PERFORMANCE ANALYSIS OF DIFFERENTIAL PHASE MODULATION FOR HF COMMUNICATION

NORHASHIMAH BINTI MOHD SAAD

A project report submitted in fulfillment of requirements for the award of the degree of Master of Engineering (Electrical-Electronics & Telecommunications)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

OCTOBER 2004

Dedicated to my beloved Mak and Abah: Hj. Mohd Saad b. Hj. Kasim and Hjh. Siti Jeliha bt. Hj. Zakaria

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude and appreciation to my supervisor, Associate Professor Dr. Ahmad Zuri Sha'ameri, for his guidance, suggestions and encouragements throughout this study.

I would like to thank the DSP Lab Technician, Mr. Jefri Ismail for the cooperation, help and constant support throughout this study.

Very special appreciation and gratitude to Abdul Rahim Abdullah, and all my colleagues in DSP Lab: Ahmad Sazali Senawi, Nurulfadzilah Hasan, Abdul Rahim Mat Sidek and Fitri Dewi Jaswar, for all valuable suggestions, encouragements and unconditional supports to complete this study.

Last but not least, a special thanks to my parents, Hj. Mohd Saad b. Hj. Kasim and Hjh Siti Jeliha bt. Hj. Zakaria who always pray for my success, and all my colleagues in UTM for sharing ideas and knowledge to complete the Master study in UTM. Without them, this research would not have been possible.

ABSTRACT

Data transmission using HF spectrum (3-30 MHz) is widely used due to its ability in providing long distance communications at low cost. Due to multipath fading problems in HF channels, the maximum symbol rate of data transmission is limited to 100 baud per second. Differential multiple phase modulation techniques can be used to increase the transmission rate without changing the baud rate. Advanced digital modulation techniques based on PSK is used due to its reliability in providing lower error rate compared to other modulation techniques, such as modulation based on FSK. Unlike coherent detection, phase synchronization is not critical for the differential detection, and implementation can be made simpler in differential multiple phase modulations. For this study, the BER and PER performance of DPSK, DQPSK, D8PSK and D16PSK modulation techniques are presented. The performance evaluation for each modulation are investigated in additive white Gaussian noise environment and random phase delay is included that is based on uniform distribution. In general, the BER and PER performance for differential multiple phase detection decrease for every doubling of phases, but the main advantage is the reliability in data transmission in achieving higher transmission rate.

ABSTRAK

Penghantaran data melalui spektrum HF (3-30 MHz) digunakan secara meluas kerana keberkesanannya di dalam sistem komunikasi jarak jauh dengan kos yang rendah. Walaubagaimanapun, saluran HF terdedah kepada masalah pemudaran *multipath*, yang menghadkan kadar maksimum penghantaran data kepada 100 *baud* per saat. Bagi mengatasi masalah ini, pemodulatan pembezaan berbilang fasa boleh digunakan, di mana kadar penghantaran data ditingkatkan tanpa mengubah kadar simbol data. Pemodulatan digital berdasarkan fasa, PSK dipilih kerana kebolehannya memberikan BER yang lebih rendah berbanding kaedah lain, seperti pemodulatan frekuensi, FSK. Tidak seperti pengesanan secara koheren, pengesanan secara perbezaan tidak dipengaruhi oleh lengah fasa, dan perlaksanaannya menjadi lebih ringkas. Di dalam kajian ini, prestasi BER dan PER bagi DPSK, DQPSK, D8PSK dan D16PSK di analisis di dalam persekitaran hingar putih Gaussian, manakala lengah fasa secara rawak dikenakan pada isyarat mengikut taburan normal. Secara umumnya, nilai BER dan PER merosot bagi setiap peningkatan gandaan fasa dalam pemodulatan, tetapi kelebihannya adalah keberkesanannya meningkatkan kadar penghantaran data.

CONTENTS

CHAPTER	ITEM	PAGE
	TITLE PAGE	i
	TESTIMONY	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT (ENGLISH)	V
	ABSTRACT (MALAY)	vi
	CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF TERMS	xiv
	LIST OF APPENDIX	XV
CHAPTER 1	INTRODUCTION	
	1.1 Take 1 alice	1
	1.1 Introduction	1
	1.2 Purposes of Study	2
	1.3 Scope of Work	3
	1.4 Definition of Terms	3
	1.5 Problem Statements	4
	1.6 Research Methodology	4
	1.7 Organization of Thesis	5

CHAPTER II	REV	IEW OF LITERATURE	
	2.1	Introduction	6
	2.2	HF Propagation Characteristics	6
	2.3	Effects of Multipath Fading	8
	2.4	HF Digital Protocols	9
	2.5	Error Detection, Correction and Control	10
	2.6	Recent Developments in HF	11
		Communications	
CHAPTER III	THE	EORY IN HF DIGITAL	
	COMMUNICATION		
	3.1	Introduction	14
	3.2	Probability of Error	15
	3.3	Match Filter	18
	3.4	Poisson Distribution Function	21
	3.5	Coherent Detection	22
		3.5.1 Phase Shift Keying Coherent	22
		Detection	
	3.6	Phase Synchronization Error in Coherent	24
		Detection	
	3.7	Differential Phase Shift Keying	25
	3.8	Robustness To Phase Synchronization Error	29
		in DPSK Detection	

CHAPTER IV DESIGN OF DIFFERENTIAL MULTIPLE PSK MODULATION

	4.1	Introduction	30
	4.2	Differential Multiple Phase Shift Keying	31
	4.3	Union Bound On Probability of Error	33
	4.4	Differential Quadrature Phase Shift Keying	35
		4.4.1 DQPSK BER Performance	41
	4.5	Differential 8 Phase Shift Keying	43
		4.5.1 D8PSK BER Performance	46
	4.6	Differential 16 Phase Shift Keying	49
		4.6.1 D16PSK BER Performance	57
	4.7	Robustness to Phase Synchronization Error	58
		in Differential Multiple PSK Detection	
		4.7.1 Case for DQPSK Detection	59
		4.7.2 Case for Differential Multiple	60
		Phase Detection	
	4.8	Signal Representation in Time and	63
		Frequency Domain	
CHAPTER V	RES	SULTS AND DISCUSSIONS	
	5.1	Introduction	64
	5.2	Analysis of BER Performance	66
	5 3	Analysis of PER Performance	60

CHAPTER VI	CONCLUSIONS		
	6.1	Conclusions	73
	6.2	Suggestions	74
	REF	ERENCES	76
	APP	ENDICES	80

LIST OF TABLES

TABLES	TITLE	PAGE	
3.1	Encoded sequence for DPSK transmitter	27	
3.2	DPSK detected sequence	27	
4.1	Combination for DQPSK Transmitted Signal	36	
4.2	Encoded sequence for Inphase channel of DQPSK	37	
	transmitter		
4.3	Encoded sequence for Quadrature channel of DQPSK	37	
	transmitter		
4.4	DQPSK detected sequence for Inphase channel	37	
4.5	DQPSK detected sequence for Quadrature channel	37	
4.6	Lookup table for D8PSK detection	46	
4.7	Lookup table for D16PSK detection	56	
5.1	Theoretical BER Performance for a fixed BER of 10 ⁻⁴	67	
5.2	BER performance of simulation result for a fixed	68	
	BER of 10 ⁻⁴		
5.3	Theoretical PER Performance for a fixed PER of 10 ⁻²	70	
5.4	Simulation PER Performance for a fixed PER of 10 ⁻²	71	

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Types of HF propagation	7
3.1	Gaussian distribution for symbol x_0 and x_I	16
3.2	Block diagram of a system	19
3.3	Block diagram for PSK coherent detection	23
3.4	Block diagram of DPSK transmitter	26
3.5	Block diagram of DPSK receiver	26
4.1	Constellations diagram for differential multiple PSK	32
4.2	Basic differential multiple PSK modulator	32
4.3	Basic differential multiple PSK demodulator	33
4.4	Union bound signal space diagram for differential	34
	M-ary PSK	
4.5	DQPSK constellations diagram	36
4.6	DQPSK receiver structure	38
4.7	Union bound for DQPSK BER performance	40
4.8	D8PSK constellations diagram	42
4.9	Demodulation structure for D8PSK detection	43

4.10	D8PSK union bound signal space plane	47
4.11	D16PSK constellations diagram	49
4.12	D16PSK receiver structure	50
4.13	Signals representation in time and frequency domain	64
5.1	Theoretical BER performance	66
5.2	Simulation result of BER performance	68
5.3	Theoretical PER performance	69
5.4	Simulation result of PER performance	71

LIST OF TERMS

BER - Bit Error Rate

DPSK - Differential Phase Shift Keying

DQPSK - Differential Quadrature Phase Shift Keying

D8PSK - Differential 8-Phase Shift Keying

D16PSK - Differential 16-Phase Shift Keying

FSK - Frequency Shift Keying

HF - High Frequency

PER - Packet Error Rate

PSK - Phase Shift Keying

SNR - Signal to Noise Ratio

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	BER Performance	81
В	PER Performance	82
C	Detection based on FSK	83

CHAPTER I

INTRODUCTION

1.1 Introduction

Ionospheric propagation is responsible for the ability to do broadcasting and communications. The long distance transmission is carried out on the HF spectrum (3-30 MHz) using skywave propagation, while for the short distance transmission, the groundwave propagation will be used [Goodman, 1992]. Nowadays, the HF communication system is widely used, not only for the tactical and strategic military purposes, but also by the commercial world, amateur radios, maritime and aeronautical operators.

The advantages of this type of communication arise from its relative simplicity, its ability to provide communication over thousand of miles and its moderate cost per circuit mile. HF communication involves minimum infrastructure and inexpensive maintenance compared to other technology such as satellite communication [Abdullah-Husni et al, 2003].

Due to variability of ionosphere, the HF signal is subjected to multipath fading phenomenon, which limits the data transmission rate to 100 baud per second [Goodman, 1992]. In order to overcome this problem, the advanced modulation techniques can be used to ensure the reliability in data transmission. Thus, the focus of this study is to design a HF communication system that can improve the reliability in data transmission using differential multiple phase modulation techniques.

1.2 Purposes Of The Study

The purpose of this study was to design and simulate a HF communication system that can increase data transfer rate that is limited by using HF channel using advanced modulation techniques specifically in differential multiple phase modulations. The performances of the techniques are analyzed in term of the bit error rate and packet error rate of the modulation. Differential detection is used to overcome phase synchronization error in coherent detection.

1.3 Scope Of Work

This study was focused on differential multiple phase digital modulation, which is important to design a system that can increase data transfer rate that is limited by using the HF transmission channel. The modulation techniques used are DPSK, DQPSK, D8PSK and D16PSK.

System was designed to process within the voice band frequency and not on radio band frequency. Sampling frequency used is 8000 Hz and the carrier frequency is 1000 Hz. The bandwidth of the signal is 4000 Hz.

Data format used is PACTOR, containing 8 characters or 64 bits of data and 16 bits for error control in a packet for 100 baud data transmission rate. The system was designed to test in a present of additive white Gaussian noise and random phase delay in received signals.

1.4 Definitions of Terms

For the purpose of this study, the following operational definitions are used:

BER Bit error rate – number of error present within the period of data

transmission

DPSK Differential phase shift keying

DQPSK Differential Quadrature phase shift keying

D8PSK Differential 8-phase shift keyingD16PSK Differential 16-phase shift keying

FSK Frequency shift keying

HF High frequency band channel

PER Packet error rate – number of packet with at least an error presents

PSK Phase shift keying

SNR Ratio of signal power to noise power

1.5 Problem Statements

In HF communication system, the variability of ionosphere results multipath fading phenomenon. This phenomenon gives several affects in the communication, which are frequency selective fading and time selective fading [Goodman, 1992].

Frequency selective fading problems will cause for inter symbol interference (ISI). Due to this problem, the maximum data transmission rate is limited to 100 baud per second [Goodman, 1992][Willink et al, 1996]. By limiting the data transmission rate to 100 baud per second, inter symbol interference (ISI) problem can be avoided. As a solution, to increase the data transmission rate without changing or increasing the baud rate, the differential multiple phase modulation can be used.

1.6 Research Methodology

There are several approaches taken in order to achieve the objective of this study, which are:

- 1. Literature of review on HF communication system for understanding the concept and problem that occur in this particular type of communication.
- 2. Understanding the basic theory on digital signal processing and digital communication system to find ways on solving research problems.
- 3. Designing differential multiple PSK system which are DPSK, DQPSK, D8PSK and D16PSK.
- 4. Programming in MATLAB for performance analysis purposes.

- 5. Data analysis and simulation of the detection using MATLAB to analyze the performance of modulation techniques in term of BER and PER.
- 6. Calculation and performance comparison between theory and simulation.
- 7. Thesis and report writing.

1.7 Organization Of Thesis

This thesis is divided into six chapters. The first chapter contains an overview of this project. Some explanations about the literature and recent development in HF were covered in chapter 2. Chapter 3 describes the theory in HF digital communication. The design of differential multiple phase modulations were described in chapter 4. Chapter 5 presents the analysis of results. This thesis ends with the conclusion and suggestions for further research.

REFERENCES

- [Abdullah-Husni et al, 2003] Abdullah, M.A.; Husni, E.M.; S. Hassan, S.I., "Investigation of a Rural Telecommunication System using VSAT Technology in Malaysia." *9*th Asia Pacific Conference on Communications, 2003 (APCC), Penang, 21-24 September 2003.
- [Charles-Tri, 2003] Charles, W.V.; Tri, T.H., "Performance Analysis of Direct Sequence Differential Phase Shift Keying (DS-DPSK) with Self-Normalization and L-Fold Diversity in a Fading Channel." California: Naval Postgraduate School, 2003.
- [Couch, 1997] Couch, L.W. II, "Digital and Analog Communication Systems." Prentice-Hall International, Inc. 5th edition, 1997.
- [Goodman, 1992] Goodman, J.M., "HF Communications Science and Technology," Van Nostrand Reinhold, 1992.
- [Haykin, 1988] Haykin, S., "Digital Communications." John Wiley and Sons, Inc., 1988
- [Jaswar-Sha'ameri, 2003] Jaswar, F.D.; Sha'ameri, A.Z., "FPGA Implementation of CPFSK Modulation Techniques for HF Data Communication." Malaysia: Faculty of Elect. Engr., Univ. Teknologi Malaysia, 2003.
- [John-Mohamed et al, 2002] John, D.B.; Mohamed, K.N.; Mary, E.D., "Data Recovery in Differentially Encoded Quadrature Phase Shift Keying (DEQPSK)." Mnemonics, Inc., 2002.

- [Kasser, 1991] Kasser, J.E., "Applied digital communications via HF radio." *Fifth International Conference on HF Radio Systems and Techniques*, 1991, pp. 44–47.
- [Kolimbiris, 2000] Kolimbiris, H., "Digital Communications Systems with Satellite and Fiber Optics Applications." New Jersey: Prentice Hall, Inc., 2000.
- [McNamara, 1991] McNamara, L.F., "Ionosphere: Communications, Surveillence, and Direction Finding." Krieger Publishing Company, Malabar, Florida, 1991.
- [NATO] NATO Standardization Agreement: "Profile For High Frequency (HF) Radio Data Communicatios STANAG 5066."
- [Nilsson-Giles, 1997] Nilsson, J.E.M.; Giles, T.C., "Wideband multi-carrier transmission for military HF communication," MILCOM 97 Proceedings ,Volume: 2, pp.1046 –1051, 1997.
- [Proakis, 1995] Proakis, J.G., "Digital Communications." Mc Graw-Hill, Inc., 3rd Edition, 1995.
- [Henry, 1992] Bill Henry, K9GWT. "Getting Started in Digital Communications-Part 4-AMTOR." American Radio Relay, Inc. QST June 1992, pp. 34-35, 1992.
- [Raos et al, 2003] Raos; Del Cacho, A.; Perez-Alvarez, I.; Zazo, S.; Mendieta-Otero, E.; Santana-Sosa, H.; Paez-Borralo, J.M., "Advanced OFDM-CDMA HF Modem With Self-interference Cancellation." Spain: Universidad de Las Palmas de Gran Canaria, 2003.
- [Reynolds-Gillespie, 1997] Reynolds, P.D.; Gillespie, A.F.R., "Interim Profile For Maritime HF Data Communications." *IEE 7th Int. Conf. on HF Radio Systems and Techniques, 1997*, pp. 265-270, 1997.

- [Roden, 1988] Roden, M.S., "Digital Communication Systems Design." Prentice-Hall International Inc., 1988.
- [Rodger, 2000] Rodger, E.Z.; Roger, L.P., "Introduction to Digital Communication." New Jersey: Prentice-Hall Inc., 2000.
- [Sha'ameri-Jaswar, 2003] Sha'ameri, A.Z.; Jaswar, F.D., "Detection of Binary Data for FSK Digital Modulation Signals using Spectrum Estimation Techniques." 4th

 National Conference On Telecommunication Technology (NCTT 2003), 2003.
- [Shanmugan, 1988] Shanmugan, K.S.;Breipohl, A.M., "Random Signals: Detection, Estimation and Data Analysis," John Wiley & Sons Inc. 1988.
- [Stalings, 2000] Stalings W., "Data and Computer Communications." Prentice-Hall Internal Editions 6th edition, 2000.
- [Tomasi, 1987] Tomasi; Wayne, "Advanced Electronic Communications Systems." Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1987.
- [Trinder-Brown, 1999] Trinder, S.E.; Brown, D.D., "Algorthms For The Adaption Of Data Rate Using STANAG 5066." IEEE, Savoy Place, London, 1999.
- [Willink et al, 1996] Willink, T.J.; Davies, N.C.; Clarke, J.; Jorgenson, M.B.; "Validation of HF Channel Simulators." *Frequency Selection and Management Techniques for HF Communications, IEE Colloquium on*, 1996, Page(s): 13/1-13/6.

[Yao-Teng et al, 2002] Yao, M.; Teng, J.L.; Subbarayan, P., "Error Probability for Coherent and Differential PSK Over Arbitrary Rician Fading Channels With Multiple Co-channel Interferers." *IEEE Transactions on Communications*, Volume: 50. No. 3. 2002, pp 428-431.