PROPERTIES OF GLASS FIBER REINFORCED SELF COMPACTING CONCRETE

WONG CHOON SIANG

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil – Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JANUARY 2012

To my beloved family

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and appreciation to both my supervisors, Assoc. Prof. Dr. Abdul Rahman Mohd Sam and Dr. Roslli Noor Mohamed for their guidance, advice, and encouragement. A very thank you for all the knowledge and experiences shared with me under your supervision.

I would like to forward my sincere appreciation to family for their love, endless support, care, and motivation throughout my whole study life in university. Their support is a thrust for me to complete my report successfully at time.

Special thanks dedicated to all the laboratory technicians for their cooperation and assistance throughout the completion of laboratory work and report. My appreciation also extends to my friends who always gave me helping hand and their advices.

ABSTRACT

Self Compacting Concrete (SCC) is able to flow under its own weight and completely fill the formwork, even in the presence of congested reinforcement, without any compaction, while maintaining homogeneity of the concrete. Majority of concrete cast rely on compaction to produce good quality concrete. However, compaction is difficult to be done in conditions where there are dense reinforcement and large casting area. Usage of SCC will overcome the difficult casting conditions and reduce manpower required. Addition of fibers will enhance the tensile and ductile behaviour of concrete with brittle nature. SCC was added with relatively short, discrete, and discontinuous glass fibers to produce Glass Fiber Reinforced Self Compacting Concrete (GFRSCC). The purpose of this study is to investigate the workability and mechanical properties of plain SCC and GFRSCC. Control concrete (NC), plain SCC, and GFRSCC samples were prepared. Water-cement ratio of 0.40 was used for all concrete mixes. The fiber and brand of superplasticizer used were alkaline-resistance glass fiber and *Rheobuild 1100*, respectively. Three fiber contents of 0.5%, 1.0%, and 1.5% by volume of concrete were utilised in this study. The laboratory testing included slump flow test, L-Box test, sieve segregation resistance test, density test, ultrasonic pulse velocity (UPV) test, compressive strength test, splitting tensile strength test, and flexural strength test. The dosage of superplasticizer required increased as fiber content increased. Plain SCC and GFRSCC were highly workable than NC. The experimental results show that plain SCC exhibited higher compressive strength than NC and GFRSCC. The splitting tensile strength of NC was higher than plain SCC and GFRSCC due to negative effect of superplasticizer added. The flexural strength of NC was slightly higher than plain SCC. All GFRSCC exhibited higher flexural strength than plain SCC. The optimum fiber content was 1.0% by volume of concrete. GFRSCC with 1.0% fiber content developed higher load at first crack and ultimate load than NC and plain SCC slabs.

ABSTRAK

Konkrit Tanpa Pemadatan (SCC) berupaya untuk mengalir di bawah berat sendiri, mengisi ruang acuan dan mengekalkan keseragaman dalam konkrit walaupun terdapat susunan tetulang yang padat. Majoriti konkrit bergantung kepada pemadatan untuk menghasilkan konkrit yang berkualiti. Tetapi, kerja pemadatan sukar untuk dijalankan dalam keadaan yang terdapat susunan tetulang yang padat dan kawasan penuangan yang besar. Penggunaan SCC akan mengatasi keadaan penuangan yang sukar dan mengurangkan tenaga buruh yang diperlukan. Penambahan gentian akan meningkatkan sifat-sifat tegangan dan kemuluran konkrit yang asalnya bersifat rapuh. SCC ditambah dengan gentian kaca yang pendek, diskret, dan tidak selanjar untuk menghasilkan Konkrit Tanpa Pemadatan diperkuat dengan Gentian Kaca (GFRSCC). Objektif kajian ini adalah untuk mengkaji kebolehkerjaan dan sifat-sifat mekanikal SCC biasa dan GFRSCC. Sampel konkrit yang disediakan termasuklah konkrit kawalan biasa (NC), SCC biasa, dan GFRSCC. Nisbah air-simen 0.40 digunakan untuk semua campuran konkrit. Gentian kaca ketahanan-alkali dan superplasticizer berjenama Rheobuild 1100 digunakan dalam kajian ini. Tiga jenis peratus kandungan gentian sebanyak 0.5%, 1.0%, dan 1.5% daripada isipadu konkrit digunakan dalam kajian ini. Kajian makmal yang dijalankan termasuklah ujian runtuhan kon, L-Box, rintangan pengasingan konkrit, ketumpatan, halaju gelombang ultrasonik (UPV), kekuatan mampatan, kekuatan tegangan pembelahan, dan kekuatan lenturan. Kandungan superplasticizer yang diperlukan meningkat apabila peratus kandungan gentian bertambah. Kebolehkerjaan SCC biasa dan GFRSCC adalah sangat tinggi berbanding dengan NC. Hasil ujikaji menunjukkan sampel SCC biasa mempunyai kekuatan mampatan yang lebih tinggi daripada NC dan GFRSCC. Kekuatan tegangan pembelahan NC adalah lebih tinggi daripada SCC biasa dan GFRSCC. Penambahan superplasticizer memberikan kesan negatif terhadap kekuatan tegangan pembelahan konkrit. Kekuatan lenturan NC adalah lebih tinggi sedikit daripada SCC biasa. Semua sampel GFRSCC mempunyai kekuatan lenturan yang lebih tinggi daripada SCC yang biasa. Peratus kandungan gentian optimum ialah 1.0% daripada isipadu konkrit. Papak GFRSCC dengan kandungan gentian 1.0% mencapai beban pada retakan pertama dan beban muktamad yang lebih tinggi daripada papak NC dan SCC biasa.

TABLE OF CONTENTS

CHAPTER

1

TITLE

PAGE

TITLE PAGE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LISTS OF TABLES	xi
LISTS OF FIGURES	xiii
LISTS OF ABBREVIATIONS	xix
LISTS OF SYMBOLS	xxi
LISTS OF APPENDICES	xxiii

INTR	ODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objectives of Study	4
1.4	Scope of Study	5
1.5	Significance of Study	6

2 LITERATURE REVIEW

2.1	Introd	uction	7
2.2	Self C	Compacting Concrete	8
	2.2.1	Properties of Fresh Self Compacting	
		Concrete	8
	2.2.2	Properties of Hardened Self Compacting	
		Concrete	13
2.3	Fiber	Reinforced Concrete	15
	2.3.1	Types and Properties of Fibers	15
	2.3.2	Mechanism of Fiber Reinforcement	19
	2.3.3	Properties of Fresh Fiber Reinforced	
		Concrete	20
	2.3.4	Properties of Hardened Fiber Reinforced	
		Concrete	21
2.4	Fiber	Reinforced Self Compacting Concrete	23
	2.4.1	Properties of Fiber Reinforced Self	
		Compacting Concrete	23
	2.4.2	Previous Studies on Fiber Reinforced Self	
		Compacting Concrete	24

3 METHODOLOGY

46 3.1 Introduction Preparation of Raw Materials 3.2 47 3.2.1 Cement 48 49 3.2.2 Aggregate Superplasticizer 3.2.3 50 3.2.4 Water 51 3.2.5 Glass Fiber 52 3.2.6 Steel Bars 52 3.2.7 Plywood 53 Mix Design Method 3.3 53 3.3.1 Mix Proportion 53

viii

7

46

3.4	Prepar	ration of Mould and Formwork	55
3.5	Mixin	g of Concrete	57
3.6	Prepar	ration of Samples	59
3.7	Labor	atory Testing of Fresh Concrete	62
	3.7.1	Slump Test and Slump Flow Test	62
	3.7.2	L-Box Test	66
	3.7.3	Sieve Segregation Resistance Test	67
3.8	Labor	atory Testing of Hardened Concrete	69
	3.8.1	Density	69
	3.8.2	Ultrasonic Pulse Velocity (UPV) Test	69
	3.8.3	Compressive Strength Test	71
	3.8.4	Tensile Splitting Strength Test	72
	3.8.5	Flexural Strength Test of Concrete Prisms	73
	3.8.6	Flexural Strength Test of Small-scale Slabs	75

4 **RESULT AND ANALYSIS**

79

4.1	Introdu	action	79
4.2	Analysis and Discussions of Results		80
	4.2.1	Sieve Analysis	80
	4.2.2	Workability	82
	4.2.3	Density of Hardened Concrete	86
	4.2.4	Ultrasonic Pulse Velocity (UPV)	87
	4.2.5	Compressive Strength	89
	4.2.6	Splitting Tensile Strength	93
	4.2.7	Flexural Strength of Concrete Prisms	96
	4.2.8	Flexural Strength of Small-scale Slabs	99
	4.2.9	Neutral Axis of Slabs	103
	4.2.10	Failure Mode of Concrete	105

5	CON	NCLUSIONS AND RECOMMENDATIONS	110
	5.1	Conclusions	110

5.2	Recommendations	112

REFERENCES	113
APPENDIX A	117
APPENDIX B	120

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	List of test methods for workability properties of SCC	10
2.2	Selected properties of fibers	16
2.3	Results of slump flow and L-Box tests	25
2.4	Physical properties of aggregates	27
2.5	Physical properties of polypropylene fibers	28
2.6	Mix proportions of LLSCC with polypropylene fibers $(in kg/m^3)$	28
2.7	Types of specimens and properties of fibers used	33
2.8	Slump flow of different mixes (in cm)	36
2.9	J-Ring test results for different mixes	36
2.10	L-Box test results	37
2.11	Compressive strength (N/mm ²) for different mixtures	39
2.12	Typical properties of fibers	40
3.1	Initial dosage of superplasticizer for plain SCC and GFRSCC mixes	54
3.2	Mix proportions for control concrete, SCC, and GFRSCC mixes without wastage (per m^3)	55
3.3	The number of samples prepared	60

4.1	Sieve analysis of fine aggregate	81
4.2	Sieve analysis of coarse aggregate	81
4.3	Requirements for self compacting concrete	85
4.4	Dosage of superplasticizer required for plain SCC and GFRSCC (percentage by mass of cement)	85
4.5	Density of hardened concrete cubes	86
4.6	UPV test results of concrete cubes	88
4.7	UPV test results of concrete cylinders	88
4.8	UPV test results of concrete prisms	89
4.9	Compressive strength of NC, plain SCC, and GFRSCC	90
4.10	Splitting tensile strength of NC, plain SCC, and GFRSCC	93
4.11	Flexural strength of NC, plain SCC, and GFRSCC	97
4.12	The result of flexural strength test of slabs	99

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	The casting of large area of concrete slab	4
1.2	Concrete slab with dense reinforcement	4
2.1	Highly workable SCC	9
2.2	J-Ring test method	10
2.3	V-Funnel test method	11
2.4	L-Box test method	11
2.5	U-Box test method	12
2.6	Fill-Box test method	12
2.7	Orimet device	13
2.8	Shapes of steel fibers (a) Round, (b) Rectangular, (c) Indented, (d) Crimped, (e) Hooked ends, (f) Melt extract	
	process, (g) Enlarged ends	17
2.9	Types of monofilament and film polypropylene fibers	18
2.10	The diagram of fibers bridging across a crack	20
2.11	The relationship between compressive and flexural strengths of concrete with curing time	26
2.12	Lightweight Expanded Clay Aggregates (LECA)	27

2.13	The difference in the rate of slump flow over SP volume percentage for LLSCC and FR-LLSCC	29
2.14	Graph of tensile strength versus volume percentage of the fibers	30
2.15	Graph of flexural strength versus volume percentage of the fibers	30
2.16	Fibers used for studies	32
2.17	Flow-Channel test	34
2.18	Flow distance and respective flow speed for different mixtures tested immediately after the mixing	35
2.19	Flow distance and respective flow speed for different mixtures tested at 40 minutes after the mixing	35
2.20	PFRCC7 mix with heavy congestion (left) CFC305 mix with light congestion (right)	38
2.21	Load-deflection curves of FRSCHPC beams at the age of 28 days	40
2.22	Multiple crack pattern of CFC305	41
2.23	Failure mode of panels of CFC307	42
2.24	Hooked-end steel fibers	43
2.25	Slump flow test	43
2.26	J-Ring test	44
2.27	V-funnel test	44
3.1	Methodology flow chart	47
3.2	Holcim Ordinary Portland Cement (OPC)	48
3.3	Sand as fine aggregate	49

3.4	10 mm size coarse aggregate	50
3.5	Superplasticizer	51
3.6	12 mm length AR-glass fiber	52
3.7	Dimension and arrangement of reinforcement of concrete slab	56
3.8	Plywood formwork and steel reinforcement of concrete slab (plastic spacers were used to form concrete cover of thickness 25 mm)	56
3.9	Weighing machine	57
3.10	Mechanical pan mixer	58
3.11	High capacity mechanical pan mixer	58
3.12	Curing tank	60
3.13	Compaction of NC mix with poker vibrator (left); Free flow of self compacting concrete mix along a channel (right)	61
3.14	The wet gunny sacks used for curing process	62
3.15	Slump test apparatus	63
3.16	Slump measurement	64
3.17	Slump flow apparatus in laboratory	64
3.18	Measurement of diameter of slump flow	65
3.19	Dimension of L-box	66
3.20	L-box made from plywood	67
3.21	Sieve pan and 5 mm sieve for sieve segregation resistance test	68
3.22	Direct transmission method	70

3.23	UPV test equipment	70
3.24	Compression test machine, ADR 2000	72
3.25	Flexural strength testing machine	74
3.26	Detail of prism under four-point loading test (front view)	74
3.27	Arrangement of demec discs on concrete surface	76
3.28	Mechanical extensometer	76
3.29	Data logger	77
3.30	Setup of small-scale slab flexural strength test	78
3.31	Detail of slab under four-point loading test (front view)	78
4.1	Sieve analysis graph of fine and coarse aggregates	82
4.2	Slump test for control concrete (NC) mix	83
4.3	Spread diameter of concrete mix in slump flow test	84
4.4	L-Box test	84
4.5	Paste remaining on the pan in sieve segregation resistance test	85
4.6	Relation between density and curing age for all concrete cube specimens	87
4.7	Relation between compressive strength and curing age for each type of concrete specimens	90
4.8	Some of the observed voids on the surface (red circles indicate the voids)	92
4.9	Relation between splitting tensile strength and curing age for each type of concrete samples	94
4.10	Comparison of splitting tensile strength among the GFRSCC samples	94

4.11	Some voids observed on the surface (red circles indicate the voids)	96
4.12	Relation between flexural strength and curing age for each type of concrete samples	97
4.13	Comparison of flexural strength among the GFRSCC samples	98
4.14	Load-deflection curves for all concrete slabs	100
4.15	Cracking pattern and corresponding load values of NC slab	101
4.16	Cracking pattern and corresponding load values of plain SCC slab	101
4.17	Cracking pattern and corresponding load values of 1.0%GFRSCC slab	102
4.18	Load-deflection curves until the load at first crack observed	102
4.19	Slab depth versus concrete strain for NC slab	103
4.20	Slab depth versus concrete strain for plain SCC slab	104
4.21	Slab depth versus concrete strain for 1.0%GFRSCC slab	104
4.22	Failure mode of NC cube	105
4.23	Failure mode of plain SCC cube	105
4.24	Failure mode of 0.5%GFRSCC cube	106
4.25	Failure mode of 1.0%GFRSCC cube	106
4.26	Failure mode of 1.5%GFRSCC cube	107
4.27	Failure on fractured surface of NC cube (red lines indicate broken aggregates)	108
4.28	Failure on fractured surface of plain SCC cube (red lines indicate broken aggregates)	108

4.29	Failure on fractured surface of 1.0%GFRSCC cube (red	
	lines indicate broken aggregates)	109
4.30	Failure mode of reinforced concrete slabs	109

LIST OF ABBREVIATIONS

AR-glass fiber	-	Alkaline Resistance glass fiber
BS	-	British Standard
DOE	-	Department of Environment
EN	-	European Standard
EFNARC	-	European Federation of Specialist Construction Chemicals and Concrete Systems
FRC	-	Fiber Reinforced Concrete
FR-LLSCC	-	Fiber Reinforced LECA Lightweight Self Compacting Concrete
FRSCC	-	Fiber Reinforced Self Compacting Concrete
FRSCHPC	-	Fiber Reinforced Self Compacting High Performance Concrete
GFRSCC	-	Glass Fiber Reinforced Self Compacting Concrete
GGBFS	-	Ground Granulated Blast Furnace Slag
HPC	-	High Performance Concrete
ITZ	-	Interfacial Transition Zone
LECA	-	Lightweight Expanded Clay Aggregates
LVDT	-	Linear Variable Differential Transducer
NC	-	Conventional Concrete or Control Concrete

OPC	-	Ordinary Portland Cement
РР	-	Polypropylene
SAJ	-	Syarikat Air Johor
SCC	-	Self Compacting Concrete
SCHPC	-	Self Compacting High Performance Concrete
SP	-	Superplasticizer
UPV	-	Ultrasonic Pulse Velocity

LIST OF SYMBOLS

A_c	-	Cross-sectional area of the specimen in which the compressive force acts
а	-	Average distance between the point of fracture and the nearest support
D, ϕ_{final}	-	Mean diameter of slump spread
d	-	Cross-sectional diameter of concrete cylinder
d_1	-	Width of the concrete prism
d_2	-	Height of the concrete prism
F	-	Maximum load at failure
f_c	-	Compressive strength
f_{cf}	-	Flexural strength
fct	-	Tensile splitting strength
H1	-	Vertical distance from the base to the surface of concrete at the position of reinforcing bars of L-box
H2	-	Vertical distance from base to concrete surface at the end of the channel of L-box
Ι	-	Distance between the supporting rollers
J_{sf}	-	Slump flow spread of J-Ring test
L	-	Length of the line of contact of the concrete cylinder

L_F	-	Maximum flow distance of L-Box test
L_J	-	Difference in height of the mixtures inside and outside the J-Ring
L_L	-	Difference in height inside and outside the steel bars of L-Box test
L_S	-	Elevation difference before and after opening the sliding shutter of L-Box test
M_a	-	Mass of concrete sample poured on the sieve
M_b	-	Mass of cement paste or mortar passing the sieve
Р	-	Maximum load
S_{f0}	-	Slump flow spread measured immediately after mixing
S _{f45}	-	Slump flow spread measured 45 minutes after mixing
T_{500}	-	Time to achieve 500 mm spread diameter
T _{5MINUTES}	-	Time for discharge to complete for V-Funnel test
t _{final}	-	Time to achieve final spread diameter
ΔH_{final}	-	Difference in concrete level between the beginning and end of the L-box

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Concrete Mix Design	117
В	Determination of Fiber Content	120

CHAPTER 1

INTRODUCTION

1.1 Introduction

Self Compacting Concrete (SCC) was originating in Japan and well established in some countries such as Sweden and United State [1]. Apart from individual symposium papers, several publications have been produced by some committees, such as "EFNARC Specifications and Guidelines for Self Compacting Concrete" and "The European Guidelines for Self Compacting Concrete" [2, 3, 4]. EFNARC stands for The European Federation of Specialist Construction Chemicals and Concrete Systems. SCC can be defined as a concrete that is able to flow under its own weight and completely fill the formwork, even in the presence of dense reinforcement without any compaction, while maintaining the homogeneity of the concrete [1 - 4]. SCC can also be known as Super-Workable Concrete [5]. The high workability is one of the crucial properties for SCC and can be controlled by appropriate dosage of superplasticizer [6]. Fiber Reinforced Concrete (FRC) is defined as a concrete incorporating relatively short, discrete, and discontinuous fibers. The fibers used are steel fiber, polypropylene fiber, carbon fiber, glass fiber, asbestos fiber, and natural organic fiber. The role of fibers is to improve the tensile properties of concrete due to its brittle nature [7, 8].

Both SCC and FRC can be categorized as High Performance Concrete (HPC) due to its special proportions and properties. HPC is a specialized concrete designed to provide several benefits in the construction of concrete structures that cannot always be achieved routinely using conventional ingredients, normal mixing and curing practices [5]. Besides, HPC can be termed as concrete in which its ingredients and proportions are specifically chosen and developed for particularly appropriate properties for the expected use of the structure [6].

Inclusion of fibers into SCC will produce Fiber Reinforced Self Compacting Concrete (FRSCC) with superior properties in fresh and hardened state. The reinforced fibers in concrete may improve the tensile strength, flexural strength, impact strength, toughness, drying shrinkage, and failure pattern of the concrete [9, 10]. Generally, the raw materials required for production of FRSCC are cement, coarse and fine aggregates, water, superplasticizer, and fibers. Modification to the FRSCC mixtures has been done by using different types of fibers and lightweight material such as Light Expanded Clay Aggregate (LECA). LECA is a type of lightweight aggregate and being used to reduce the self-weight of the structures as well as the cross-sectional area of members [11, 12]. The investigations on the influences of fibers on properties of FRSCC have been presented by many researchers. This study was conducted to investigate the properties of FRSCC with glass fiber, namely Glass Fiber Reinforced Self Compacting Concrete (GFRSCC).

1.2 Problem Statement

The majority of concrete cast required compaction to ensure that the development of adequate strength and durability. Generally, the purpose of compaction of concrete is to achieve the highest possible density of the concrete [6]. Dense microstructure of concrete will results in low permeability, high strength, high resistance to chloride and sulfate attacks, low carbonation, and improved durability. Insufficient compaction will lead to the formation of voids, which results in negative

impact on the physical and mechanical properties of concrete. Inclusion of voids will also influence the protection of the embedded steel reinforcement [1]. Compaction of concrete is done manually by using vibrators in construction site. However, compaction will be difficult to be carried out at conditions as follows:

- i) Large concrete casting areas.
- ii) Presence of congested reinforcement
- iii) Inaccessible areas and spaces, etc.

The concrete floor slabs in factories and commercial buildings are of large areas and often subjected to continuous static and dynamic loadings. Self-weight is considered as static loading; while vibrations and impact loadings can be categorized as dynamic loadings. The loadings are usually induced by storages, containers, machineries, and heavy vehicles that present in the factories and commercial buildings. Hence, the concrete slabs have to exhibit good fatigue and impact strength to prevent failure in fatigue [6].

FRSCC will be suitable in the construction of industrial concrete floor slabs due to the combined features of both SCC and FRC. The elimination of compaction enables the casting of large area of concrete slab to be completed in shorter time with reduced cost and manpower required. Besides, the fibers within FRSCC will improve the tensile properties, flexural strength, impact strength, toughness, and post-cracking behaviour of concrete. Therefore, FRSCC is an ideal solution for the construction of concrete slabs to maintain the serviceability of slab throughout their service lifespan. Figure 1.1 and Figure 1.2 show the casting of a large area of concrete slab with congested reinforcement in commercial centre in Italy.

Figure 1.1: The casting of large area of concrete slab [4]

Figure 1.2: Concrete slab with dense reinforcement [4]

1.3 Objectives of Study

The purpose of this study is to evaluate the properties of the plain Self Compacting Concrete (SCC) and Glass Fiber Reinforced Self Compacting Concrete (GFRSCC). Comparisons will be made among the properties of normal concrete (NC), plain SCC, and GFRSCC. The concrete specimens are subjected to appropriate tests to determine the fresh and hardened properties of the concrete. Observations will be made to evaluate the fiber conditions after cracking occurred and failure mode of the concrete specimens. The objectives of this study are as follows:

- i) To design and produce mix proportions for GFRSCC.
- ii) To evaluate the physical and mechanical properties of GFRSCC.
- iii) To obtain and compare the physical and mechanical properties of conventional concrete (NC), plain SCC, and GFRSCC

1.4 Scope of Study

The scope of this study is focused on the properties of FRSCC with glass fiber. Three volume percentages of fibers are utilized to investigate the influence of volume percentage of fibers to properties of concrete. The scope and limitations of this study are:

- i) The type of cement used is *Holcim* brand Ordinary Portland Cement (OPC).
- ii) The type of fiber used is alkaline-resistance glass fiber.
- iii) The size of crushed aggregate used is 10mm.
- iv) All the concrete specimens are subjected to wet curing.
- v) The appropriate tests and evaluations of concrete specimens are done in laboratory scaled sample.
- vi) The testing and evaluation of concrete mainly on workability, compressive strength, splitting tensile strength, flexural strength, and failure mode of concrete specimens.

1.5 Significance of Study

FRSCC has great potential and wider applications in construction industry due to the combined benefits of both SCC and FRC. FRSCC with elimination of compaction and improved toughness of hardened concrete make it more suitable for use in construction of structures with dense reinforcements and subjected to impact and earthquake loads.

The results of this study will present the physical and mechanical properties of the plain SCC and GFRSCC. For GFRSCC, the optimum fiber content will be determined from the test results and applied to the mix proportions of the reinforced concrete slabs. The fiber conditions and failure patterns of the concrete specimens will also be observed.