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ABSTRACT

The success of eliminating the disease
Mycobacterium Tuberculosis {MTB) depends on
the  detection  capabilities of medical
organizations. In Malaysia, the government
hospitals perform the major part of this particular
task. An important ingredient of the diagnostic
process in government hospital is the visual
interpretation of standard chest X-ray films. A
previous study proposed an objective alternative;
involving wavelets coefficient, as the feature
vector of MTRB. In this study, we proposed an
Andrew’s Curve graphical presentation of the
feature vector of MTB.

INTRODUCTION

Due to economic considerations the
conventional x-ray film is still an important
ingredient in the diagnostic process despite rapid
advances in medical imaging technology {see for
e.g. Middlemiss) [1] and Moores [2]. A
description on the reliability of chest radiography
is discussed in Toman [3].

The authors in [4] looked at subsets of
the digitized chest x-ray image of a confirmed
MTR patient. In particular, the infected region
seen visually as white cloudy or snowflakes is
the region of interest in this study. We then take
some sample of grey-level values or pixel values
the infected areas. The samples are in the form
of vertical lines defined between a given pair of
adjacent ribs, which in turn is defined as the line
profile.

Thirty line profiles were obtained. For
each line profile, applying one-dimensional
discrete wavelet [5] gave the corresponding
approximate  and  detailed  Daubechies
Coefficients. In total, a vector of 26 coefficients
represented each line profile.  Hierarchical
clustering techniques [6] were applied using
Minitab [7] and SPSS [8].

THE PILOT STUDY

In the pilot study [4] we studied two
sets of data, confirmed tuberculosis patients and
none-MTB patients. The chest radiographs of
the confirmed MTB patients were provided by
the Respiratory Unit, Kuala Lumpur Hospital
and none-MTB patients were provided by
Selayang Hospital.

The medical expert on MTB identified
the infected area. For each infected aren, we
sampled 30 lines profile. For each line profile,
we obtained 26 Daubechies coefficients. Six
hierarchical clustering techniques were applied
to the 30 x 26 approximate Daubechies
coefficients. The general result of clustering
showed that most techniques separate the line
profiles into two groups: the first set nearest to
the ‘wind-pipe’ is regarded as primary infected
area, whilst the other set may be considered the
secondary infected area,

Figure 1{a) shows a chest X-ray of the
confirmed MTB patients. Figure 1{b) shows the
line profiles selected. As an example of
clustering, Figure 2a(i) is the dendogram using
complete linkage and Figure 2a(ii) a schematic
representation of line profiles being separated
into two groups. The grouping of line profiles is
summarized in Table 1. We define the average
of the profile vectors, for example for the
complete linkage;

Ly H X+ Xy X H Xy F Xy h gyt Xy + Xys
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where X, s the wvector of approximate

coefficients for the j * line profile.

(1)

xX=

From Table 1, we could see that
clustering using the complete linkage, Between
Group Average and Within Group Average gave
the same grouping of line profiles. We denote
the average for these vectors as Xa. Also, X5,
¥ and Xp represent the average vector for
Ward, Centroid and Median method,



respectively. The Euclidean’s distance between
these vectors are shown in Table 2, Table 2

indicates the X -vector for all clustering method

is similar.  Henceforth the z—values, (for

example complete linkage) may be used as a
feature to identify MTB.

In summary, clustering of line profiles,
or equivalently clustering of vectors of
approximate Daubechies wavelet coefficients
may be used as a method to identify regions that
are infected with MTB. The average value of the
profile vectors, for example, for complete
linkage is as follows:

X ={2456, -14.723, 51464, 151881, 149.618,

148.203, 146.751, 148.195, 145.076, 144. 298,
145.446, 144347, 146.718, 145.889, 146373,
149.406, 146.237, 145709, 147.076, 147.818,
150,784, 150.092, 149.977, 143,548, 170.145, 24 881)

Therefore X may be used as a feature
characteristic of the MTB disease.

ANDREW’S PLOT

Whilst the X -vectors given in equation
(1) may be used as a feature to identify MTB,
there is a need to be able to compare the X -
vectors, for example:

(1 To compare two X-ray films of a patient
undergoing treatment after one month.
(ii) Comparing a ‘new’ patient with a

confirmed MTB patient.

The wvisual comparison of two 26-
dimensional vectors is clearly not appealing.
Andrews [9] proposed a method of plotting a

data point f: = (xr,,...,xm), r=1...,n,
which involves plotting the curve {¢,f. (#)}

where

X .
f)y="rl +X,, 8i0¢+ X, COSE+
/i 0 7 T 3 @)

X4 8021 +Xx, 5 COS 2L+
for each “data point’ x (¥ =1,...,n) over the
interval ~m <? <m . Thus, each data point
{in this case our X-vectors) will appear as a
harmonic curve drawn in 2 dimensions. It may

be shown that fﬂ[ fo(0= [, (0 dr between

two curves {1,/ (f)} and {t,fz(t)} is
proportional to the square of Euclidean distance
between X and V.,

CLUSTERING AND ANDREW'’S PLOT

Since the X -vector are very similar, we

. X, +xX,+...+X
propose studying v = (—' X, + J_Cﬁ%

where the subscripis 1,2, ...,6 represent the six
clustering methods for a given patient. This is
done in accordance with a standard approach in
statistical clustering, namely accept the clusters
suggested by the majority of clustering methods.

In this stady the Andrew’s Curve of vector Vv

were considered.

A random sample of ten patients were
selected, six confirmed MTB patients from The
Respiratory Unit, Kuala Lumpur General
Hospital and four non-MTB patients from The
Selayang Hospital.

The Andrew’s Curve for each of the ten

patients or data points v, (r = 1,2,...,10) were

compared for values of t between zero and six.
These values of t were chosen solely for
producing praphs that may be recognized and
differentiated with ease.

One confirmed MTB patient (black
curve) and one non MTB patient (blue curve)
were randomly selected and compared in Figure
3. Both curves show similar trend, except that
the amplitude of the black curve is larger than
the blue curve.

To show that the shape of the curves in
Figure 3 is not a chance occurrence, Figure 4
compares the same blue curve with all the six
confirmed MTB patients. Clearly, the black
curves are clustered in a group, distinct from the
blue curve. Further, in Figure 5, one confirmed
MTB patient is compared with the other four non
MTB patient showing similar result.

DEVELOPMENT OF AN MTB FEATURE
DETECTION SYSTEM

Both Conventional chest X-ray and
digital chest x-ray were used in this study. The
x-ray films were digitized using film scanner and
transfer to a PC-based system. The MTB
detection software was develop in MATLAB 6.1
GUI (Graphical User Interface) environment
[10]. The image of digitized chest X-ray is first



_ displayed on the screen. Then the user will be
prompt to select the area that need to be
analyzed. The selected area will then be display
on the screen, the user then will need to provide
some data for testing by drawing with the cursor
several lines at the suspected infected area. The
software will then generate line profiles and
calculate the Daubechies approximate and detail
coefficient. The Daubechies approximate
coefficients were used as feature vector in this
research. All the feature vector of the lines
profile was then subjected to 6 clustering
methods: complex linkage, centroid method,
median method, Ward’s method, between group
average and within group average.

The Dendogram (see Figure 2) and a
schematic representation of the clusters are
displayed. Finally the Andrew’s plot may also

be displayed for selected values of rand f,(f).

SUMMARY AND FURTHER REMARKS

A pilot study of an objective method for
feature detection for MTB is proposed whereby
the usual problems associated with wvisual
interpretations of images are removed. Apart
from detection, the system allows the medical
practitioner to ‘explore’ the image and perform
segmentation.

However, the robustmess and the
sensitivity of the method still need to be studied
in the sense that a larger database {more patients)
should be obtained and compared.
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Figure 1: {a) A chest X-ray of a confirmed MTB
patient; (b) A subset of (a) showing the line
profiles taken between the area of 2, 3, 4™ and
5% ribs,
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Table 1: Summarized grouping of line profiles using six hierarchical clustering method.

Clustering Method Grouping of line profile
Complete Linkage 1,2,3,11,12,22,23,24,25
Centroid Method 1,2,3,11, 12,32, 23
Median Method 1,2,3,4,5,6,7,11,12,13, 14, 15, 16,22, 23
Ward’s Method 1,2,3,4,11,12,22,23 24,25
Between Group Average 1,2,3,11,12,22,23, 24, 25
Within Group Average 1,2,3,11,12,22,23, 24,25

Table 2: Euclidean’s Distance Matrix for X,, Xg, Xc and Xp.

Xa Xp Xe Xp
0 0.000484730 0.005712382 0.020888985
X4
Xp 0.000484730 0 0.003082583 0.015743008
Xc 0.005712382 0.003082583 0 0.005572539
Xp 0.020888985 0.015743008 0.005572539 0
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Abstract

The x-ray film remains as an essential ingredient in the diagnostic process. The
problem of interpretation of x-ray images require objective method to be
developed. The image is ‘broken down’ into a set of line profiles and compressed
using wavelets. The vectors of wavelet coefficient are then studied graphically. In
particular, the Andrews curve and its properties will be investigated on X-ray

images and in a simulation study and with the assistant of MATLAB
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CHAPTER 1: INTRODUCTION

1.1 Introduction to Multivariate Daia

In many area of research, the data to be analyzed and interpreted are essentially
multivariate which are in the form of vectors of random variables. Typically,
these vectors arise from taking measurement or observation on several different
variables on a number of objects or persons. We denote the number of variables
by p, and the number of objects or person by n. A typical multivariate data matrix
will have the form

Xn X o xlpT

Xa X v Xip [1.1]

_-xu] an -XMp_‘

where the X indicate the particular value of the k'™ variable that is observed on

the jlh individual. The data matrix can also be seen as n rows vectors, which we

denote by le, x',, Or as p column vectors, which we denote by yy, ..., y,. Thus

-
X4
T

REAR b,
X= :2 =y, v, - yp [1.2]

T

[ X

where xT, denote the transpose of x,, Sometimes x; itself is referred to as an
observation. The vectors may or may not come from the same probability
distribution. Generally the variable are correlated and it may be quantitative
(discrete or continuous) or qualitative (ordered or unordered categories). See
Seber (1984).

Various statistical techniques both descriptive and analytical are designed to solve
(real life) problems arise based on the multivariate data sought. Much of the
information contained in the data can be assessed by calculating certain summary

number known as descriptive statistics. See Johnson (1998).



The following are some basic statistics:

a) Sample mean. The sample mean of the kth variable is
_ 1
XF;Zxﬂ- k=1,2....,p [1.3]
J=l

and the sample mean vector (mean vector) is represented as

x=lx % .. %[ [1.4]

b) Sample variance. The sample variance of the kth variable is

JR— =
si° = SM:;__Z(xj'k_xk)z k=12, ..p [15]
1

c) Sample covariance. A measure of the /inear association between the variables

iand k is given by the sample covariance

1 - — .
$,= —I-Z (X =% Hx =% ) fori,k=1,2,..p [1.6]
n— j:l
The p x p matrix with elements given by [1.5] and [1.6] is called the sample

covariance mairix, or simply the “covariance matrix”. These covariance matrices

are symmetric by nature.
(Sn 812 Sip
Sa Sm - Sap
y=8, =| . . ) [1.7]
Sp Sa - - Sg

d) Sample correlation coefficient. The sample correlation coefficient of
variables i and k is given by
Sik

FYik =
A Sii x Skk

See Bhattacharyya [1977]. This measure of the linear association between two

fori,k=12,... p. [1.8]

variables does not depend on the units of measurement. These coefficients can be
thought of as normalized sample covariance which lies between -1 and +1.

Sample correlation matrix is also a form of symmetric matrix.



1.2 Multivariate Methods

Over the recent years, applications of multivariate methods have increased
tremendously. The choices of the most appropriate methods depend on the type of
data, the type of problem and the objective which are envisaged for the analysis.
In this study, two important methods involving multivariate data are to be
considered namely discrimination analysis and cluster analysis. In this section, we
will also touch on the issue of data reduction or structural simplification and

outliers detection.

1.2.1 Discrimination and Classification

Given an unknown observation x* and given two population, say
Tl 0 Xiy X2pesey Xn
and T2 . X+l Xpi2eeees Xpdm

we define discrimination as the problem of deciding whether x* belong to 7 | or
2. An assignment rule can be estimated from the sampled data and used to assign
current observation (object). We would like our assignment rule to be optimal in
some sense such as minimizing the number or cost of any emor of
misclassification that we might make on the average and also to consider prior
probabilities. This is because the groups may overlap. See Johnson [1998] and
Chatfield [1980]. These situations may be represented pictorially as in Figurel.l.

] 2

Figure 1.1: Distribution from two populations. The shaded area represent the
conditional probabilities of misclassifying individual from population j

to population i., P[ifj].



In the case of normal distribution, for the ith population, X~Ny(w;, ), i=1,2

[ =) |2 exp{—%(x—u,-fz“(x—u.a} [1.9]

we can derive a simplified version of allocation rule based on the following result:

Resulr 1.1:

Let the population m; and m; be described by multivariate normal densities of the
Jorm [1.9]. Then the allocation rule that minimizes the expected cost of
misclassification is as follows:

Allocate x* ro m; if

- 1 . c(l|2
(/—11 _'/uz)TZ IX*_E(/J: "‘;uz)Tz l(/u] +/12) 2 ln,:wi

2| p,

where p; is the prior probability of m; i=1,2 and c(i|j), i= j is the cost of

} [1.10]

misclassification. Allocate x* to 7; otherwise.

The cost are zero for correct classification, ¢(1|2) when an observation
from my is incorrectly classified as m; and c(2|1) when an observation from = is
incorrectly classified as m; Let p; be the prior probability of n; and p; the prior
probability of &2, p; and p; should be taken in a way so that p; -+ pp= 1. Further
information can be obtained from Johnson [1998].

In cases w hen the p robability d ensity function, f(x) and fa(x),costof
misclassification and prior probability are not available, we are unable to derive
its allocation rule. So, alternative allocation rules or method should be used

instead. However, the basic ideas of discrimination still remain the same.



1.2.2 Clustering.

Clustering { see Anderberg { 1973]; Gnanadesikan [ 1977]) is a general scientific
process of searching for pattern in data and then construct laws that explain the
pattern. Given observation Xi,Xz,...,Xp, W e define clustering as the problem of
establishing groups or subsets of the observations and allocate a set of individuals
to a set of mutually exclusive, exhaustive groups such that individuals within a
group are similar to one another while individual in different group are dissimilar,
For example, we may try to select two groups of students (say, mathematically
gifted or not mathematically interested) from a given school based on their
mathematic marks.

In order to carry out cluster analysis, we need to measure the similarity (or
dissimilarity (distances)) of every pair of individual from data matrix using
appropriate way. Even though a number of measures or metrics have been
defined, Euclidean distance will be used here as it is one of the most common
measures of distance, doesn’t involve any computation of covariance and can be
defined for any value of variables. See Mardia[(1979] and Johnson [1998].
Euclidean (straight line} distance between two p-dimensional observations is

given as the following:

dXY) = (x4 (m—3)" =yf(x-y)  (x~) (1.11]

Once distances have been determined, clustering proceeds by applying a

particular algorithm to these values. Agglomerative methods begin initially with
as many clusters as the numbers of objects. The most similar objects are first
grouped, and these initial groups are merged according to their similarities.
Eventually all subgroups are fused into a single cluster. A more detail explanation
regarding the procedures of clustering can be obtained from Seber [1984] and
Johnson [1998]. The following are the hierarchical clustering methods used in this
study.

a) Single linkage (SL). If C; and C; are two clusters, then the distance
between them is defined to be the smallest dissimilarity between a member of C,

and a member of C; namely,



d(d)(m =min[d,, :ree,s€¢q,] [1.12]
where r denotes “object r””.
b) Complete linkage {CL). This methods is defined in terms of the largest
dissimilarity between a member of Cy and a member of C; namely,

diayen =max[d, irec,5€0,] [1.13]
c) Average linkage (AL). The distance between C, and C; is defined to be
the average of the njn; dissimilarities between all pairs namely,

1
diyery =—— 2, 2.4, [1.14]

n]”z recl sec?
d) Centroid method (CM). The distance between two clusters is defined to
be the distance between the cluster centroids. If
L:Zﬂ [1.15]
iec nj
is the centroid of ny members of C, and x; is similarly defined for C,, then

diyen = P(%),%,) [1.16]

where P is a proximity measure such as squared Euclidean distance or other
dissimilarity. _

€) Ward Method (WM). This method uses the incremental sum of squares;
that is, the increase in the total within-group sum of squares as a result of joining
groups C; and C,. It is given by

d(cl)(cz) = 1'1.:,1?152152":2“:2 f(n, +n_) [1.17]

where o’ . is the distance between cluster C; and C, defined in the Centroid

clel
method.
According to Chatfield [1980], because some methods work well on
certain types of data and not on others, it is sometimes suggested that several
different clustering method are implemented to see if the results of grouping are
roughly consistent. The results usually displayed graphically as a dendrogram
(tree diagram) and will reveal the same grouping only when groups are

spherically shaped and well separated.



1.2.3 Dimensionalitv and Qutliers

In section 1.1, we pointed out that the data matrix can be regarded as n row
vectors objects or as p column vectors of variables. Often in multivariate data,
many variables are included when taking measurements on people or objects. This
is done to avoid overlooking any variables that may have future relevance.
Unfortunately, when the dimension p is large, a data set may not only be very
costly to obtain but it may also be unmanageable, difficult to study and will be
misleading when display graphically. See Seber [1984]. In case like this
dimension reduction techniques (be it a multivariate technique or graphical
methods) is necessary to reduce the dimensionality of p with the aim to exclude

any unimportant or irrelevant variables in interpreting and summarizing data.

Besides dimensionality, another immediate concern is to determine
whether an unknown observation x is different from a clusters of observations.
This is a problem of determining an ‘outlier’. In other word, the value in a data set
establishes a norm and any value that are quite deviant are labeled as outliers.
Qutlier exerts a much stronger influence on summary statistics, confidence
interval or test results. Qutliers can be detected visually in a lower dimension
diagram (e.g. univariate scatter plot) by looking for observations that are far from
the others. However w hen p islarge, the number o f scatter p lots p(p-1)/2 may

prevent viewing them all. In case involving higher dimension, a large value of

—1 _ _ —
(nr[ J(xj - x—J )TS“}'(XJ _x—j)N n%p_le.u—p—l [1‘18]

(compared to the critical value of F(p,n-p-1:1-a)) might suggest an unusual
observation, even though it can not be detected visually. Once an outlier is
identified, we have to decide whether to remove the erroneous cutliers or to

remain it as natural abnormalities.



1.3 Multivariate Graphical Represent;ltion

If appropriate assumption, e.g. the muitivariate data is normally distributed,
methods in section I.1 can be used without any doubt. However in practice, the
probability distribution of the multivariate vectors is unknown causing the
investigation to depend solely on graphical methods. In this study, we will
transform the numerical vector x to a graphical form. In other words, given say n
person Xi, Xa,... Xn, after transformation we will have n graphs i.e. each individual
will be represented by a graph. Our task thus is to investigate the suitability of the
graph as a mean for solving the problem of dimension reduction, discrimination,

clustering and outlier detection.

1.4 Brief Literature Review

The great success of graphical methodology is based on their simplicity and
transparency. Graphical representation enables data to be explored thoroughly, to
look for patterns and relationships, to confirm or disapprove the expected and to
discover new phenomena. In multivariate, high dimensional data can be viewed as
slices of various two-dimensional and three-dimensional perspectives using new
graphical technique software. Examples of the choices of two and three
dimensional graphical representation are the scatterplot, 3D scatter plot, boxes
(Hartigan [1975]), stars (Welsch [1976]}, k-sided polygons {siegel et. Al[1971]),
glyphs and metroglyphs (Anderson [1960] ), profiles (Bertin 1976]) Chernoff
faces (Chernoff [1973] ), profiles and Andrews curve (Andrews [1972]), weather
wanes (Bruntz et al.[1974]) and constellations (Wakimoto and Taguri [1978])).
These graphical representation may somehow enable us to carry out the

multivariate describe earlier in their own way.



However, when many variables are involved, some problem may be encountered:

a) Data examination is likely to lead to confusion if the number of variables is
greater than about ten as the number of plots to be examined becomes larger.
(see Everitt [1978]).

b) Plots will be misleading since any structure present in the original p-
dimensional space of the data is not necessarily reflected by that present in
plot of pairs of variables. Examples of data illustrating this fact are given by
Cattell and Coulter [1966], and by Nathenson [1971].

c) Some graphical methods are easily affected when variables are interchanged.
See Chernoff and Rizvi [1975] and Fienberg [1979] for related experiments.

A number of studies have been conducted to determine which of the graphical

representation are best able to bring to the fore differences between the

observation (see, for example, Wang [1978] pp.123-141). It appears that

Andrews’ curve normally fare the best, Chernoff faces second best and profile the

worst, with not much to choose from between stars, glyphs and boxes.

1.5 Introduction to Andrews Curve

Andrews [1972] have suggested a graphical method for displaying set of p-
dimensional observations x' = [x,,Xa,..... Xp | without a substantial loss of
information. Each of the XT, defines the following function
fxt) = x1/N2 + X sint+x3cost + x4 sin 2t + x5 cos 2t +........ [1.19]

This plot are then plotted the range —t <t < w. In a simplier form, fx(t) can also
be defined as following

ity =x'a [1.20]
where a' = a(t) is chosen based on the fact that

[ @, }; ’f =J [1.21]

if i
especially when a(t) is chosen as | 1/4 2, sint, cos t, sin 2t, cos 2t, ...].

When drawn across the plot, a p-dimensional observation will appear as an

individual sinusoidal curve.



1.6 Properties of Andrews Curve.

This function preserves Euclidean distances.

The Euclidean distance d between two observation x' = (x1,...,%p) and

y= (¥1,..-,¥p) 1s directly proportional to the Euclidean distance D between the
two corresponding functions [1.19]. Euclidean distance between x' and y' is

defined as

P
&= xy) [1.22]

i=1
D ? on the other hand composed of the sum of squares of all possible differences
{(xi- vi ) and make the usual association between summation for discrete variables
and integration for continuous ones. Thus at the value t; the difference between
the two function is fx (fo) - fy (io) and t; can take any value between —m and .

D* = [fx(®- O T [1.23]

[ a'x - aTy] 2 dt
[a'(x-y)]%dt
[ (a" v)( a" v)] dt where v=(x—y)

[(ayvi+ ... +agvi)(ayvy + ... +agvy) dt

I

= f a,2v)? dt+ [' a%v,t dt+ +[' avy? dt+

J:r Y 2aid vivy dt

based on orthogonal property of a defined in [1.21]

= vil+1v2 + o+ 1wt + 0

= T e
= VTV
= (xi - %;)" (% - %) [1.24]
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b)

d)

e)

This function preserves means.
This implies that the function of the mean vector of the observed vectors
X1, X32..., Xa 15 the point wise mean of the function fy (t), fx2(t),..., fxa(t). We
have
1 &
S = ;Zf (1) [1.25]

so that the curve representing the mean looks like an “average” curve.

This function preserves the variances.
If the variables in the data matrix are uncorrelated with common variance o then
the function value at t, f (t), has variance

Var [f5(£)] = o*( % + sin’t + cos’t +sin®2t + cos®2t + ...). [1.26]
If p is odd, this variance reduces to the constant % o°p, whileifp iseven the
variance lies between % o (p-1) and 1/2 o® (p+1). In either case the relative
dependence of o’; on t is either very slight or non existent, so that the variability

of the plotted function is almost constant across the graph.

The representation yields one-dimensional projections.
For a particular value of t = 15, the function value f (tp} is proportional to length
of the projection of the vector x on the vector

f1(tg) = { 14 2, sin ty, cos to, sin 2to, cos 2ty,...} [1.27]
since fy (to) = {x" f1 (to}[ f1"(to) f1 ()]}.[ f1" (to) f1 (to)]. This projection onto a
one-dimensional space may show up clustering or any data peculiarities that occur

in this subspace and which may be otherwise obscured by other dimensions.
This function preserves linear relationships.

If'y lies on the line joining x and z, then fy (t) lies between fy (t) and f, (t) for all
1.

11



1.7 Discussion on Andrews Curves

The above mention properties give rise to the fact that Andrews’ curves can be
useful in clustering observation points in homogeneous groups or to compare
individual function with the mean function. See Andrew [1971]. For all values of
t, if a set of Andrews curves remain close enough to form a band, then their
corresponding points are located close together in the Euclidean metric. This band
will represent a cluster of data points. Andrews curve is also capable of
representing a p-dimensicnal vector in a two dimensional graphical display
without any lost of information. Qutliers may be identified visually from the plot
of the functions. Any curves that stand out as quite different from any group will
be considered as outliers.

In addition, Andrews [1971] also suggested significance tests for testing
whether an individual observation vector Xi differs significantly from the
hypothetical population mean iy under the assumption that the p are independent

normal variables and construct a confident interval for pg.

= L= £.0] . 28]
varl£, ()"

However, note that this test is exact if the value of t is chosen a priori.
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CHAPTER 2: DIGITAL IMAGE PROCESSING

2.1 Introduction to Digital Image

According to Gonzales [1992], the term digital image refers to a two-dimensional
light intensity function f(x, y), where x and y denotes spatial coordinates and the
value of f at any point (x, y) is proportional to the brightness (or gray level) of the
image at that point that has been discretized both in spatial coordinates and
brightness. A digital image can be considered a matrix whose row and column
indices identify a point in the image and the corresponding matrix element value
is called a picture element or ‘pixel’. Each pixel consists of a number range from
zero to 4096 for a 12 bit image. These numbers are the gray level intensity value

at that point where zero represents brightness and 4096 represent darkness.

-----------

-----------

-----------

---------

............

Figure 2.1: A diagram showing a digital x-ray image.

7(0,0) fon .. fOM-1)

fq,O) f(‘l,l) f(lﬂ""if - 2.1]

f(x,y)=

fIN-10) f(N-11}) ... f(N-LM-1)
Figure 2.2: Two-dimensional light intensity function of a digital image.
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2.2 Gray Level Histogram.

The number of pixels in an image that have a particular gray level can be shown
using the gray-level histogram. The gray-level histogram is one of the simplest
and most useful tools in imaging as it sunimarizes the gray level content of an
image. The y axis represents the gray level and the x axis represents the frequency
of occurrence (number of pixels). However, at times, the characters of the original
image don't seem to stand out as a desired peak clearly, indicating potential
difficulties in mterpreting the histogram. In order to get a better visualization,

transformation is needed.

A
6-
4 4 3 3 ,
5 L
4 4 3 2 AT
3-
4 1 2 3 L
0 1 2 3 LT '
fl2y3ld]35,6,7 R
Image Pixel intensity

Figure 2.3: Gray level histogram
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2.3 Fundamental of Digital image processing,

Digital image processing is a series of process which aim to produces a

modified version of an image. The organization of the process is summarized in

Figure 2.4 to provide a brief overview.

Outputs of those proceses gencrallh are imazes

¥ .,
| hail'f.‘m fan
donwin

Figure 2.4:

Image acquisition could be as simple as being given an image that is already in

i

, CTLAPTE R CHATTER ™ [RTESHEH T LHAPTER &
. Wawlels and : f
: Color image { Morphological
' pmcessln; multiresetution  §=3| Compression 33% pmlc’gssin: ‘
. processing j
= L 4
CHAF TR S PUEARTER b
R 1
" Image e
cestoration rp Stgmentation
TUAPIEEL a4 THAFTER
Image Kaowledge buse . Represeatation
writrnoe ment , & desgription
i
CHANITE AT 1Y
Imapy E) Objecl
acquisiiion © mesgpnition

A summary of the organization of the general digital image

processing. (Adapted from Gonzalez [1992]).

Oniptrts of these processes genesadly e image wtribotes

digital form. Generally, an imaging sensor and the capability to digitize the signal

produced by the sensor are required in this process. Although many steps are

involved in the organization of digital image processing, however, at times, not all

steps are used. Two important aspects to be considered in this study are described

briefly as the following section.
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2.3.1 Enhancement and Filtering

When a picture is converted from one form to another, the quality of the output
picture may be lower than that of the input. Therefore a method called
enhancement is needed to enhance low quality pictures by extracting only the
important information from the image or by increasing the visibility of one
portion, aspect or component of an image though generally at the expense of
others whose visibility is diminished (contrast enhancing). However, the number
of pixels is not reduced. On the other hand, filtering is used to remove unwanted
parts of image by removing periodic noise infroduced by devices that stored and
transmit images. It functions by removing selected frequencies and orientations
by reducing the magnitude vatues for those terms. See Russ [1994]. In this study,
the x-rays we obtained are already the enhanced version and the enhancement

process has been carried out by a radiographer before hand.

2.3.2 Segmentation

Here, we consider an approach with the aim to extract hidden information in a
picture implemented by digital image processing techniques. In segmentation, the
output (raw data pixels) constitutes either boundry of a region or all the points in
the region itself. This output is then converted to a form suitable for c omputer
processing depending on the main focus of image analysis. In this study we will
be using regional representation since our focus is on the internal properties, such
as texture. It is a method for describing the data so that features of interest are
highlighted. In some cases, segmentation may also be approached as a rather
special ¢ lustering p roblem in w hich points i n n-dimensional s pace with similar

properties are grouped together.
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2.4 Brief Literature Review.

Now that high density primary and secondary memory technology and powerful
computers are a reality, the range of applications of digital imaging processing is
growing extremely rapid. Many papers of digital image processing appear in
many different joumals. Successful applications to date include industrial
application, space exploration, medical diagnostic, scientific analysis, remote
sensing, telecommunication and etc. However, in all branches, the methods used
in the pursuit of knowledge are very similar.

In the field of medical, medical radiology has developed imaging
techniques to observe the inside of human body. These techniques include
magnetic resonance imaging {(MRI) and computer tomography (CT). These
techniques provide detailed images of living tissues and are used for detecting
tissue deformities such as cancer and injuries. By converting an image into digital
form, it is possible to remove noise element from x-ray images, enhance their
contrast and remove the blurring effects and perform segmentation. This form of
representation makes it easier for physician to accurately measure the extent of
tumors and other significant features. See for example Gao [2002], Tweed [2002]
and Hiranos [2002] for the usage of segmentation in medical images and Cheng
[2003]] for the example of usage of digital imaging in diagnosis a disease.
Awcock [1995] has noted that the major motivating factor in the field of medical
imaging is to eliminate the necessity for invasive surgery or treatment as far as
possible, since this always involves some trauma to the patient as well as an

inevitable element of risk.
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CHAPTER 3: DETECTION OF MYCOBACTERIUM TUBERCULOSIS

3.1 Motivation.

Despite the existence of advanced techmology such as ultrasound and MRI,
detection of well known lung diseases like tuberculosis and lung cancer still
depends on the use of standard x-ray films. This is a direct consequence of cost
considerations. The main problem with interpreting x-ray film is the quality of

image which in turn leads to difficulties in visual interpretation.

3.2 Primary Detection of Mycobacterium Tuberculosis (MTB).

On the x-ray film, detection of MTB is visually done by looking for white spots or
“snow flakes”. Serious cases of MTB will be indicated by existence of “cavities”.
This approach of detection clearly involves considerable “subjective visual
interpretation”. Our approach to achieve objectivity is done by using Digital
Technology i.e. digital x-ray images. MATLAB will be used to analyze the

“enhanced” digital images to identify the abnormal tissue in the lung.

Figure 3.1: An x-ray film of a confirmed MTB patient. Red circle indicate MTB

infected region.
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3.3 Introduction to Line profile

A given subset of the image may further be seen as a collection of straight lines.
Each line is defined as a line profile. A typical line profile may be seen as a
“signal” (or wave), and a collection of line profiles may be useful to represent a
given subset of the image. Here, a line profile can be regarded as a form of feature
extraction. In the study presented here, we focus on obtaining just a simple
rectangular framing to delimitate left and right lung field independently. 30 line
profiles are then obtained between the ribs of the lung from the x-ray image of a
confirmed MTB patient by a MTB medical eicpert as shown in the figure 3.2. This
is done with the assistance of MATLAB.

Figure 3.2(a) Line profiles taken on a lung x-ray of patient A.
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f(x.y)
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Line Profile

X

Figure 3.2(b) A Line profile: A two-dimensional light intensity function f(x, y),
where x and y denotes spatial coordinates.

Each line profile consists of a set of p pixels with its corresponding gray level
intensity value f(x,y) as illustrated in figure3.2(b). In another word, we can regard
each line profile as a vector, say u'=f= [F(x1).f(x2),..., f(xp) ]. Wavelet analysis

will then be performed on each line profile.

3.4 Wavelets transformation.

Wavelets analysis breaks up a signal into scaled and translated version of the
wavelets-special function called mother wavelet. In this section, we introduce one
of the mother wavelet of the Daubechies family wavelets, the db4 which is the
fourth order of the Daubechies family. See Daubechies [1992]. In wavelets
transform, we start with a small scale of the mother wavelets and continuously
translate it along the function. If a section of the original signal is covered by
wavelets, we calculate it as wavelet coefficients, Cw. This coefficient explains the
quality of the match between the original signal and the mother wavelets. A high
Cw represents a great similarity. Calculating Cw at every possible scale is a

tedious work, therefore, discrete wavelet transform is used to make our analysis
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more efficient and just as accurate by choosing only a subset of scales and
position based on power of two.

An efficient way to implement this scheme using filters was developed by
Mallat [1989]. Here, we will discuss this practical filtering algorithm which yield
a fast wavelet transform briefly. For many signal, the low frequency content is the
most important part as it gives the signal its i dentity. In wavelets analysis, the
approximations are the high scale, low frequency components of the signal

whereas the details are the low scale, high frequency components.

Wavelet Decornposttion

Criginai HPF ) Detail: of
signal Level]
H T Derailz of
I: LPF HPF [~ s
LPF Approximation:
of Levei 2

Figure 3.3: Wavelet transform at two-level decomposition

In the filtering process, the original signal passes through two filters and emerges
as two signals A and D. These signals are useful but we would end up with twice,
{(2n) as much as the data we started with (n). By looking at the computation, we
may keep only one point out of two in each of the two 2n length samples to get
the complete information. This is the downsampling process (shown by the
arrow). We eventually obtain two sequences called approximate coefficients cA
and detail coefficients c¢D as illustrated in figure 3.3. These are the DWT
coefficients.

The ¢D are small and consist mainly of a high frequency noise, while the

cA contain lesser noise than does the original signal.
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This decomposition process can be iterated indefinitely with successive
approximation being decomposed in turn so that the signal can be broken down

into many lower resolution components,

3.5 Andrews curve of Wavelets Coefficients

In this study, we will only use approximation and detail coefficients from the first
level of decomposition. Having this matrix of coefficients, we will represent
vectors of each line profiles of wavelets coefficients graphically using Andrews
curve. Vectors of each line profiles u' = f = [ f(x1),f(X2),..., f(xp) ] are
transformed into f{(t) = a'n and then plotted on the same axes over the range - <t
<. Since the value of t is in the range of -7 to 7 and with increment of 0.01 each
time, we have to repeat the computation of f{t) = a'x 629 times each for every
observation. Eventually we will obtain a matrix of 629x30. We plot all the 629
values of f{t) of one observation value against its corresponding t value and by
joining these points, we obtain a sinusoidal curve. Therefore by doing the same
for all 30 line profiles, we have a set of 30 Andrews curves drawn across the plot.
Andrews curves for approximate and details coefficients are illustrated in Figure

3.4

210" Antirews Plat

a) Approximation coefficients b) Details coefficients

Figure 3.4: Thirty Andrews curves of approximation and details coefficients
over the range -n <t <.
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From the above result, it can be clearly seen that Andrews curves of detail
coefficients portray a rather messy display with out any common pattern and a
detail study have to be carried out if we wishes to exert information from it. On
the other hand, a closer examination on the Andrews curve of approximation
coefficients immediately reveals some interesting information that warrants
further studies i.e. at certain value of't, natural grouping somehow d oes o ccur.
Therefore, from this section onward, we will use only the approximation
coefficients. Both approximation and details coefficients are attached in Appendix

A

3.6 Clustering of Line Profile

Through cluster analysis, we hope that we will obtain some information about the
similarity between each line profile and some natural grouping among them. The
first step now is to calculate the E uclidean distance between each line profiles
using equation (1.11) and form a matrix of similarity distance, D. The Euclidean
Matrix of approximation coefficients are attached in Appendix A. After having
done this, clustering methods such as Single Linkage, Complete Linkage,
Average Linkage, Centroid Method and Ward Method are applied on the
Euclidean matrix to cluster the line profiles. The outcomes of each of the
clustering methods are display graphically in a separate dendrogram as illustrated

in figure 3.5.
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Figure 3.5 (a) Dendrogram of Single Linkage Method.
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Figure 3.5 (b) Dendrogram of Average Linkage Method
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Figure 3.5 (c¢) Dendrogram of Complete Linkage Method.
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Figure 3.5 (d ) Dendrogram of Centroid Method
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Figure 3.5 (e) Dendrogram of Ward Method
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From the above results, when we fix the threshold value as two, we can see that
each of the clustering method namely Average Linkage, Complete Linkage,
Single Linkage, Centroid Method and Ward Method group rather consistant sets
of line profiles under each of two clusters formed namely A and B. At times, this
might not happen because different clustering algorithms are involved and
perhaps the groups are not spherically shaped and well separated. In order to get

the best representation of the line profiles in A and B, the average vectors in A

and B of every clustering method;cj i=1,...,10 is used. Therefore, all average

vectors of the first clusters obtained by different clustering methods are used to

get the average of average vec‘cor,.x_'l . The same is done for the second cluster to

obtain z These average vectors are then used to plot Andrews curve and the

outcomes are illustrated in figure 3.6.

%10 Andrews Plet
or : z : ; ! '.

Figure 3.6: Andrews plot of average MTB line profiles and probable MTB line
profiles.
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From figure 3.6, we can now clearly see that at certain value of t, both average
Andrews curve are well separated. For better visualization of the region in a lung
infected by MTB, the Andrews curve of higher value of wavelet coefficient will
be highlighted in red and the other in blue. The red lines are defined as the MTB
line profiles and the latter a non MTB line profiles. On the x-ray, however, the
most numbers of line profiles of higher value of wavelet coefficient formed under
all ¢ lustering m ethod will be used instead o f using the average number of line
profiles. This is done so as to reduce the risk of misclassifying an infected area as

not infected.

Figure 3.7: Two clusters of line profiles marked red and blue respectively on the
lung x ray of patient A. The former represent MTB region and latter represent a

non MTB region.
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3.7 Discussion

In this study, we demonstrate an objective method of detection of Mycobacterium
Tuberculosis (MTB) and address some aspect of analyzing the content of an
image based on line profiles obtained from a person’s chest x-rays. In this study,
line profiles are used as method of feature extraction. Line profiles obtained from
a subset of chest x-ray segmented are then transformed into Andrews curve for
analysis. Multivariate clustering methods has been proposed in search of natural
clusters within them. The results illustrated using dendogram shows that two
groups of Andrews curve can be formed. These two groups resembled the MTB
and non MTB region of the lung. A collection of line profiles from the same
cluster provide a rough estimate of boundary of the infected and non infected
area.

Detection of MTB using line profiles may somehow provides a more
accurate conclusion as the analysis is based on the values of intensity level rather
than individual visual perception. This is due to the fact that individual visual
interpretation may sometimes be subjective as a very experience medical
practitioner may give a more accurate diagnosis result than a newly trained.

In s ome c ases, analysis using line profiles may be affected by the poor
quality of x-rays images obtained. However, with the existence of digital imaging
technology, techniques such as enhancement and filtering can be used to enhance
the quality of the x rays. These ‘enhanced’ x-rays used may enable us to obtain a
more satisfactory MTB detection result.

However, the procedures demonstrated here is merely a preliminary
detection of the possible MTB infection. Clinical trial/ test (e.g. tuberculin skin
test, sputum test, temperature, weight loss, cough and etc.) is jointly needed to
verify this claim. Besides that, a basic knowledge of the chest x-rays radiology is
essential as it does influence the line profiles acquisition procedures. For example,

an area of nodus/ nerves may be mistaken for a MTB infected region.
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CHAPTER 4: DISCRIMINATION BETWEEN MTB AND LUNG
CANCER.

4.1 An Introduction to Lung Cancer

Lung cancer 1s the most common cause of cancer death in the world for both men
and women. A lung cancer occurs when cells in the lung start to replicate
uncontrollably forming growth called tumors. These tumors are malignant,
meaning that they invade and destroy surrounding healthy cells and tissue. Studies
have shown that a history of interstitial lung disease or MTB also increases the
risk of getting lung cancer and lung cancer sometimes resembles MTB on lung x-

ray. See Rubin [2001], Marcus [2000], Adjei [1999] and Bunn [2000].

4.2 Detection of Lung Cancer

A standard chest x ray can reveal an abnormal mass or nodule in the lung
and a CT scan may show very small lesions and whether cancer has spread to
other areas. But as with all type of cancer, lung cancer can be definitely diagnosed
by looking at x-ray. Abnormal mass of cancer appears lighter in color on x-ray
films than does normal, healthy lung tissue and MTB infected lungs. Therefore it
is of interest to compare such a characteristic (the level of intensity values on x-

ray) between MTB and LC as it may yield interesting results.
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Figure 4.1: An x-ray of a Lung cancer patient. Red circle indicate a lung cancer

region.

4.3 Comparison of Andrews Curve between MTB, L.C and Healthy Lung.

X-rays from 11 confirm MTB patients, 9 lung cancer patients and 4 healthy
people are used. The same procedures describe in chapter three will be used here
except that no clustering methods within a chest x-ray of a lung cancer and MTB
patient are involved. 30 line profiles are obtained from the LC/MTB/disease free
region of each x-ray image with advice from a medical expert as illustrated. For
every patient, vectors of the mean all 30 line profiles are then transformed to an
Andrews curve. The results of 11 TB patients (in blue) and 9 lung cancer patients

(in red) and 4 healthy people (in black) are as the following.
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Figure 4.2(a): Andrews curve in the range of -pi <t<pi.
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Figure 4.2(b): Andrews curve in the range of —0.5 <t <0.5

From the above results, we can see that 11 TB patients (in blue) and 9 lung cancer
patients (in red) and 4 healthy people (in black) form 3 distinct groups of clusters.
Both figure 4.1 also shows that at certain values of t, namely t;, three distinct
groups of Andrews curves were observed. These values of t; are worth

considering for further study.
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4.4 Selection of f;

Values of t;j are obtained in a way such that for every value of t >0 with increment

of 0.01 unit each time, we calculate the Euclidean Distance Difference (EDD)

between two furthest curve. The t value with the largest value of EDD at every
intervalof 0.5 unitoft willbetakenast; i=1,2,... k. We define EDD as the

difference between the maximum value of f{t) and the minimum value of f{t) of

all 24 curve at t point i.e.

EDD at t = fmax(t) ~ fmin(t)

[4.1]

The value of t; and its corresponding (1) value for all 24 Andrews curves where

i=1,2,...,6 are listed in Table 4.1.

L ty ta t3 t4 ts i
Value of t; 0.10 0.66 1.16 1.64 2.12 2.60
H1 45327 11483 7220.5 52953 4102.3 3228.3

H2 48797 12335 7664.6 5696.9 44453 3427
H3 46224 12211 7350.2 5473.6 4117.5 3251.8
H4 46042 11981 74999 5398.2 | 4221.3 3263.2
TB1 55370 13815 87714 6581.5 51229 4012.4
TB2 58503 14836 9303.3 6859.6 5251.5 4081.7
TB3 64116 16449 10226 7455.1 5811.8 4512.1
TB4 59649 15459 0570.2 7071.1 54803 4258.3
TBS5 62579 15574 9816.6 | 7066.1 56453 | 4317.9
TBG6 58509 15128 9350.4 6765.7 5097.5 | 3962.6
TB 7 66763 15922 10344 76153 5921.9 4499.6
Value of TB8 64529 16363 10217 7601.8 5991.8 | 46794
f(t) TBS 56132 14644 9027.6 6664 5127.3 4019.7
TB10 56357 14833 9133.2 6694.8 52799 | 40473
TB11 77916 19840 12355 9195.8 7079.2 | 5556.1
LC1 81861 21050 13182 9779.2 7624.4 | 5966.4
LC2 80081 20448 12797 9424.3 73560.3 5762.2
LC3 81507 21057 12069 9538.2 7399,1 5741.2
LC4 76411 18561 12140 8965.4 6916.1 54193
LCsS 84470 | 21572 13399 9886.4 | 7647.3 5975.8
LC6 90854 | 23160 144560 10690 8289.3 6503.7
LC7 B1385 200689 12888 9561.2 7461.1 5848.7
LCS8 79708 20300 12720 9350 7260 5752.3
1.C9 77352 19752 12333 5134.4 7108.3 5576.8

Table 4.1: Value of tj and its f{t;) for all 23 Andrews curves.
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4.5 Discrimination and Misclassification

At a t point, all 24 values of f{t) is obtained and median value of each cluster is
calculated. This is done so that future classification can be carried out by
comparing the value of the three median and the value of f,(t) of an unknown new

curve, say W, at selected value of t. For a set of Andrews curve at selected value

of t where f,(t) < f,(f) <...< f,(t), the median is defined as

Median-—-%[ fo)+ fu, ()] if n=2k [4.2]
Median = f, (£) if n=2k-1 [4.3]

The classification rule is defined as the following:

Rule Description
A if £(t) value is closer to median of lung cancer’s group, we say W
belongs to the lung cancer’s group
B if £,{t) value is closer to median of tuberculosis’ group, we say W
belongs to the tuberculosis’ group
C we say W belong to the healthy groups

Table 4.2: Classification Rule _

To assess the performance of this classification method, we estimate the
misclassification probabilities. Since our sample size is quite smali we use the
one-in-one-out method on the samples to estimate the misclassification
probability. Each time, out of the 24 Andrews curves, we will take out one curve,
say W and leave it aside. The remaining 23 curves will then be used as the control
sets. At the selected value of ti, where 1=1,2, ...,6, the median of f{t;) for each
group (lung cancer, tuberculosis and healthy) formed by the remaining curves will
then be calculated. These values will be used as the reference values for
classifying the earlier left out curve. However, since W is a known curve,
therefore, at any selected value of ti, if W falls in any groups other than the group
it is supposed to belong to, then we say misclassification occurs. The results of

misclassification are shown in table 4.3.
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X= misclassification

Sample \' tl 2 3 t4 t5 t6
1 Hi / / / / / /
2 H2 / / / / / /
3 H3 / / / / / /
4 H5 / / / / / /
5 TB1 / / / / / /
6 TB2 / / / / / /
7 TB3 / / / / / /
8 TB4 / / / / / /
9 TBS5 / / / / / /
10 TB6 / / / / / /
11 TB7 / / / / / /
12 TB8 / / / / / /
13 TB9 / / / / / /
14 TB10 / / / / / /
15 TBI11 X X X X X X
16 LCi / / / ! / /
17 LC2 / / / / / /
18 LC3 / / / / / /
19 LC4 / / / / / /
20 LC5 / / / / / /
21 LC6 / / / / / /
22 LC7 / / / ! / /
23 LC8 / / / / / /
24 LCY / / / / / /
/

= correct classification

Table 4.3: Results of classification of a known Andrews curve.

From the above results, we obtained a 95.8% of correct classification (which is

equivalent to 4.167 percent o f misclassification) b ased on s mall sample size. a

high percentage of correct classification was obtained due to the fact that all these

curves are from known population. 4.167% of misclassification is due to the

reason that TB11 patient has developed cavities (serious stage of MTB).
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4.6 The Median Graph

For a better illustration, a median plof can be established by just plotting the
median point, frea(t) of the control group against certain selected value of t. Below
are the value of median of all three groups computed from all 24 Andrews curves
and the plot is illustrated in Figure 4.2. By using the same classification rule
defined earlier in Table 4.2, we can perform discrimination procedure and classify

a new Andrews curve. Note that always the median of LC>median of TB>median

of H.
Group tl 2 t3 t4 t5 t6
H 46133 | 12096 | 7425 54359 |41694 | 32575
TB 59079 | 15254 | 9460.3 | 6962.9 | 5385.1 | 4170
LC 81385 | 20689 | 12888 |9538.2 | 7399.1 | 5762.2
H=healthy lung TB=tuberculosis LC=lung cancer

Table 4.4; Reference value of median

0.5

1.5

Figure 4.3: Plots of median point of all three groups i.e. LC, MTB, H at t1, ..., t6

and an Andrews curve of a MTB patient.




4.7 Discussion

With a little modification to the earlier define procedures in detection of MTB,
our results shows that Andrews curve of LC, MTB and H can be differentiated
from one another at certain selected value of t. This happen due to the fact that a
region of lung tumor has a lower density level than of a region of healthy Iung and
region of MTB falls between them. At certain value of t, observation using
Andrews curve are able to show clusters of the three groups. In order to
discriminate these groups, median of each group is used as the reference point as
it is not much affected by the existence of possible outliers compared to mean.
Classification of an Andrews curve is then based on the ‘nearest Buclidean
Distance’ rule. A simple testing is carried out to test the misclassification
probability and the results obtain are quite satisfactory i.e. only 4.167 % of
misclassification occurs. A median plot can be constructed to illustrate the

classification and discrimination rule graphically.
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CHAPTER 5: A SIMULATION STUDY OF ANDREWS CURVES

5.1 Introduction.

The results from empirical studies in chapter 3 show that Andrews curve are
capable of differentiating the ‘disease’ line profiles from those of ‘disease-free’
line profiles. When line profiles are from known probability distribution, a detail
study of the behavior of Andrews curve can be carried out. Therefore in this
chapter, vectors from known multivariate normal distribution are generated and
then converted to its corresponding Andrews curves to study in particular the
potential of using groups of curves to perform discrimination. Generating these
vectors can be regarded as having large samples of line profiles.
Here, in simulation, two sttuations are considered;
a) generating a set of Andrews curves from a given normal population with

1) fixed mean and varying variance;

ii) varying means and fixed variance;

iii) varying variables
with the aim to have a preliminary look at the behaviors of the curves.
b) generating two sets of Andrews curves from two known normal

population with

1) fixed mean and varying variance;

il) varying means and fixed variance;
with the aim to study the potential of using groups of curves to perform

discrimination.
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5.2 Simulation for One Normal Population

We are interested in generating a set of normally distributed multivariate data. For
a given observation from Np(u*Y)), we can transform it to an simpler form i.e.
observation from Np(u,D) where D= diag(d,ds,..., dy). Therefore, in the
following section, n vectors (which is equivalent to n lines profiles) will be
generated from Np(u,D) for a selected value of # and D. The procedure is
outlined i Figure 5.1. These Xy, X3..., X, are then transformed to £(t)= aij =1,
2,..., n. Based on multivariate property in Appendix B, fi(t)= aij has the
distribution of Np(a'p, a' Da). A plot of [t, f(t)] is then drawn to form n Andrews
curves corresponding to Xi, Xz..., X, These procedures are shown in Figure 5.2.

The Andrews curves of the generated data are illustrated in Figure 5.3 and 5.4.
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/ﬂlput value of u, d;, p;, n/

h 4

Generate fitst vector

Y

Generate Z~ N(0,1)

!

Calculate x| =(Z*\/d_,.)+pj

v

A
»
>

Is no
Dimension » p=pt+i
=pi?
(Generate next vector
yes l
10
Sample size n=n+1

A 4

=n?

Figure 5.1 Flowchart showing generation of X1, Xz..., Xo from Np(n,D) where
pT= (445 My seeer ) and D= diag(d,,da,..., dp).



l

Read x, a(w)T, nj, Wi

Calculate = a(w)'x

Figure 5.2:

Is no
dimension » w=wt]
= W;j ?
yes l
ne
Dimension p n=n+1

=n;?

yes

Flow chart showing transformation of x to [a(w)]Tx.

NG

a(w)= {L, sin zaw, kosw, sin 2w, kos2aw. }
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5.2.2 Varving Variance and Fixed Mean

Andrews Fial . Arcdrewa Plat
T T T T T

c)n=40,c=15, =4, p=26 dyn=40,c=35, =9, p=26
Figure 5.4: Andrews curve for sample of size n with p variables from N( , D ),
where p=c(1,1,...,1) and D=diag(02, 02,-. . 02).

5.2.3 Discussion

When vector of p variables generated from the same population, all n curves tend
to behave in the same way and overlaps with each another group. As the value of
mean moves from zero, the curve exhibits a clearer sinusoid curve and has more
peaks. When ¢ takes a negative value, the highest peak will have negative value
and when c takes a positive value, the highest peak will be positive as well. As the
value of variance increase with fixed mean, the degree of thickness of the curve
will increase. The reason for this behavior is explained in section 1.6 (property c).
Apparently, not much information can be obtain when value of variance

increases. This can be seen in figure 5.4.
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5.3 Simulation for Two Normal Populations

In this section, we are interested in generating two sets of n;, i=1,2 vectors coming
from different normal distribution each i.e. @i, xi~Np(p;,»i), i=1,2. However,
when generating xi~Np(i, i), i=1,2 many parameters are involved and analyzing
it would be rather difficult. By using the theorem below, the numbers of
parameters involved are reduced as x is transformed into x*, where now

x* ~Np(p,D) or x* ~Np(0,I).

Theorem 1:
We have for population wi, x~Np(u,y ). i=1,2. We apply a linear transformation
x 2 Ax+ b = x* and convert the distribution into canonical form as the following:
7 x*~Npfu,D)
my : x*~Np(0,1)
where 0 = (0,0,...,0)" and gt is a p variate vector. See Appendix B for proof.
The procedures for generating sets of x*is the same as illustrated in Figure 5.1

and 5.2 and the results are illustrated in Figure 5.5, 5.6 and 5.7.
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5.3.3 Varving variables.

Andiews Pi '
. skl S 0 . ‘ Anes P
i S S S B n(\f*{j\i\ﬁi‘i P
: ! : o ST T T H 'vv
g ; 5 3' — 5" 5 Ay 1I 5 J3 4 .f: é
ayn=40,c=25o=[,p=1 bn =40, c =25, o=1, p=20
Antrwa Plat
100 T T T T T
BTV NP OV I
er—? \ -l v W -—;-v\jv:v
w] — 1 4i 1 ) :
(] 1 2 3 1 5 3

c)n=40,c=25,c=1, p=50
Figure5.7: Andrews curve for (a) sample of size n with p variables from N( u, D ),

where p=c(1,1,...,1), D=diag(c?, ¢’..., ¢*) and (b) sample of size n with p
variables from N (1,0).

5.3.4 Discussion

When vectors of variable are generated from two different populations, two
distinct bands of curves are observed. As the difference between mean of both
populations increases, clusters of curves become more well-separated. With a
fixed variance, the higher the value of mean, the higher the number of “peak” will
be observed as illustrated in figure 5.5. On the other hand, with a fixed mean,
value o f v ariance higher than 4 will be rendered useless as the curves b ecome
messy and a band of curve will be superior to the other unless then value of mean

is more than 30 as illustrated in figure 5.6. Number of variable involve will
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influence the number of peak formed as illustrated in figure 5.7. In the following

section, we will fix ¢ as 25, ¢” as 1 and p as 26 for further study of discrimination.

5.4 Study of distribution properties

Amdrews Plol
T

100

Figure 5.8: Andrews curve for sample of size 30 with 26 variables each from
(a) N( t, D ), where p=c(1,...,1), D=diag(c’,..., 6%), c = 25, o> =2 and (b) N (L,0).

A closer look at Figure 5.8 shows that only at certain value of t, both groups tend
to form distinct clusters. At other values of t, they tend to overlap with each
another making it impossible for us to distinguish them. We are interested in
obtaining the value of t where groups are distinct so that some statistical inference
can be performed on all its 60 corresponding value of f{t) and define a new way of
classification s0 that when given an unknown curve or a set of unknown curves
we are able to classify it into a group correctly by considering value mean of f{t),
finean(t) of a sets of curves with known distribution. The following section describe

a procedure on obtaining the values of ti, i =1, .., k.
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5.4.1 Selection of value of t for each sample.

At certain value of t where both cluster of curves are distinct, a set of Andrews
curves from the same population will group together closely enough to form a

‘range’ as illustrated in Figure 5.9.

Andrews Plot

Figure 5.9 Range [marked as x] formed by a sets of 30 f(t) values at a selected
value of t.

The steps of selecting the value of t are as described in previous section. These

steps are summarized in figure 5.10. All values of f{t) at the selected value of t

then used for the construction of an classification interval (confident interval).
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Read F=Ff, mi=651 |

v

Read the first row 1

y
Sort out the row’s |

maximum value,
save as G

’

Sort out the row’s
minimum value,
save as [

L Compute J=G-H

no

) ;
Dimension > ~— | m=m+l

| Sort out the maximum
value among J at every
interval of 50, save as M

Find out the coordinate (i,j)
in vector J that contain M

!

Display column vector of
F(j,:)asW

.
end

Figure5.10: Steps in obtaining the value of t. (fis a matrix of 651x60 formed
using the procedure in figure 5.2).

50



5.4.2 Hypothesis Testing

Hypothesis testing was implemented on the 60 values at every value of t obtained
in section 5.4 with the aim to test whether there is a significant difference between
the means of both groups for every chosen value of t; i=1,..., 12 i.e.
Ho: px-py=0against Hy : py- py #0
Since the probability distribution is known, the test statistics of z-test is used as
follows:
Z = _X_LZ [5.1]
Se, Sy
]

The null hypothesis will be rejected in favor of alternative hypothesis if the
observed value of |Z|> zy; at an « significance level. With hypothesis testing, all
we know is that the hypothesized value is a reascnable value for estimating the
population parameter but then we don’t know what it is likely to be. Therefore a

90% confident interval (90%CI) for g, — 4, = 0 was constructed so that we can be

90% confident that the parameter resides within a certain range. The confidence

level for p, - py can be defined as

2 2

S, S [5.2]

h m

[ (;—;)iza/z

A large value contain in the confidence interval implies that two groups of sample
are well separated whereas confidence interval containing zero value implies that
both groups have the probability of overlapping which may later lead to the risk
of misclassification. Therefore, these values of t will certainly be omitted for
further study. When we are confident enough to say that both groups are well
separated, a separate 90% confident interval for each of both groups are
constructed at every chosen values of t. These confidence intervals may be used

as a standard interval for future classification.
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5.4.3 Confidence Interval of Each Cluster.

Given a random sample X;,Xa,..., X, from a normal distribution N (u, crz), we

want to consider the closeness of }(the unbiased estimator of p) to the unknown
mean L. For the probability 1-o, we can find a number z,» from statistical table so

that
(X ~ p) i
Plizwzs-—-——(s’l‘\/;)ﬁzau}—l o4 | [5.3}

Therefore the random interval which includes the unknown mean p with
probability 1-a is

[E—za,%xhza,z(f;)} [5.4]

The results obtained are presented in table 5.1,

5.4.4 Discrimination Rule.

By constructing the confidence intervals at selected values of t we are hoping to
derive a discrimination rule such that when a new unlmown curve is drawn across
the plot, two conclusions can be made:

a) If the f(t) value from a curve falls in the one of the earlier define range,
then we conclude that the unknown curve belongs to a certain existing group.

b) If it doesn’t fall in either one of the range, then we conclude that the
unknown curve doesn’t belong to any of the existing group.

The higher the number of time a curve falls within the range of an existing group
at selected different value of t, the higher the probability we say it belongs to a

certain population.
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5.5 Discussion

The simulation study in this paper was carried out to investigate the potential of
using groups of curves to perform discrimination. Two sets of well separated
normal distributed data with known probability distribution function were
generated. Investigation on the consistency of the pattern of the curve was carried
out using different c ombination o f p arameter on the d ata. R esult s how that the
curves exhibit a rather consistent pattern throughout the study and suggest
possibility of discrimination at certain value of t. However, discrimination is hard
to be implemented when variance is large and it seems that in general the value of
t will rely on the number of variable used as it affects the location of the widest
separation (peaks) that determine the value of t. When the values of t are fixed,
confidence interval can be formed and maybe be used as a standard classification
range for future. However, we are still uncertain of how good is this
discrimination rule when it is applied on the real data set. Thus, further studies
will have to be carried out to verify this claim but for sure not for the time being

in this project.
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CHAPTER 6: CONCLUSION
6.1 Concluding Remarks

A positive reaction to a tuberculin test indicates the presence of MTB antibodies,
but it cannot diagnose an active infection, Skin test and sputum test also produces
many false negative results especially among AIDS patients and others who have
weakened immune system. Therefore, chest x rays and other imaging studies is
needed to support the above mention test. A great motivation in the work
presented here is to produce a more objective method for analyzing x-rays images
compared to the typical and rather subjective visual detection.

Exploratory Data Analysis (EDA) using graphical representation moves us
in another direction i.e. from simplification of complex multivariate data to
reflection of 1ts inherent multidimensional nature. Statistical techniques are
designed to be the best when siringent assumptions apply. However, these
classical techniques can behave badly when the practical situation departs from
the ideal described by such assumption. The techniques of EDA i.e. Andrews
curve used here help us to cope with a set of data in a fairly informal way, guiding
us toward a relatively easy and quick structure that can be used to improve visual
interpretation. Besides that, it is capable to provide us with an extensive method
for a detail study of a set of data and it emphasis on flexible probing of data
before comparing them to any probabilistic model or implementing any relevant
statistical methods.

While detection of MTB visually can be considered as being subjective,
the Andrews curve together with wavelet transformation enables us to organize
arrays of gray level intensity values graphically in a way that directs our attention
to various unanticipated features of the data. Implementation of multivariate
clustering analysis on the approximation wavelets coefficients show positive
results of some natural clustering within them. The finding illustrates that
Andrews curve allows the explication of variables to identify relevant MTB and

non MTB region of the lung. In some cases, the regions may be defined as the
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first stage of infection and secondary stage of infection. This definition relies
heavily on the line profiles selection strategy and also on the patients’ health
profiles.

An extension to the context of discriminating two well known lung
diseases i.e. MTB and LC based on the above procedures was presented. In this
real case study, Andrews curve seem to be able to classify and discriminate both
diseases. A crude discrimination rule was designed and its misclassification
probability was then estimated by performing the ‘one-in-one-out’ procedure
since the size o f sampled d ata o btained is rather small. In all tested cases, our
method exhibits a rather satisfactory performance with 95.8% of correct
classification.

Finally, a simulation study on the potential of using groups of curves to
perform discrimination under the assumption of normality was carried out. Sets of
normal distributed simulated data with a larger sample size were generated to
compare the effects of different parameter combinations on the data. It was found
that Andrews curve is not much affected by varying value of mean however it can
be misleading when value of variance increases. When two populations from well
separated known probability distribution were generated, they are easily to
compare because their properties can be summarized by their means and
variances. These approaches suggest further studies of sampling distribution and

classification based on confidence mterval constructed at selected value of t.

6.2 Limitation and Further Studies.

It is worth noting that the methodology presented in this work do have some
limitation. However, this is not a limitation of our methodology proposed but
rather limitation of the situation (eg. time, cost and other constrains). The main
limitation faced here concerns with the acquisition of numbers of x-rays for a
more thorough and comprehensive study. As the clustering results rely greatly on
the selection of line profiles, a sound knowledge of the anatomy of chest and x-

rays radiology is essential to ensure an accurate result is produced. Here, in the
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preliminary study of the x-rays, a medical expert on respiratory discase was
consulted to provide a better understanding of the disease and to obtain health’s
profiles of the confirmed patients. Last but not least, the limitation is due to the
availability of a digitizer. The procedures presented here can only be applicable
on digital images. However, not many hospitals are equipped with a digitizer at
the time being.

Further application and e valuation o f graphical methods stillneed to be
cartied out in response to the current debates that preoccupy the medical sciences
and digital image/signal processing. In this particular study for example, the
inability of Andrews curve in discriminating a MTB patient with cavities and a
lung cancer patient also warrants further study.

While the methods describe here has been tailored to the particular
application at hand, the methods could be applied with suitable modification to

design future trials having similar goals.
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Appendix B

B1: Multivariate Normal Distribution Property I:

The following are true for a random vector x having a multivariate normal
distribution:

I. Linear combination of components of x are normally distributed;
IT1. All subsets of the components of x have a (multivariate) normal distribution;
OI. Zero covariance implies that the corresponding components are
independently distributed,
IV. The conditional distributions of the components are (multivariate) normal.

B2: Multivariate Normal Distribution Property I1:

These statements are then reproduced mathematically in the results that follow
which are also the properties of multivariate normal distnbution,
For all multivariate normal random vector x,
I. Ifx~Np(p,>) ofrank p, so that 3’ T exists then (x- 1}1) sl (x L) ~X )R
II. Ifx ~Np( ]J., >, aTX =a;%; T azXa +...+ agx,, then a x~Np(a 1L, al Ya). Also
ifa'x~Np(a'y, a' Ya) for very a then x ~Np( o, 3) ;
IOl If x ~Np( , ), AeM, then ATx+b~Nq(ATp+b, AT YA). Also x+d,

where d is a vector of constants ~ Np(p+d, >);
IV. All subsets of x are normally distributed. If we respectively partitioned x, its
mean vector p and its covariance matrix ) as

i P A

then x| ~Np( i, 2211,
e Ifx; and x; are independent, then cov (x, x2) = 0.

p
e If |:x1:| - ‘N—M2 H, ,|:%H %12} then x| and x; are independent if
X2 N H, 21 2

and only if > 12 = 0.
e Ifx; and x, are independent and are distributed as Nq;( pi1, X11),

i{ 2, D 22) respectively then Xl JUI’ZH O}
A e [%”0 >
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B3: Canonical Transformation

We require 43, A" — JTand 4AX, A" - D.
Since 2., is symmetric and non singular, we can write it in spectral form:
Y, =0,4,0] , where Q, is the matrix of eigenvectors and
A, is the matrix of eigenvalue.

Let P=A;"*Q,T ,then PY, PT = [ with a P non singular.
Let C=PY, P, clearly C is symmetric and has it’s own spectral
decomposition, say
C = QcAcQc’ or Qc’COc = Ac.
Finally, by letting A = Qc’ P
Thus, 43, A" =Qc"PY, P"Qc=Qc"IQc=1
And AY, AT =Qc"PY, PTQc = 0c"CQc = Ac
The mean in the x* space can be obtained as follows:

W =Ap, +b=p
p, =Ap, +b=0
Hence b =—Ap,

And p=A(g, —p,;)
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Appendix C: Matlab Programming

C1: CLUSTERING

disp('Single");

D=pdist(c1A','euclid’);% Take the matrix transpose since we want to cluster the Tow vector
S = squareform(D);

Z1 = linkage(D,'single"); % calculate dendrogram value using Single Linkage method
dendrogram(Z1}),title("Single Linkage Method");

disp('‘Complete");

Z2=linkage(D,'complete'); % calculate dendrogram value using Complete Linkage method
figure;

dendrogram(Z2),title("Caomplete Linkage Method');

disp('Average');

Z3=linkage(D,'average”); % calculate dendrogram value using Average Linkage method
figure;

dendrogram(Z3}, title("Average Method");

disp('Centroid');

ZA=linkage(D,'centroid'); % calculate dendrogram value using Centroid method
figure;

dendrogram(Z4),title('Centroid Method');

disp("Ward");

Z5=linkage(D,'ward'); % calculate dendrogram value using Ward method
figure;

dendropram(Z5),title("Ward Method");

Tl=cluster(Z1,2);
Cl=find{T1=1),
D1=find(T1=2};
C2: SELECTION OF T VALUE AND COMPUTATION OF EDD.

%PROGRAM TO SELECT THE VALUE OF T BY CALCULATING THE E.D.D. VALUE.AT
EVERY INTERVAL OF 0.5 UNIT OF T,

FF=[F'|%matrix of 651x60

fsmax = max(FF(6:14,:)) %max(FI") treats the columns of A as vectors, returning a row
vector

fsmin = min(FF(15:23,:)) %containing the meximum element from each column.
diff=fsmin-fsmax Yomatrix of 1x651

g=1, h=50; %gh to dine the range of t to be used in calculation

fboth=[fsmax(:,g:h) ;fsmin(:,g:h) ;diff{z,g:h)] Yomatrix 3x651
maxdifl=max(diff(;,g:h))
[1,i,v] = find{fboth==maxdif1)

kl=g-1H
rowj 1=F(k1,:)" % g+jth column and all 10 row,
g2=51, 12=100; %gh to dine the range of t to be used in calculation

fboth2=[fsmax(:;,g2:h2) ;fsmin(:,g2:h2) ;diff(;,g2:h2)] Yematrix 3x651
maxdif2=max(diff{:,g2:h2))

64



[i2,j2,v2] = find({both2=—maxdif2)

k2=p2-1+2
rowj2=F(k2,:)’ % g+jth row and all 60 column,
g3=101, h3=150; %gh to dine the range of t to be used in calculation

fhoth3=[fsmax(:,g3:h3) ;fsmin(:,g3:h3) ;diff(;,g3:h3)] Y%matrix 3x651
maxdif3=max(diff(:,g3:h3))

[i3,j3,v3] = find(fboth3==maxdif3)

k3=g3-1+j3

rowj3=F(k3,:)' % g+jth row and all 60 column,

g4=151, h4=200; %gh to dine the range of ¢ to be used in calculation
fbothd=[fsmax(:,g4:h4) ;fsmin(:,g4:h4) ;diff{:,g4:h4)] Yematrix 3x651
maxdifd=max(diff{:,g4:h4))

[i4,j4,v4] = find(fboth4==maxdif4)

kd=gd-1+j4

rowj4=F(k4,:} % g+jth row and all 60 column,

g5=201, h5=250; %egh to dine the range of t to be used in calculation
fhoth5=[fsmax(:,g5:h5) ;fsmin(:,g5:h5) ;diff(;,g5:h5)] Yematrix 3x651
maxdif3=max(diff{:,g5:h5))

{i5,j5,v5] = find(fboth5—maxdif5)

k5=p5-1+35

rowj5=F(k5,:)' % g+jth row and all 60 column,

g6=1251, h6=300, Sogh to dine the range of t to be used in calculation
fboth6=[fsmax(:,g6:h6) fsmin(:,g6:h6) ;diff{:,g6:1h6)] %matrix Ix651
maxdifé=max(diff{:,g6:h6))

[16,j6,v6] = find(footh6==maxdif6)

ko=g6-1+i6

rowj6=F(ks6,:)' % gt+jth row and all 60 column,

alldif=[maxdif] maxdif2 maxdif3 maxdif4 maxdif5 maxdif6]
kk=[k1 k2 k3 k4 k5 k6]
ROWS=[rowj1 rowj2 rowj3 rowj4 rowj5 rowj6

C3: COMPUTATION OF MEDIAN AND MINIMUM DISTANCE
ROWS=[rowjl rowj2 rowj3 rowjd4 rowj5 rowj6];

medH=median([ ROWS(1,:); ROWS(3,:); ROWS(4,:); ROWS(2,))])

medTB=median(] ROWS(5,:}; ROWS(6,:); ROWS(7,:); ROWS(8,:); ROWS(9,:); ROWS(10,:);
ROWS(11,:; ROWS(12,:); ROWS(13,:); ROWS(14,:};1)

medLC=median(] ROWS(15;:); ROWS(16,:); ROWS(17,:); ROWS(18,:); ROWS(19,:);
ROWS(20,:); ROWS(21,:); ROWS(22,:); ROWS(23,:); )

medALL=[medH; medTB; medLC]
dist1=sqrt((ROWS(23,:}-medH)."2)
dist2=sgrt{{ROWS(23,:)-med TB)."2)
dist3=sqrt{(ROWS(23,:)-medLC)."2)
dist=[dist1; dist2; dist3;]
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dist]=sqrt(dist]*dist1);
dist2=sqrt(dist2*dist2);
dist3=sqrt(dist3 *dist3);
mindif=min([dist] dist2 dist3])

C4: GENERATION OF NORMAL DISTRIBUTED DATA

%this program is to generate normal random numbers from N{miu,sigma)

k=30; %to define k variables
p=40; % to define p observations
R =[pk]; % Preallocate matrix
R2=[p,k];
%FIRST POPULATION —
forn=1:p;
form= l:k;
R{n,m) = normrnd(0,1,1,1);
end
end
%SECOND POPULATION
forn=1:p;
form=1:k;
R2(n,m) =normmd(30,2,1,1);
end
end
%
Yetransformation into andrews curve,
a=l;

for t=-pi:0.01:pi; %coefficient values for andrew's plot
A=[1/sqrt(2); sin(t); cos(t); sin(2*t); cos(2*t); sin(3*t); cos(3*t); sin(4*t); cos(4*t);

sin(5%t); cos(5%t); sin{6*t); cos(6*t); sin{7*t); cos(7*t),

sin{8*t); cos(8*t); sin(9*t); cos(9*t); sin(10*t); cos(10*t); sin(11*t); cos(11*t);
sin(12*t); cos(12*t);

sin{13*t); cos(13*t); sin(14*1); cos(14*t); sin(15*t); cos(15%t); sin(16*t); cos(16*t),
sin{17*t); cos(17*t);

sin(18*t); cos(18*t); sin(19*t); cos(19*t); sin(20*t); cos(20*t); sin(21*t); cos(21*t);
sin(22*t); cos(22*1);

sin(23*t); cos(23*t); sin(24*t); cos(24%t); sin(25%t)];

% choose a subset of coefficients vector A that has size k

Al=A(l:k);

H=R",

H2=R2"

% calculate andrews curve values

F(a,:)=A1*[H(:,1) H(;,2) H(:,3) H(:,4) H(,5) H(,6) H(,7) H(,8) H(.,9) H(:,10)
H(:,11) H(:,12) H(,13) H(,14) H(;,15) H(:,16) H(:,17) H(;,18) H(:,19) H(:,20) H(:,21)
H(:,22) H(:,23) H(:,24) H(:,25) H(:,26) H(:,27) H(;,28) H(:,29) H(:,30) H(:,31) H(:,32)
H(:,33) H(:,34) H(:,35) H(:,36) H{:,37) H(:,38) H(:,39) H(:,40)};
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F2(a,)=A1"[H2(;,1) H2(;,2) H2(:,3) H2(:4) H2(5) H2(,6) H2(:,7) H2(:,8) H2(:9)
H2(;,10) H2(,11) H2(,12) H2(,13) HI(,14) H2(.15) H2(,16) H2(;17) H2(,18)
H2(:,19) H2(:;20) H2(:,21) H2(:,22) H2(:;,23) H2(.24) H2(;25) H2(:,26) H2(:,27)
H2(:,28) H2(:,29) H2(:,30) H2(:,31) H2(:,32) H2(;,33) H2(;,34) H2(:,35) H(:,36) H(:,37)
H(:,38) H(:,39) H(:,40)];

% define andrews curve x-axis
Ti(a)=t;
a=a+tl;
end
% plotting andrews plot and label its legend

plot(T1,F(:, 1), T1,F(:,2),b, T1LF(:,3),b, T1,F(:,4),p", T1,E(:,5),'b", T1,F(:,6)," T1F(:,7),
B, T1,FC.8) B, T1F(:,9), 0, T1,F(:,10),bY

hold on;

plot(T1,F(:,11),'b", T1,F(;,12),'', T1,F(:,13),b",T1,F(:,14),'v", T1,F(:,15),b)%,T1,F(;,16),',
T1,FC, 1N, W,T1L,F(;,18),p, T1LF(:, 19,0, T1,F(:,20),b")

hold on;

plot(T1,F(:,21),v", T1,F(:,22),'%" T1,F(:,23),b", T1,F(:,24),b", T1,F(:,25),'v", T1 F(;,26),v",T1
JF(6,27),0,T1LF(,28),D', T1,F(:,29),v, TEF(:,30),D),

hold on;

plot(T1,F2(:,1),'%',\ T1,F2(:,2),' k", T1,F2(:,3),k", T1,F2(:,4),'%', T1,F2(:,5),'k", T1,F2(:,6),'’k"T1
JF200,0), K TLR2(:,8),%, T1,F2(:,9),'K, T1,F2(;,10),'k)

hold on;

plot{T1,F2(:,11),%,T1,F2(:,12),k, T1,F2(:,13),'k', T1,F2(;,14), k", T1,F2(:,15),'K, T1,F2(:,1

6), k' T1,F2(:,17),'k", TLLF2(:,18),'%, T1,F2(:, 19,k T1,F2(:,20),'’k")

hold on;

plot(T1,F2(:,21),'k", T1,F2(:,22),%', T1,F2(:,23),' k", T1,F2(:,24),%', T1,F2(:,25),'k", T1,F2(:,2
6), k', T1,F2(:,27), % T1,F2(;,28), %', T1,F2(:,29),%', T1,F2(:,30),'’k),

title('Andrews Plot"),axis([0 0.5 -500 10007);

grid on;

figure;

plot(T1,F(:,1),v" T1,F(:,2),'p", T1,F(:,3),0", TLF(:,4),'b", T1LF(:,5),'p", T1,F(:,6),v  T1LF(:,7),
b, T1,F(:,8),' Y, T1,F(:,9),b, T1,F(:,10),b")

hold on;

plot(T1,F(:,11),%", T1,F(:,12),'", T1,F(;,13),'0", T1,F(:,14),b", T1,F(:,15),'b", T1,F(:,16),b", T1
JF(,17),D, TLE(,18),'D', T1LF(:,19),', T1,F(:,20),b")

hold on;

plot(T1,F(:,21),%"T1,F(:,22),'b",T1,F(;,23),b', T1,F(:,24),'v", T1,F(:,25),b',T1,F(:,26),%',T1
JF(,27), 0T F(:,28),'0',T1,F(:,29),b", T1,F(:,30),b",

hold on;

plot(T1,F2(;,1),'k", T1,F2(:,2),'k" T1,F2(:,3),%", T1,F2(:,4),' k", T1,F2(:,5),k", T1,F2(:,6),k".T1
J20,0,%,T1LE2(:,8), K, T1,F2(:,9), 'k, T1,F2(;,10),'k")

hold on;
plot(T1,F2(;,11),%,T1,F2(:,12),'%', T1,F2(:,13),%', T1,F2(:,14),'%", T1,F2(:,15),' k", T1,F2(:,1
6),'%,T1,F2(:,17),%, T1,F2(;,18),'k',T1,F2(:,19),%',T1,F2(:,20),'’k")

hold on;
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plot(T1,F2(:,21), %', T1,F2(:,22),'k", T1,F2(;,23),k, T1,F2(:,24),%', T1,F2(:,25),'k', T1,F2(:,2
6),’k. T1,F2(:,27),%', T1,F2(:,28),'k, T1,F2(:,29),%", T1,F2(:,30),’k"),

title('Andrews Plot"),axis([-pi pi -500 10007);
grid on;
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