orientation of 450 for both symmetric and 

anti-symmetric composites. With the addition of the recovery stress effect in ASET 

improvement, the relative critical loads vs orientation angle curve changes from 

having a maximum value to having a minimum values as the recovery stress is 

increased. The change occurs earlier at 75MPa for symmetric composite while for 

anti-symmetric composite the change occurs at a higher value of 125 MPa. 

9. The change in the distance between the two SMA layers affects the critical loads and 

the relative critical loads. While the critical loads are decreased as the distance is 

increased, the relative critical loads are increased. 

10. In all cases, the SMA effect in ASET improvement is much more significant than the 

SMA effect in the APT improvement. 

11. The simply supported boundary condition provide the much more significant effect of 

the SMA on the critical loads as compared to the effects provided by the other two 

boundary conditions.  

The simple finite element model was able to show the influence of SMA in the buckling 

improvement of laminated SMA plates.  

5.3 Vibration of SMA plates 

5.3.1 Convergence Test: 

In this study, the convergence tests are conducted on a SMA composite plate to 

determine the appropriate mesh size for the free vibration analysis. It is also to provide 

the validation to the finite element model developed. The eigen frequencies of up to sixth 

mode are determined. The SMA wires are not activated for this purpose of validation. 

The results are compared to the analytical results that are calculated based on the classical 



lamination theory (CLT) and first order shear deformation theory (FSDT) of plates [23]. 

The results in table 5.5 show quite a slow convergence that occurs in the free vibration 

finite element analysis for higher modes of vibrations. It was decided in this study to used 

the 8x8 mesh.  

Table 5.5: Convergence test for anti-symmetric angle-ply composite plates ([0/(45/-45)4/0]). 
  

Modes CLT# FSDT# 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

I 135.99 135.35 153.0 136.2 135.5 135.4 135.37 135.36 135.36 135.36 135.36 

II 309.38 306.24 596.8 324.7 309.6 307.4 306.75 306.5 306.39 306.35 306.3 

III 320.15 316.79 596.8 335.3 320.3 318.0 317.33 317.08 316.95 316.9 316.86 

IV 543.55 533.7 1089 671.2 558 538.8 535.38 534.45 534.09 533.92 533.84 

V 571.79 561.8 1838.4 688.1 590.5 572.5 566.89 564.55 563.42 563.02 562.47 

VI 602.56 591.42 4315.9 701.6 621.5 602.9 596.9 594.39 593.19 592.72 592.15 
#Reddy, J.N. [23] 

 
5.3.2 The effect of the thickness of the SMA layer 

Similar to the buckling analysis, the objective here is initially to get a general idea on the 

required thickness of SMA layers with respect to the thickness of plate in order to give a 

certain impact to the eigen frequencies of the SMA composite plate. So the study on the 

effect of the ratio of SMA layer thickness to thickness of other layers (ts/t) is first 

conducted. The effect of the ratios of thickness to side length ratio (TLR) of the plates are 

studied later. The same SMA plates with configuration [0/(45/-45)5/0] and SMA wires 

with initial strain, εo =0.001 are used here where at the activation temperature of 600C, 

the Brinson’s model will give the recovery stress of 91.6 MPa. Figures 5.17 and 5.18 

shows the effect of thickness on the APT and ASET improvements respectively of the 

relative eigen frequencies of the SS SMA composite plates. 
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Figure 5.17: The effect of thickness of SMA layers on the APT improvement of relative 
eigen frequencies of SS SMA composite plates 
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Figure 5.18: The effect of thickness of SMA layers on the ASET improvement of relative 
eigen frequencies of SS SMA composite plates 
 
The plots show that the responses of the relative eigen frequencies to the thickness of 

SMA layers are varies among different modes for both APT and ASET cases. In general, 

the responses are greater for frequencies of modes 1 and IV and modes III and VI. The 

frequencies of modes II and V seem to show little response on the   increase in thickness 

of the SMA layers. For example, the increase of the eigen frequencies for mode III and 



VI can be up to 1.25 times at SMA layer thickness equal to one fifth of the thickness of 

other layers. 
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Figure 5.19: The effect of thickness of SMA layers and boundary conditions on the APT and 
ASET improvements of relative eigen frequencies mode I of angle-ply composite plates  
 
Figure 5.19 shows the effect of thickness of SMA layers on the APT and ASET 

improvements of relative eigen frequencies mode I of SMA composite plates with 

different boundary conditions. It shows that the effect of SMA on eigen frequencies is at 

the greatest for the SS boundary condition and at the smallest for CC boundary condition. 

Furthermore, for all three boundary conditions, the ASET improvements are greater than 

the APT improvements as expected. 

Figures 5.20 and 5.21 show the effect of thickness of SMA layers on APT and ASET 

improvement, respectively, of eigen frequencies mode I and II of simply supported SMA 

composite plates with different composite fibres. Four types of fibres are used: glass, 

kevlar, graphite and boron. 
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Figure 5.20: The effect of thickness of SMA layers on the APT improvement of eigen 
frequencies mode I and II of SS SMA composite plates with different composite fibres 
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Figure 5.21: The effect of thickness of SMA layers on the APT improvement of eigen 
frequencies mode I and II of simply supported SMA plates with different composite fibres 
 
These plots show that the effect of SMA is most significant if we use the glass fibre 

rather than other fibres. As in the buckling analysis, this can be easily understood as the 

ratio of Young’s modulus of the glass fibre to the Young’s modulus of Nitinol SMA is 

the lowest among ratios that involve other fibres. Furthermore as the ratio of ts/t is 

increased, the effect of SMA on critical loads of glass fibre plates becomes greater 



compares to the effect of SMA on other fibre plates. Both figures 5.20 and 5.21 also 

show that the effect of SMA is significant in the eigen frequency mode I while the effect 

is small in the eigen frequency mode II. 

To study the effect of TLR on the APT and ASET improvements of the eigen 

frequencies, the specifications of the SMA plates that were used in the study of the same 

effect on buckling analysis are retained here. This means that the SMA plate 

configuration of [0/(45/-45)5/0] and SMA with initial strain, εo = 0.001 that gives the 

recovery stress of 91.6 MPa are used. The thickness of each SMA layer is set to remain at 

0.6 mm while the thickness of other layers are varied according to the values of TLR. 

Figure 5.22 to 5.25 give the results of the effect of the TLR on the APT and ASET 

improvements of eigen frequencies correspond to SS, SC and CC boundary conditions. 

From the plots, it can be stated that in general as the TLR are increased, relative eigen 

frequencies are decreased at the same time. This can be easily understood by the fact that 

as the thickness of the plate increases, the volume fraction of the SMA will be decreased 

so that the effect of SMA is decreased too.  

There are several trends that can be observed in these results. Firstly the effect of SMA 

seems to be of a similar level for certain modes of frequencies. For example, typical 

couples with similar level of responses are frequencies of modes I and IV, II and V and 

III and VI. Frequency couples of modes I and IV and III and VI seem to have greater 

responses as compared to the couple of mode II and V. The couple of modes I and IV 

seems to have almost exact responses between them in the case of APT improvement of 

SS SMA composite plates. 
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Figure 5.22: The effect of thickness to length ratio on the APT improvement of relative 
eigen frequencies of SS SMA composite plates 
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Figure 5.23: The effect of thickness to length ratio on the ASET improvement of relative 
eigen frequencies of SS SMA composite plates. 
 
Furthermore, the effect of SMA as stated previously is the greatest for the case of SS boundary 

condition and the smallest for the case of CC boundary conditions. For example, the relative 

eigen frequency of mode I is close to 1.6 for SS boundary condition, 1.45 for SC boundary 

condition and only 1.35 for CC boundary condition. 
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Figure 5.24: The effect of thickness to length ratio on the APT and ASET improvement of 
relative eigen frequencies of SC SMA composite plates . 
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Figure 5.25: The effect of thickness to length ratio on the APT and ASET improvement of 
relative eigen frequencies of CC SMA composite plates . 
 
Thirdly, as expected the effect of TLR on the ASET improvement is in general always greater 

than the effect of TLR on APT improvement. This is due to the consideration of both the change 

in Young’s modulus and the recovery stress that we made in the ASET study while only the 

increase in the Young’s modulus is considered in the APT study. 



5.3.3 The effect of the volume fraction of Nitinol 

The effect of the volume fraction of SMA wires on the eigen frequencies of the SMA 

composite plates can be studied by varying the volume fraction of the nitinol wires in the 

N-E layers while the volume fraction of glass fibres in the G-E layers is kept constant. 

Just like in the buckling study, SMA with initial strain of 0.005 m/m that gives recovery 

stress of  170.2 MPa at the activation temperature of 600C is used. The thickness of a N-E 

layer is 0.6 mm. The results of the effect of the volume fraction of the SMA on the APT 

and ASET improvements of eigen frequencies can be seen in Figure 5.26 to 5.29 for the 

three boundary conditions.  

 

1

1.04

1.08

1.12

1.16

1.2

0 0.2 0.4 0.6 0.8

Volume Fraction of SMA

R
el

at
iv

e 
Ei

ge
n 

Fr
eq

ue
nc

ie
s

I

II

III

IV

V

VI

  
Figure 5.26: The effect of volume fraction of Nitinol fibres on APT improvement of eigen 
frequencies of SS SMA composite plates 
 
From these plots, it can be stated that the effect of volume fraction of SMA wires on the 

relative eigen frequencies of the SMA plates is in reverse to the effect of TLR on the 

relative eigen frequencies. It shows that as the volume fraction of the SMA increases, the 

effect of SMA on the APT and ASET improvements increases too.  
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Figure 5.27: The effect of volume fraction of Nitinol fibres on ASET improvement of eigen 
frequencies of SS SMA plates 
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Figure 5.28: The effect of volume fractions of Nitinol fibres on APT and ASET 
improvements of eigen frequencies of SC SMA composite plates 
 
The trends that were observed in the previous study can be seen here. For example, 

typical couples with similar level of responses such as frequencies of modes I and IV, II 

and IV and III and VI can again be observed here. As expected, frequency couples of 

modes I and IV and II and IV seem to have greater responses as compared to the couple 



of mode II and IV. The couple of I and IV in the case APT improvement of SS SMA 

plates gives the almost exact response between the two. Furthermore the effect of SMA 

seems to be greater in the case of SS boundary condition.  
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Figure 5.29: The effect of volume fractions of Nitinol fibres on APT and ASET 
improvements of eigen frequencies of CC SMA plates 
 
Figure 5.29 shows that for CC boundary condition, at lower relative eigen frequencies 

values as a whole as compared to the SS and SC boundary conditions, mode II seems to 

be more dominant. 

5.4.4 The effect of the number of layers 

In this study, as in the buckling analysis, the n in the configuration [0/(45/-45)n/0] is set to 

vary from 1 to 9 for the same amount of 8mm thickness while the thickness of a SMA 

layer is set to 0.6mm. This is in order to see the effect of bending-extension coupling 

stiffness that presents in the anti-symmetric composites on the APT and ASET 

improvements of the SMA composites. Figures 5.31 and 5.31 show the effects of the 

number of layers on the APT and ASET improvements respectively on the relative eigen 



frequencies of  the SMA composite plates. Only the SS boundary condition is 

implemented in this study. 

 

1

1.05

1.1

1.15

1.2

0 5 10 15 20

No of Layers

R
el

at
iv

e 
Ei

ge
n 

Fr
eq

ue
nc

ie
s

I

II

III

IV

V

VI

 
Figure 5.30: The effect of number of layers on APT improvement of relative eigen 
frequencies of SS SMA composite plates. 

 

1

1.05

1.1

1.15

1.2

1.25

1.3

0 5 10 15 20

No of Layers

R
el

at
iv

e 
Ei

ge
n 

Fr
eq

ue
nc

ie
s

I

II

III

IV

V

VI

 
Figure 5.31: The effect of number of layers on ASET improvement of relative eigen 
frequencies of SS SMA composite plates. 
 
Similar to the effect of the number of layers on critical loads, the existence of bending-

stretching coupling increases the effect of SMA on the eigen frequencies of the SMA 

composite plates. This can be observed in figures 5.30 and 5.31 that as the number of 

layers is increased i.e. as the bending-stiffness coupling is reduced, the relative eigen 



frequencies are reduced too. As in the analysis of buckling, the effect of coupling is 

reduced to almost zero when the number of layers is about 8. The typical trend of couples 

of modes of frequencies with similar level of response remain consistent here for the SS 

boundary condition.  It shows that frequency couples of modes I and IV and II and IV 

seem to have greater responses as compared to the couple of mode II and IV. 

Furthermore the couple of modes 1 and IV shows almost the exact response in the case of 

APT improvement. 

5.2.5 The transformation effect 

In this section, the martensite transformation behaviour of SMA is studied through its 

effect on the eigen frequencies of the SMA plates. The transformation effects to be 

considered here are the activation temperature and the amount of initial strain. As in the 

buckling analysis, data in table 5.2 that shows the amount of recovery stress, σ1
r, SIM 

volume fraction, ξs and Young’s modulus, Es at several activation temperatures, Tact for 

SMA with initial strain, εo =0.001 is used here. Figure 5.32 to 5.37 shows the effect of 

increasing activation temperatures on the APT and ASET improvements of eigen 

frequencies for the three cases of boundary conditions. 

It can be seen from figures 5.32 to 5.37 that as the temperatures are increased, the relative 

eigen frequencies are increased for all APT and ASET cases where the effect of SMA is 

greater between temperature of 400C and 600C. These are the range of temperatures 

where stress is mostly recovered and Young’s modulus is increased quickly as the 

martensite transformation takes place within this range. Notice also as in the buckling 

analysis, the small effect of SMA can be seen even before the transformation starts due to 

the temperature effect that results in the presence of stress. 
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Figure 5.32 : The effect of activation temperatures on APT improvement of relative  eigen 
frequencies for SS SMA composite plates  
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Figure 5.33 : The effect of activation temperatures on ASET improvement of relative  eigen 
frequencies for SS SMA composite plates  
 

The typical trend of responses mentioned previously can be observed again here. That is, firstly 

there exists couples of modes of frequencies with similar level of response. Secondly 

couples of I and IV and III and VI have greater responses than the couple of modes II and 

V except for the CC boundary condition where the response of the couple of mode II and 

V seems to be dominant. 



 

1

1.04

1.08

1.12

1.16

20 30 40 50 60 70

Temperature(oC)

R
el

at
iv

e 
Ei

ge
n 

Fr
eq

ue
nc

ie
s

I

II

III

IV

V

VI

 
Figure 5.34 : The effect of activation temperatures on APT improvement of relative  eigen 
frequencies for SC SMA composite plates  
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Figure 5.35 : The effect of activation temperatures on ASET improvement of relative  eigen 
frequencies for SC SMA composite plates  
 
 
Furthermore Figure 5.32 to 5.37 also shows that the effect of SMA in ASET 

improvement is more significant for SS boundary condition  while the effect of SMA in 

ASET improvement for SC and CC boundary conditions shows almost similar responses 

just as in the previous studies. 
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Figure 5.36 : The effect of activation temperatures on APT improvement of relative  eigen 
frequencies for CC SMA composite plates  
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Figure 5.37 : The effect of activation temperatures on ASET improvement of relative  eigen 
frequencies for CC SMA composite plates  
 
In studying the effect of initial strains on the APT and ASET improvements of SMA 

composites, as in the buckling studies, data in table 5.3 shows the amount of recovery 

stress, σ1
r, SIM volume fraction, ξs and Young’s modulus, Es for several initial strains, e0 

for SMA at Tact = 550C. As a reminder, it can be seen from table 5.3 that the increase in 

initial strain will result in the increase in recovery stress and the decreased in the Young’s 



modulus. This is due to the fact that a higher initial strain value requires a higher 

temperature for the transformation to complete. As a result at the fixed temperature of 

550C, the transformations that occur are actually less complete as the initial strains are 

increased. This behaviour pattern can be seen in figure 5.38 to 5.43 that show the effect 

of initial strains to the relative eigen frequencies. 

In figure 5.38 the reduction of Young’s modulus is obvious when the effect of SMA in 

APT improvements can be seen to be declining as the initial strain is increased in the case 

of SS SMA composite plates. The same thing can be said to figures 5.40 and 5.42,  for 

the case of SC and CC SMA composite plates, respectively.  
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Figure 5.38 : The effect of initial strains of the SMA wires on the APT improvement of 
relative eigen frequencies for SS SMA composite plates  
 
However since the recovery stress is increased as the initial strain is increased and with 

the decrease in the Young’s modulus at the same time, the effect of SMA in the ASET 

improvement can be seen to either increase or decrease as the initial strain is increased. 

This fact can be seen in figure 5.39, 5.41 and 5.43 for the cases of SS, SC and CC 

boundary conditions respectively. In most cases the mode I is increased while mode III 



and IV are decreased as the initial strain is increased. Other modes seem to have little 

effect. 
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Figure 5.39 : The effect of initial strains of the SMA wires on the ASET improvement of 
relative eigen frequencies for SS SMA composite plates 
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Figure 5.40 : The effect of initial strains of the SMA wires on the APT improvement of 
relative eigen frequencies for SC SMA composite plates  
 
Typically, the effect of SMA is at the greatest in the case of SS boundary condition where 

for ASET improvement of mode I, the relative eigen frequencies can be up to 1.25 as 

compare to only 1.2 and 1.15 for the case of SC and CC boundary conditions 

respectively. 
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Figure 5.41 : The effect of initial strains of the SMA wires on the ASET improvement of 
relative eigen frequencies for SC SMA composite plates  
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Figure 5.42 : The effect of initial strains of the SMA wires on the APT improvement of 
relative eigen frequencies for CC SMA composite plates  
 
Figure 5.43 shows that as in the previous study the more dominant effect of SMA on the 

relative eigen frequencies of mode II and IV. 



 

1

1.03

1.06

1.09

1.12

1.15

1.18

0 0.003 0.006 0.009 0.012

Initial Strains (m/m)

R
el

at
iv

e 
Ei

ge
n 

Fr
eq

ue
nc

ie
s

I

II

III

IV

V

VI

 
Figure 5.43 : The effect of initial strains of the SMA wires on the ASET improvement of 
relative eigen frequencies for CC SMA composite plates  
 
5.3.6 The effect of SMA fibres orientation angles 

As in the case of buckling analysis, the effect of SMA orientation angles on the 

improvement of relative eigen frequency can be studied by changing the angle of 

orientations of the SMA fibres. Here the effects of the orientation angles of the SMA 

fibres in the cases of anti-symmetric and symmetric composites are also studied. Again 

the configurations of [0/(θ/-θ)4/0] and [0/(θ/-θ)2]s correspond to anti-symmetric and 

symmetric composites are used here. Both composites have the same number of layers. 

The angle of θ varies from 00 to 900 and only SS boundary condition is applied here. 

The effect of orientation angle is strongly influenced by the change in Young’s modulus 

and the presence of recovery stress. For APT improvement where only the effect of 

Young’s modulus takes place, figure 5.44 shows that the mode I relative eigen 

frequencies are maximum at 450 for both symmetric and antisymmetric composite. 

Notice the difference between the two curves at temperatures between 0 and 15 degrees 

and 75 and 90 degrees. Furthermore the maximum relative eigen frequency for 



antisymmetric composite is higher than the maximum relative eigen frequency for 

symmetric composite. Figure 5.45 and 5.46 show the effect of the angle orientation of the 

SMA wires to the first sixth relative eigen frequency modes for  antisymmetric and 

symmetric composite respectively, in the case of APT improvement. 
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Figure 5.44: The effect of orientation angle on the APT improvement  of mode I relative 
eigen frequencies for SS SMA composite plates. 
 
With the existence of recovery stress in the ASET improvement, the trend for the effect 

of orientation angle has reversed to curves with minimum values such as shown in figure 

5.47. Now the minimum eigen frequency value for the symmetric composite is lower 

than that of the antisymmetric composite. Figure 5.48 and 5.49 show the effect of the 

angle orientation of the SMA wires to the first sixth relative eigen frequency modes for  

antisymmetric and symmetric composite respectively, in the case of ASET improvement. 
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Figure 5.45: The effect of orientation angle on the APT improvement of the relative eigen 
frequencies for SS antisymmetric SMA composite plates. 
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Figure 5.46: The effect of orientation angle on the APT improvement of the relative eigen 
frequencies for SS symmetric SMA composite plates 
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Figure 5.47: The effect of orientation angle on the ASET improvement  of mode I relative 
eigen frequencies of SS SMA composite plates. 
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Figure 5.48: The effect of orientation angle on the ASET improvement of the relative eigen 
frequencies for SS antisymmetric SMA composite plates 
 
The switch from concave up curve to concave down curve as the recovery stress effect is 

added such as shown in figures 5.44 and 5.47 can be understood in the following study. 



Assuming at fully transformed state (E=69.9 GPa), for different values of initial strains, 

we can have a set of corresponding values of recovery stresses. 

 

1

1.04

1.08

1.12

1.16

1.2

0 20 40 60 80 100

SMA Fibre Angle (0)

R
el

at
iv

e 
Ei

ge
n 

Fr
eq

ue
nc

ie
s

I

II

III

IV

V

VI

 
Figure 5.49: The effect of orientation angle on the ASET improvement of the relative eigen 
frequencies for SS symmetric SMA composite plates 
 
 
Figure 5.50 shows that as the recovery stress is added to the symmetric SMA composite, 

the relative eigen frequencies vs orientation angle curve changes from having concave up 

to concave down quite early i.e. only after the recovery stress is equal to 75 MPa. In 

contrast, the antisymmetric SMA composite requires a higher value of recovery stress of 

125 MPa for the relative eigen frequencies vs orientation angle curve to change from 

having concave up to concave down curve such as shown in figure 5.51.  
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Figure 5.50: The effect of orientation angle on the ASET improvement of the mode I 
relative eigen frequencies of the SS antisymmetric SMA composite plates for different 
values of recovery stresses. 
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Figure 5.51: The effect of orientation angle on the ASET improvement of the mode I 
relative eigen frequencies of the SS symmetric SMA composite plates for different values of 
recovery stress. 
 
5.2.7 The effect of the locations of the SMA layers 

In this study, two SMA layers are located  symmetrically with respect to mid- surface of 

the SMA composite as in previous studies. However the distance between the two SMA 

layers is now varied to see its effect on the eigen frequencies of the SMA composite 



plates. Here the fully recovered SMA with initial strain of 0.001 m/m that gives recovery 

stress of 91.6 MPa and Young’s modulus of 69.6 GPa is used. 
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Figure 5.52: The effect of the distance between SMA layers on mode I eigen frequency for 
SS antisymmetric SMA composite plates 
 
Figure 5.52 shows that in each cases of no activation, APT and ASET improvements, as 

the distance between SMA layers are increased, the eigen frequencies are decreased. 

However at the same time, the relative eigen frequencies are increased as the distance 

between SMA layers are increased. This can be seen in figure 5.53 and 5.54 where this 

behaviour is followed by all six modes of eigen frequencies in the APT and ASET 

improvements respectively.  
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Figure 5.53: The effect of the distance between SMA layers on the APT improvement of the 
first six eigen frequencies for SS antisymmetric SMA composite plates 
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Figure 5.54: The effect of the distance between SMA layers on the ASET improvement of 
the first six eigen frequencies for SS antisymmetric SMA composite plates 
 
5.2.8 Conclusion to the vibration analysis 

A simple linear finite element model for SMA composite plates was developed to study 

the effect of SMA on free vibrations of composite plates. As in buckling analysis, an 

additional geometric stiffness matrix is used to represent recovery stress in this model 

while the values of SMA Young’s modulus and recovery stress were pre-determined 

from the Brinson’s model through either constrained or controlled recovery assumptions. 

Studies were conducted to see the effect of  geometric, mechanical and transformation 



factors on the APT and ASET improvements of relative eigen frequencies of SMA 

composite plates. Several conclusions can be made here. 

1. In general it can be stated that there are three trends of response behaviour of the 

relative eigen frequencies (TRREF). Firstly the effect of SMA seems to be of a 

similar level for certain modes of frequencies. Typical couples with similar level of 

responses are frequencies of modes I and IV, II and  V and III and VI. 

2.  Secondly, frequency couples of modes I and IV and III and VI seem to have greater 

responses as compared to the couple of mode II and V in SS and SC boundary 

condition while in CC boundary condition, the couple of modes II and V seems to be 

dominant . 

3.  Thirdly, the couple of modes I and IV seems to have almost exact responses between 

them in the case of APT improvement of SS SMA composite plates.  

4. In general as the ratios of SMA thickness to thickness of other layers are increased, 

the relative eigen frequencies are increased too, following the three TRREF.  For 

example, the increase of the eigen frequencies for mode III and VI can be up to 1.25 

times at SMA layer thickness equal to one fifth of the thickness of other layers.  

5. The glass fibre  responses the greatest to the effect of SMA on the eigen frequencies 

of the SMA composite plates. This is because as in the buckling analysis the ratio of 

the Young’s modulus of the glass fibre to the Young’s modulus of nitinol is the 

lowest of all ratios that involve other fibres.  

6. In general, following the three TRREF, the increase in the thickness to length ratio of 

the G-E layers will result in the decrease of the effect of SMA on the eigen 



frequencies of the SMA plates. This is due to the increase of the volume fraction of 

the glass fibre as the thickness to length ratio is increased. 

7. It can be stated that the effect of volume fraction of SMA wires on the relative eigen 

frequencies of the SMA plates is in reverse to the effect of TLR on the relative eigen 

frequencies. Again, following the TRREF, it shows that as the volume fraction of the 

SMA increases, the effect of SMA on the APT and ASET improvements increases.  

8. The presence of coupling stiffness of the composite enhances the effect of SMA on 

the eigen frequencies of SMA composite plates. As the number of layers is increased 

i.e. as the bending-stiffness coupling is reduced, the relative eigen frequencies are 

reduced too. The TRREF are still followed for the case of SS boundary condition 

9. In general, following the three TRREF as the activation temperature is increased, the 

effect of SMA on eigen frequencies is increased too since the Young’s modulus of the 

SMA and the recovery stress are increased. However the effect of SMA can be seen 

to increase greatly between certain SMA activation temperatures where martensite 

transformation  occurs greatly.  

10. As in buckling analysis, the increase of initial strains of the SMA at a fixed value of 

an activation temperature will cause the increase in the recovery stress and the 

decrease in the Young’s modulus. As a result, the relative eigen frequencies for APT 

improvement are seen to be decreasing as the initial strains are increased while the 

relative eigen frequencies for ASET improvement can be increased or decreased as 

the initial strains are increased. 

11. The effect of orientation angle on the relative eigen frequencies is strongly influenced 

by the change of Young’s modulus and the presence of recovery stress. In APT 



improvement, the relative eigen frequencies of mode I are maximum at the angle 

orientation of 450 for both symmetric and anti-symmetric composites. With the 

addition of the recovery stress effect in ASET improvement, the relative eigen 

frequencies of mode I vs orientation angle curve changes from having a maximum 

value to having a minimum values as the recovery stress is increased. 

12. The change in the distance between the two SMA layers affects the eigen frequencies 

and the relative eigen frequencies. While the eigen frequencies of mode I are 

decreased as the distance is increased, the relative eigen frequencies are increased. 

13. In all cases, as in the buckling analysis, the SMA effect in ASET improvement is 

much more significant than the SMA effect in the APT improvement. 

Finally it can be concluded here that the simple finite element model was able to show 

the influence of SMA in the free vibration improvement of SMA composite plates.  
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CHAPTER 6 
 

CONCLUSION AND RECOMMENDATION 

 

6.1 Conclusion 

 

A finite element program was developed to study buckling behaviour of laminated 

composite plate. Critical buckling loads were calculated through the eigen-value 

analysis employing the inverse power method. The post-buckling responses were 

obtained by applying the Newton-Raphson algorithm onto the non-linear formulation 

that includes the von-Karman non-linear terms. Buckling behaviour of the laminated 

composite plate was studied by varying factors such as plate thickness, angle of 

lamination, fiber orientation, boundary condition and level of anisotropy. Several 

buckling behaviour can be concluded based on this study. 

• The effect of extensional-bending coupling is significant as it causes the difference 

between the behaviour of the symmetric and anti-symmetric composites. The 

existence of coupling effects will weaken the composite. In general, for two 

composites that differ only for being symmetric and anti-symmetric, the 

symmetric composite will have a higher buckling load. However, this is only true 

for composites with small number of layers (2 – 4 layers).  The coupling effect 

rapidly decreases as the number of layer increases.  

•  Buckling load decreases at quite a rapid rate as the thickness is decreased. As the 

aspect ratio changes from the ratio of 10 to 20, the increase of the non-
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dimensionalised buckling load is 27.3%. The increase however decline to 9.7% 

moving from the ratio of 20 to 30. 

• The effect of lamination angle is great so a designer can tailor the property of a 

composite by controlling the angle of lamination. Knowing the meaning of each 

term in the A, B, D, E, F and G matrices the designer can control the required 

properties to the desired level. In the case of buckling of anti-symmetric composite 

in this study, the optimum lamination angle that givesthe composite the highest 

buckling load is 450. 

• The stiffness of the composite can also be controlled by controlling the Young 

Modulus of the fibre and the matrix. Increasing the level of anisotropy will 

increase the stiffness of the composite and the coupling effects as well.  

• The non-linear responses in most cases in this study show very close agreement to 

the eigen-value analysis conducted. Angle-ply composites weather symmetric or 

anti-symmetric posses stable post-buckling behaviour. However the non-linear 

response for anti-symmetric cross-ply composite does not show a clear bifurcation 

point. The effect of coupling seems to relax the stress, making the curve looks like 

having imperfection from the beginning of the curve. 

• The post-buckling behaviour shows similar patterns for thin or thick composites. 

While the buckling loads for angle-ply composites are very sensitive to 

imperfection, the anti-symmetric cross-ply composites show the opposite 

behaviour. In all cases where bifurcation points are clear, the non-linear curves 

show little effect of pre-buckling deformation unless imperfection is present. 
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6.2 Recommendations 

 

The work in this thesis can be extended to include other factors.  

• Fibre reinforced composite is well known to posses at least one material non-

linearity in the shear direction. Thus the effect of material non-linearity should be 

studied especially in matrix-dominated composites where high ductility is desired. 

The study on buckling analysis that includes the effect of material non-linearity is 

rather rare. 

• The effect of damages such as delamination of layers of composites on buckling 

and post-buckling behaviour can be significant. The addition of this factor will be 

useful to the industry. 

• Similar studies on the buckling and post-buckling behaviour can be conducted 

using different geometries such as shells and corrugated shape. These two 

geometries offer wide applications in the industries today. 

• The study of buckling and post-buckling can be extended to other materials such 

as smart materials. The advantages offer by smart materials are getting popularly 

utilised that studies on failures such as buckling should be conducted. 

• The study should also be extended to include hygro-thermal effects especially the 

moisture effect, as it is relevant considering the weather where the structure is 

used. 
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