FAN BEAM OPTICAL TOMOGRAPHY

MAZIDAH BINTI TAJJUDIN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical – Mechatronic & Automatic Control)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

NOVEMBER, 2005

In the name of Allah, Most Gracious, Most Merciful.

To my beloved and supportive husband, my kids; Ihsan and Irfan.

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisor Prof. Dr. Ruzairi Abdul Rahim for his outstanding support and excellent supervision. This project would not been successful without his invaluable guidance, enthusiastic help as well as constructive criticisms throughout the project.

Special thanks to my beloved husband, Mohd Hezri for providing me numerous constructive ideas. Also, thanks to my friends and those whom had helped me in one way or other during my work.

ABSTRACT

The project describes the development of a fan beam optical tomography which applied infra red sources as the sensing element. The number of sensors used in the project is very limited and that gave a significant impact on the results obtained. However, the approach of the project is concentrated on the investigation of the performance and limitations of applying infra red sensors in process tomography. Numerous optical sources had been utilized based on the fact that it is the simplest method available up till now. The advantage of infra red sources compared to other optical sources was also discussed. The importance of identifying the sensor characteristics is crucial to make sure that it is the optimum instrument for our system. This report laid some important criteria that need to be considered upon applying infrared tomography system. The developed system used four pairs of infra red sensors to interrogate a pipe having a diameter of 50 mm. The image reconstruction algorithm was built based on the Linear Back Projection Algorithm. Several experiments had been carried out to evaluate the results. The results obtained were analyzed individually and concluded at the end of the report. Some suggestions were drawn which can be considered in order to improve the system performance.

ABSTRAK

Projek ini adalah bertujuan mendirikan satu sistem tomografi yang mengaplikasikan teknik 'fan-beam' dengan menggunakan sumber cahaya infra merah sebagai penderia. Bilangan penderia yang digunakan dalam projek ini agak terhad di mana faktor ini akan mengurangkan ketepatan bagi keputusan yang diperolehi. Walaubagaimanapun, projek ini memberi penekanan terhadap analisa bagi kelebihan dan kekurangan yang terdapat pada sistem tomografi yang menggunakan sumber cahaya infra merah ini. Pelbagai jenis sumber cahaya telah digunakan dalam projek-projek yang telah dibangunkan sebelum ini. Oleh itu, adalah dirasakan perlu untuk mengetahui apakah kelebihan atau kekurangan cahaya merah berbanding sumber-sumber cahaya yang lain. Ini bagi memastikan pemilihan penderia yang akan digunakan adalah bersesuaian dengan sistem tersebut. Laporan ini turut menggariskan beberapa criteria yang dirasakan perlu diberi perhatian ketika menggunakan sistem tomografi cahaya infr merah. Sistem ini menggunakan empat pasang penderia infra merah bagi mendapatkan data untuk paip dengan diameter sepanjang 50 mm. Imej objek tersebut dibangunkan menggunakan 'Linear Back Projection Algorithm'. Beberapa ujikaji telah dilaksanakan bagi mengenalpasti tahap keputusan yang diperolehi melalui sistem yang telah dibangunkan. Setiap keputusan telah dianalisa dan kesimpulan telah dibuat berdasarkan keputusan tersebut. Cadangan-cadangan yang dirasakan dapat membantu dalam penambahbaikan sistem tersebut turut diberikan.

TABLE OF CONTENTS

CHAPTER			PAGE	
1	INTRODUCTION			1
	1.1	Introd	uction to Process Tomography	1
	1.2	Backg	round Problems	4
	1.3	Proble	em Statements	4
	1.4	Signif	icance of Study	6
	1.5	Objec	tives	6
	1.6	Scope	of Project	6
	1.7	Organ	ization of Thesis	7
2	LIT	TERAT	CURE REVIEW	9
	2.1	An Ov	verview of Process Tomography	9
	2.2	Tomo	graphy Sensors	10
		2.2.1	Laser Doppler Anemometry (LDA)	11
		2.2.2	Electrical Capacitance Tomography	12
		2.2.3	Electrical Charge Tomography	13
		2.2.4	Ultrasonic Tomography	14
		2.2.5	Positron Emission Tomography	15
		2.2.6	X-ray	15
		2.2.7	Microwave Imaging	16
		2.2.8	Optical Tomography	16
	2.3	Optica	al Beam Projection	18
	2.4	Appli	cations of Process Tomography	19

3 HARDWARE DEVELOPMENT

24

	3.1	Introd	uction	24			
	3.2	Pipe D	Design	24			
	3.3	Select	ion of Optical Sensor	29			
	3.4	Emitte	er Driver Circuit	32			
4	SO	FTWA	RE DEVELOPMENT	35			
	4.1	Introd	uction	35			
	4.2	Linear	Back Projection	35			
	4.3	Proces	ss Model	36			
	4.4	Sensit	ivity Matrix	41			
	4.5	Progra	imming Structure	51			
		4.5.1	Data Acquisition System	53			
		4.5.2	Color Scheme	54			
5	RE	SULTS	AND DISCUSSIONS	56			
	5.1	Introduction					
	5.2	Experiment to Evaluate IR Light Reflection Effect					
	5.3	Experiment of IR Penetration Limit					
	5.4	Experi	ment to Investigate the Effect of Lighting	59			
	5.5	Experiment to Obtain Offline Data					
	5.6	Conce	ntration Profile from the Offline Data	61			
		5.6.1	Concentration Profile During No-flow Condition	62			
		5.6.2	Concentration Profile During Full-flow	64			
			Condition				
		5.6.3	Concentration Profile During Half-flow	65			
			Condition				
		5.6.4	Concentration Profile During Three-Quarter-	66			
			flow Condition				
		5.6.5	Concentration Profile During Quarter-flow	67			
			Condition				
		5.6.6	Concentration Profile During Single Object	68			
			Flow				
		5.6.7	Concentration Profile During Two Objects Flow	69			

	5.6.8	Concentration Profile for 30 mm Object Flow	70
	5.6.9	Concentration Profile for 2.5 mm Object Flow	72
6	CONCLU	SION AND FUTURE RECOMMENDATION	74
	6.1 Concl	usions	74
	6.2 Sugge	stions for Future Works	75
REFEREN	CES		77
APPENDICES			80

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Specifications of infrared emitter	30
3.2	Specification of phototransistor	30
4.1	Sensitivity value obtained when Tx0 emitted to Rx0	43
5.1	Offline Data During No-flow Condition	59
5.2	Offline Data During Full-flow Condition	59
5.3	Offline Data During Three-quarter-flow Condition	60
5.4	Offline Data During Half-flow Condition	60
5.5	Offline Data During Quarter-flow Condition	60
5.6	Offline Data for a Single Object Flow	60
5.7	Offline Data for a Single Object Flow	60
5.8	Offline Data for Two Objects Flow	60
5.9	Offline Data for 30 mm Object Flow	60
5.10	Offline Data for 30 mm Object Flow	61
5.11	Offline Data for 2.5 mm Object Flow Located Near the	61
	Pipe Wall	
5.12	Offline Data for 2.5 mm Object Flow Located Near the	61
	Pipe Wall.	
5.13	Offline Data for 2.4 mm Object Flow Located at the Centre	61
	of the Pipe	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Overview of process tomography.	1
2.1	The overview of the tomography system	10
2.2	Types of projection for optical tomography	19
	a) Orthogonal projections	
	b) Rectilinear projections	
	c) Combination of orthogonal and rectilinear projections	
	d) Four fan-beam projections	
3.1	3D isometric solid view of the pipe	25
3.2	Drafting of the pipe	26
3.3	Sensors arrangement	27
3.4	Color Sensitivity Comparison between Black and White	28
	Steel	
3.5	Pipe was Painted Black	28
3.6	The Extended Pipe	29
3.7	Profile of light emission angle using T046OD880W	31
	emitter	
3.8	Detection angle calculation	32
3.9	IR sensor circuit design	33
	(a) emitter	
	(b) detector	
3.10	Emitter and Receiver Circuit	34
4.1	Back projection	36
4.2	Beam projection layout	37
4.3	Profile of light emission angle using TO46 OD880W IR	38
	Emitter	
4.4	Pixels representing the pipe	40

4.5	Projected beam from Tx3	41
4.6	Closed-up view for a beam distribution	42
4.7	Sensitivity mapping obtain when Tx0 emitted to Rx0	44
4.8	Sensitivity mapping obtain when Tx0 emitted to Rx1	45
4.9	Sensitivity mapping obtain when Tx0 emitted to Rx2	45
4.10	Sensitivity mapping obtain when Tx0 emitted to Rx3	46
4.11	Flowchart to Obtain Sensitivity Map	47
4.12	Sensitivity mapping for Rx0	48
4.13	Sensitivity mapping for Rx1	48
4.14	Sensitivity mapping for Rx2	49
4.15	Sensitivity mapping for Rx3	49
4.16	Overall sensitivity mapping	50
4.17	Two dimensional view of the overall sensitivity mapping	51
4.18	Software main window	52
4.19	Pop-up window for offline data input	53
4.20	Flowchart of programming sequence for driver loading	54
4.21	Color scheme bar	54
4.22	Flowchart to determine color tone for each pixel	55
5.1	Typical arrangement of the instrument to measure IR	57
	reflection	
5.2	IR wave penetration test instrument arrangement	58
5.3 (a)	Concentration profile during no flow condition	62
5.3 (b)	Actual condition during no flow	62
5.4 (a)	Concentration Profile During Full-flow	64
5.4 (b)	Actual condition during Full- flow	64
5.5 (a)	Concentration Profile During Half-flow	65
5.5 (b)	Actual condition during Half- flow	65
5.6 (a)	Concentration Profile During Three-Quarter-flow	66
5.6 (b)	Actual condition during Three-Quarter- flow	66
5.7 (a)	Concentration Profile During Quarter-flow	67
5.7 (b)	Actual condition during Quarter- flow	67
5.8 (a)	Concentration Profile for a single object flow	68
5.8 (b)	Actual condition during a Single Object flow	68

5.9 (a)	Concentration Profile for a single object flow at a	68
	different location	
5.9 (b)	Actual condition during a Single Object flow at a	68
	different location	
5.10 (a)	Concentration Profile for Two Objects Flow	69
5.10 (b)	Actual condition during Two Objects Flow	69
5.11 (a)	Concentration Profile for 30 mm Object Flow	70
5.11 (b)	Actual condition for 30 mm Object Flow	70
5.12 (a)	Concentration Profile for 30 mm Object Flow	71
5.12 (b)	Actual condition for 30 mm Object Flow	71
5.13 (a)	Concentration Profile for 30 mm Object Flow	71
5.13 (b)	Actual condition for 30 mm Object Flow	71
5.14 (a)	Concentration Profile for 2.5 mm Object Flow	72
5.14 (b)	Actual condition for 2.5 mm Object Flow	72
5.15 (a)	Concentration Profile for 2.5 mm Object Flow at different	73
	location	
5.15 (b)	Actual condition for 2.5 mm Object Flow at different	73
	location	

LIST OF SYMBOLS

MRI	-	Magnetic Resonance Imaging
СТ	-	Computed Tomography Scans
PET	-	Positron Emission Tomography
CAT	-	Computed Axial Tomography
LDA	-	Laser Doppler Anemometry
MCV	-	Measuring Control Volume
ECT	-	Electrical Capacitance Tomography
LBP	-	Linear Back projection (LBP) algorithm
LED	-	Light emitting diode
ERT	-	electrical resistance tomography
EMT	-	electro-magnetic tomography
NMR	-	Nuclear magnetic resonance
DPDW	-	diffuse photon density waves
NIR	-	Near Infra Red
3D	-	Three dimensional
2D	-	Two dimensional
PVC	-	Polyvinyl chloride
С	-	Capacitance,
$\acute{ extbf{\epsilon}_0}$	-	Permittivity of free space,.
έ _r	-	Permittivity of the dielectric
A	-	Area of the plate and
d_p	-	is the distance between those plates
Tx_0	-	Transmitter 0
Tx_1	-	Transmitter 1
Tx_2	-	Transmitter 2
Tx_3	-	Transmitter 3
Rx_0	-	Receiver 0

Rx_1	-	Receiver 1
Rx_2	-	Receiver 2
Rx_3	-	Receiver 3
V _{CC}	-	Voltage supply
V_{f}	-	Voltage across LED
Ι	-	Current
Р	-	Power

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	32 x 32 pixels Sensitivity Map for 16 Views	80
В	32 x 32 pixels Weight Balanced map for 16 Views	91

CHAPTER 1

INTRODUCTION

1.1 Introduction to Process Tomography

The word "tomography" is derived from Greek language, "Tomo" means cutting section and "Graph" means picture. Tomography is a field of interdisciplinary that is concerned with obtaining cross-sectional images of an object. Therefore, the tomography process can be defined as a process of obtaining plane section images of an object (Williams and Beck, 1995). Figure 1.1 illustrates the process of obtaining the reconstructed cross-sectional image of a pipe in process tomography.

Figure 1.1: Overview of process tomography.

Process tomography had been widely used in the medical field. The important factor featured by this process is the ability of unraveling the complexities of a structure without invading the object. Furthermore, this method is able to explore the spatial distribution of the contents of a process vessel in an intrinsically safe manner and non-invasively (Sallehuddin *et. al*, 2000). Due to that fact, numerous sophisticated medical equipments were designed by applying this method such as Magnetic Resonance Imaging (MRI), Computed Tomography Scans (CT) and Positron Emission Tomography (PET). These equipments are very expensive due to the application of sensors that are capable of producing high-resolution image with high accuracy.

The tomography was first applied in industrial field in the middle of 1980's. The tomography system can increase the productivity and the efficiency of a process that uses material transportation through pipes such as in oil industry. Pipes flow visualization is often to be the first step in experimental analysis in order to improve the pipe flows and performs the process control. This makes the tomographic measurement becomes more important in industrial process nowadays (Williams and Beck, 1995).

A full understanding of process behavior requires knowledge of the direction of material movement as well as its distribution. The ability to interrogate the dynamic internal characteristics of a process plant by using conventional instrumentation is severely limited for most practical conditions (S. Ibrahim *et al.*, 2000). Tomography provides several real-time methods of obtaining the crosssection of a process to obtain information relating the material distribution. This involves taking numerous measurements from sensors placed around the section of the process being investigated and processing the data to reconstruct an image. Tomography can be used to provide feedback information on the process for the objectives of process control.

Optical tomography is an attractive method since it may prove to be less expensive, have a better dynamic response, and more portable for routine use in process plant than other radiation-based tomographic methods such as positron emission, nuclear magnetic resonance, gamma photon emission and x-ray tomography. Its performance is also independent of temperature, pressure and viscosity of fluid (S. Ibrahim *et al.*, 2000).

A simple tomography system can be built by mounting a number of sensors around the circumference of a vertical pipe or horizontal pipe. Multiple projections are used to obtain sets of data from various views across the process vessel. These data are used to provide tomographic images representing the contents of the pipeline or vessel.

The output signal from the sensors will be sent to the computer via an interfacing system. The computer will receive the signal from the respective sensors to perform data processing and finally construct a cross-section flow image in the pipe through image reconstruction algorithms. The tomographic imaging of objects provides an opportunity to unravel the complexities of structure without invading the object (Dyakowski, 1995).

With further analysis, the same signal can be used to determine the concentration, velocity and mass-flow rate profile of the flows over a wide range of flow regimes by providing better averaging in time and space through multiprojections of the same observation. Tomography will provide an increase in the quantity and quality of information when compared to many earlier measurement techniques (Abdul Rahim, 1996).

Process tomography is a technique still in its infancy, but it has the potential for enabling great improvements in efficiency and safety in process industries, while minimizing waste and pollution in a range of applications. It can be used to obtain both qualitative and quantitative data needed in modeling a multi-fluid flow system.

1.2 Background Problems

The main objective of this project is to develop an infrared optical tomography system which is able to capture cross-sectional image of solid flow inside the pipeline. Several researches had been carried out to investigate the performance of optical process tomography in obtaining the data from the process pipeline. The accuracy of the image obtained is dependant on the number of sensors used and the projection technique applied. Parallel beam projection technique produced limited number of data obtained and may had a problem with beam convergence and aliasing effect. A research conducted by Soh in 2000 had proved that such problems may be minimized with the application of fan-beam projection technique. The technique will produced a significant number of data and this will improve the accuracy of the image obtained (R. Abdul Rahim et al., 2004b)

Regarding the optical sources used in the measurement, numerous researches had been carried out to investigate the feasibility of using visible light source in many projection techniques. Unfortunately, the application of the previous mentioned light sources are very limited. For example, the application for measuring the opaque liquid tends to give erroneous result due to the flow residue that will block the beam. Even though the residue is in form of thin film, it is sufficient to block any visible light from being transmitted. To solve this problem, the infrared light source is preferable. It overcomes the above mentioned limitation.

1.3 Problem Statements

Optical tomography involves projecting a light beam through some medium from one boundary point and detecting the level of light received at another boundary point (Ruzairi, 1995). This procedure provides information from which a profile of the flow can be gained. In practice, several projection views are required to minimize aliasing effect that occurs when two particles intercept the same view (Saeed, 1988). The optical sensor emission implemented with switch mode fan beam projection is a new investigation in process tomography. The first implementation of switching principle with optical sensors for tomography research had been carried out by Dugdale in year 1992 in parallel beam optical tomography projection (Ruzairi, 2004b). The research has followed by Soh in 2000 to investigate the divergence effect of optical beam to an array of optical receivers. The initial stage of her research has shown that with switching principle implemented with two pair of optical sensors, four independent measurements obtained. The fan beam projection has proved to provide higher efficiency of measurements from the same number of optical sensors compared to parallel beam projection system. 'Fan beam' is a term used when a series of angular projections of the light sources and detectors are applied to interrogate the measurement section.

This project will utilize a switch-mode fan-beam projection technique which consists of 4 pairs of infrared optical sensors. There are several factors that must be considered during the project implementation such as:

- To develop a process tomography system that is applicable to perform a fanbeam projection, the suitable sensor should be selected considering on the wavelength of the emitter-receiver pair and the projection angle of the emitter. The emitter should be able to project a light beam to every receiver during data acquisition process.
- ii) Since infrared wavelength possessed high electromagnetic energy, several experiments will be conducted to investigate the effect of the infrared beam to the sensing system itself such as the reflection effect and the penetration limit. Further experiments will be performed to investigate the effect of the surrounding towards the system performance such as the effect of the infrared signal that is emitted by other objects.

1.4 Significance of Study

- Numerous researches had been carried out to investigate the interior condition and changes of the substances being conveyed inside the pipeline or process vessels. In this project, a non-invasive instrument to perform realtime image reconstruction process has been realized.
- 2) There are several numbers of researches had been carried out on optical process tomography. This project utilized infrared beam as a sensing system for a pipeline having a diameter of 50 mm. The response of infrared tomography system has been identified.

1.5 Objectives

- To obtain an online concentration profile of solid particles conveying in a pipeline.
- To apply the switch mode fan beam projection technique in order to increase the optical sensor ability in imaging the solid conveying system.
- To investigate the response of employing infrared sensors in optical process tomography.

1.6 Scope of project

- To construct a small-scale flow rig consists of a pipeline with a diameter of 50mm for system evaluation.
- 2) To build an image reconstruction algorithm in order to display the concentration profile of the solid particles in a pipe.
- 3) To develop an application program to display the concentration profile of the solid.

4) To interface between the hardware and software to realize the real-time application.

1.7 Organization of the Thesis

Chapter 1 introduces the process tomography. Background problems, problem statements, importance of the study, research objectives and scope of the study are presented here.

Chapter 2 mainly discusses the literature review that is related to this research. It consists of the introduction to process tomography, the significance of developing the system and some historical review about the evolvement of the process. Typical sensors used in process tomography are also discussed. The chapter content is basically give prior attention to the optical tomography system. Readers are presented with the techniques previously applied and some techniques that are still at ongoing research. The application of process tomography is very rare in our country but yet it has been applied to several applications elsewhere. In this chapter, some examples of the application were reviewed to provide the readers with some knowledge of applied tomography.

Chapter 3 discusses on the hardware development process where the criteria of the sensors are presented. This chapter also gives an explanation about the development process started from drafting to the precautions taken in order to minimize the error that may affect the data taken.

Chapter 4 gives a thorough explanation on software development stage. This includes the modeling of the process, the algorithm flowcharts and some presentation of the developed software.

Chapter 5 presents the results obtained from the experiments done on the developed system. The results obtained are discussed and a conclusion was drawn based on the analysis. Several experiments had been carried out in order to investigate the system performance in many aspects such as the accuracy of the system, the environmental effect towards the system performance and to identify the limitation of the system.

Chapter 6 contains the conclusions from this project and some suggestions for future work and development are given in order to improve the system ability.

REFERENCES

- Abdul Rahim, R. (1996). *A tomographic imaging system for pneumatic conveyors using optical fibres*. Sheffield Hallam University: PhD Thesis.
- Abdul Rahman Bidin, Green, R.G., Shackleton, M.E., Stott, A.L. and Taylor R.W. (1995). "Electrodynamic Sensors For Process Tomography." in Williams, R.A. and Beck, M.S. (Eds.) "Process Tomography: Principles, Techniques And Applications." Oxford: Butterworth-Heinemann. 101-117.
- Andreas H. Hielscher and Alexander Klose. Image Reconstruction Schemes for Optical Tomography. Proceeding of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1998. 20(2): 876 – 879.
- Chan Kok San (2002). Real Time Image Reconstruction for Fan Beam Optical Tomography System. Universiti Teknologi Malaysia: B.Eng. Thesis.
- Francis Hindle and Hugh McCann (1999). Optical Flourescence Auto-Projection Tomography: A Novel Modality. 1st World Congress on Industrial Process Tomography. April 14-17. Buxton, Great Manchester: 530 – 537.
- G.C. Giakos, M. Pastorino, F. Russo, S. Chowdhury, N. Shah, and W. Davros, Noninvasive imaging for the New Century, IEEE Instrumentation & Measurement Magazine, June 1999.
- G.T. Gullberg and G.L. Zeng. Backprojection Filtering for Variable Orbit Fan Beam Tomography. *IEEE*. 1995: 1945 – 1947.
- Gregory, I.A. (1987). Shot Velocity Measurement Using Electrodynamic
 Transducers. University of Manchester Institute of Science and Technology:
 Ph.D. Thesis.
- Hoyle, B.S. and Xu, L.A. (1995). "Ultrasonic sensors." in Williams, R.A. and Beck, M.S. (Eds.) "Process Tomography: Principles, Techniques And Applications." Oxford: Butterworth-Heinemann. 119-149.

- K. Ozanyan, S.J. Carey, F. Hindle, H. McCann, D E Winterbone, S W Young, and J Black. All- Optoelectronic Solutions for Process Tomography. *IEEE*. 2000: 330.
- L. Zeni, R. Bernini, and R. Pierri (1999). Optical Tomography for Dielectric Profiling in Processing Electronic Material. *1st World Congress on Industrial Process Tomography*. April 14-17. Buxton, Great Manchester: 488 – 493.
- Lihong V. Wang (1998). *Optical Tomography for Biomedical Applications*, IEEE Engineering in Medicine and Biology.
- Mohd. Hezri Fazalul Rahiman (2002). Real-Time Velocity Profile Generation of Powder Conveying Using Electrical Charge Tomography. Universiti Teknologi Malaysia: M. Eng Thesis.
- R. Abdul Rahim, K.S. Chan, J.F. Pang, L.C.Leong (2004a). A Hardware Development for Optical Tomography System Using Switch Mode Fan Beam Projection.
- R. Abdul Rahim, K.S. Chan, J.F. Pang, L.C.Leong (2004b). Optical Tomography System Using Switch mode Fan Beam Projection: Modeling Techniques.
- R. Abdul Rahim, N. Horbury, F.J. Dickin, R.G. Green, B.D. Naylor, T.P. Pridmore, Optical Fibre Sensor for Process Tomography use on Pneumatic Conveyors, 1995.
- Richard Thorn, Geir Anton Johansen, and Erling A Hammer (1999). Three-Phase
 Flow Measurement in the Offshore Oil Industry. Is There a Place for Process
 Tomography? 1st World Congress on Industrial Process Tomography. April
 14-17. Buxton, Great Manchester: 228 235.
- S. Ibrahim, R.G. Green, K. Dutton and Abdul Rahim R. Application of Optical Tomography in Industrial Process Control System. *IEEE*. 2000: 493 – 498.
- S. Ibrahim, R.G.Green, K.Dutton, R. Abdul Rahim, K.Evans and A.Goude (1999).
 Optical Fibres for Process Tomography: A Design study. 1st World Congress on Industrial Process Tomography. April 14-17. Buxton, Great Manchester: 511 – 516.
- S.B. Colak, M.B. van der Mark, G. W.'t Hooft, J.H. Hoogenraad, E.S. van der Linden, and F.A. Kuijpers. Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection. *IEEE Journal of Selected Topics in Quantum Electronics*. 1999. 5(4): 1143 – 1157.

- S.F.A. Bukhari and W.Q. Yang, Tomographic Imaging Technique for Oil Separator Control (2004). 3rd International Symposium on Process Tomography. Poland.
- S.J. Carey, H. McCann, D.E. Winterbone, and E. Clough (1999). Near Infra-Red Absorption Tomography for Measurement of Chemical Species Distribution. *1st World Congress on Industrial Process Tomography*. April 14-17. Buxton, Great Manchester: 480 – 487.
- Shackleton, M.E. (1982). *Electrodynamic Transducers For Gas/Solids Flow*. Bradford University: M.Phil. Thesis.
- Vasilis Ntziachristos, A.G. Yodh and Britton Chance (1999). Optical Tomography Using multi-frequency Intensity Information, *Proceedings of the First Joint BMES/EMBS Conference Serving Humanity, Advancing Technology*, Oct. 13 – 16. Atlanta, USA: IEEE, 1100 – 1101.
- Xu, L.A (1987). "Pulsed Ultrasound Cross-Correlation Flowmeter For Two-Component Flow Measurement". University of Manchester Institute of Science and Technology: Ph.D. Thesis.
- Yingna Zheng, Qiang Liu, Yang Li, and Nabil Gindy. Study on Concentration Distribution and Mass Flow Rate Measurement for Gravity Chute Conveyor by Optical Tomography System.