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ABSTRACT 

The research consists of two parts. The first part is the derivation of the design 

equations for parallel coupled bandpass filter whilst the second part is the modification 

of the structure to improve the 2nd harmonic rejection. Physical dimension equations by 

Sina Akhtarzad, Thomas R. Rowbotham and Peter B. Johns [18], 1975 were modified to 

calculate the strip width-to-substrate thickness and like gap-to-substrate thickness ratios  

from desired values of the even and odd modes characteristic impedances. The modified 

equations were taken from [12] and [20]. The improved set of equations has accuracy of 

less than 1.5% and 4% for the even and odd mode characteristic impedances, 

respectively, compared to [17]. Each length of the coupled region is calculated by using 

the modified equation of [22]. The designed filter has accuracy of less than 1.64 % and 

0.18% for the return and insertion losses, respectively, compared to the design from 

[17]. Conventional parallel coupled bandpass filter showed very high 2nd harmonic 

signal at twice the center frequency and asymmetrical response at the upper and lower 

stop bands. To improve the 2nd harmonic rejection and asymmetrical response at the 

upper and lower stop bands a modified structure of parallel coupled bandpass filter is 

proposed. The modified structure is very simple since it does not require recalculation 

of the physical dimension but showed very good improvement of the 2nd harmonic 

rejection. The modification was carried out by introducing consecutive square grooves 

in the arm of the coupled resonator of parallel coupled bandpass filter. The square 

grooves were placed at equal distance from each other where this ranges from 1 groove 

up to 7 grooves. The second harmonic present of the in the parallel coupled bandpass 

filter is due to the different phase velocity experienced by the even and odd modes. For 

the odd mode, the propagation on in the inner part of the parallel coupled line travels at 

high phase velocity compared to the even mode which travels at the outer part. By 

placing the square grooves at the inner part of the parallel coupled, this equalizes the 

electrical length for the odd and even modes. Hence, the rejection of 2nd harmonic and 

the improvement in the asymmetrical response were also achieved. The maximum 

rejection of -100dB for the 2nd harmonic and 30% improvement of the upper cut off 

frequency have been achieved.
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ABSTRAK 

Keseluruhan kajian ini terbahagi kepada dua bahagian. Bahagian pertama ialah  

pembinaan persamaan rekabentuk penapis terganding selari halus jalur. Bahagian kedua 

ialah pengubahsuaian struktur untuk menghapus kehadiran harmonik kedua. Persamaan 

fizikal dimensi dari Sina Akhtarzad, Thomas R. Rowbotham and Peter B. Johns [18], 

1975 diubahsuai untuk mengira nisbah lebar jalur – ketebalan substratum dan sela jalur 

– ketebalan substratum dari nilai galangan cirri mod ganjil dan genap. Persamaan 

ubahsuai diambil dari [12] dan [20]. Persamaan yang diperbaharui mempunyai 

ketepatan kurang daripada 1.5% dan 4% bagi masing-masing galangan ciri mod genap 

dan ganjil berbanding [17]. Panjang bahagian terganding dikira mengunakan persamaan 

terubahsuai daripada [22]. Penapis yang dibina mempunyai ketepatan kurang daripada 

1.64 % dan 0.18% bagi masing-masing kehilangan kembali dan sisipan daripada [17]. 

Penapis jalur halus terganding selari tradisional menunjukkan kehadiran harmonik 

kedua yang tinggi pada dua kali frekuensi pertengahan dan ketidak simetrian sambutan 

pada frekuensi jalur henti atas dan bawah. Untuk mengurangkan kehadiran harmonik 

kedua dan menambahkan kesimetrian sambutan penapis, modifikasi struktur 

dicadangkan. Modifikasi tersebut memberi kesan pergurangan harmonik kedua yang 

hebat dan memperbaiki kesimetrian sambutan di mana pengiraan semula tidak 

diperlukan dan kaedahnya mudah. Modifikasi dilakukan dengan memperkenalkan alur 

segiempat sama yang sama jarak di antara satu dengan lain pada bahagian penapis 

terganding selari. Alur ini diperkenalkan dalam bilangan 1 hingga 7.  Harmonik kedua 

wujud pada penapis disebabkan oleh kehadiran mod ganjil dan mod genap. Mod ganjil 

yang bergerak pada bahagian dalam terganding selari merambat dengan halaju fasa 

tinggi berbanding dengan mod genap merampat pada bahagian luar terganding selari. 

Dengan memperkenalkan alur yang sama pada bahagian dalam terganding selari, jarak 

keelektrikan kedua-dua mod menjadi sama. Oleh itu, kedua-dua mod mempunyai jarak 

keelektrikan yang sama dan harmonik kedua dapat dikurangkan. Kajian mendapati 

bahawa harmonik kedua dikurangkan sebanyak -100dB dan frekuensi potong atas dapat 

diperbaiki sebanyak 30%. 
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CHAPTER 1 

INTRODUCTION

1.1. Background

Filters are essential in the RF front end of microwave wireless 

communication system. In planar microstrip and stripline realization, one of the most 

common implementation methods for bandpass and bandstop filters with required 

bandwidths up to a 40% of central frequency is to use a cascade of parallel - coupled 

sections [1], [2].  

The synthesis procedure which consists of the design equation for the coupled 

line physical parameters (space-gap between parallel lines, line widths and lengths) 

is easy and can be found in any classical microwave books. Based on this, a well-

defined systematic procedure, for the required parallel coupled microstrip – filter 

physical parameters can be easily derived for both Butterworth and Chebyshev 

response of any order. The filter can be fabricated easily and it exhibits reasonably 

good performance compared with other planar circuit filters [1]. 

Although parallel coupled bandpass microstrip – filter is very popular and 

simple to implement as shown Figure 1.1, the traditional design does suffer from a 

fundamental limitation, namely, the presence of spurious response at twice the basic 

passbands at the design frequency as shown Figure 1.2.
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Figure 1.1: Conventional 6th Order Butterworth Parallel – Coupled Line Bandpass 

Filter

2.75 GHz 5.5 GHz

2nd Harmonic

S21

S11

Figure 1.2: The Response of Conventional 6th Order Butterworth Parallel – 

Coupled Line Bandpass 

1.2. Problem Statement 

One of the disadvantages is that the first spurious passband of this type of 

filter appears at twice the basic passband frequency as shown in Figure 1.2. 

Therefore, the rejection of the upper stopband is worse than that of the lower 

stopband. For example, if coupled – line filter is used at the next stage of frequency

converter, harmonic signals originated from frequency converter still exist. This

causes response asymmetry in the upper and lower stop bands. Hence, this greatly 

limits its applications and degrades system performance.
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This is resulted from the inequality of even and odd mode phase velocities of 

coupled lines in each stage. This problem becomes severe if inverted microstrip and 

suspended-substrate stripline are used, since these two media exhibit considerably 

greater difference in mode velocities [3].  

Another disadvantage of the parallel-coupled filter is that the filter response 

shows steeper roll-off on the  lower frequency side than on the higher frequency side 

as seen in Figure 1.2. This is the so-called frequency response asymmetry. The 

asymmetry is apparent when looking at the response of the passband group delay. 

The frequency response symmetry is also important in applications involving pulsed 

signals.

To reject these harmonics, it is usually necessary to cascade additional low 

pass filters that can reject the spurious passbands. This solution, however, increases 

the filter layout area and introduces additional insertion losses. Hence, it is necessary 

to obtain a design technology that can reduce size and reject a harmonic signal.  

Many works [3] - [6] have been proposed to tackle this problem. They fall 

into two categories [4]: 

(i) providing different lengths for even and odd modes, 

(ii) equalizing the modal phase velocities.  

It is found that connecting a short uncoupled line section at either end of the 

coupled section  improves filter characteristics, if section lengths are chosen 

correctly [3]. An over coupled resonator is proposed to extend phase length for the 

odd mode to compensate difference in the phase velocities. Subsections with a 

coupled three-line microstrip are inevitable at both ends of each coupled section in 

the filter [4].  

The capacity compensated structures are also effective in suppressing the 

spurious passband at 2fc. It should be noted that the loading capacitor are subject to 
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the electrical parameters of each coupled section [5], [6]. Recently, combinations 

different stripline-stepped impedance resonators (SIR) with specified coupling angles 

can suppress the spurious response [7].

The gap size and the line width for the input/output-coupled resonators are 

reduced to improve the rejection at 2fc [8]. Coupled wiggly microstrip lines also 

show an effective suppression on the spurious passband. The strip-width perturbation 

does not require the filter parameters to be recalculated, and the classical design 

methodology for coupled-line microstrip filters can still be used [9].  

Based on [9], a modified structure is proposed by applying the general ideas 

of the above – mentioned and Bragg condition to microstrip line to improve 

harmonic suppression characteristics [10].

1.3. Proposed Design 

The modified structure proposed is shown in Figure 1.4; using conventional 

parallel coupled – line bandpass filters, bragg and non - bragg condition to coupled 

section of microstrip line to improve harmonic suppression and frequency response 

symmetry for lower cut off and upper cut off frequency characteristics without 

recalculating the physical dimension of the design. 

The proposed design was chosen because of the simplicity and well known 

design methodology. Well established design equations are available and equations 

are simple for physical design parameter. The modification does not require 

recalculation of design parameters such as space – gap between parallel lines, line 

widths and lengths as shown in Figures 1.3 and 1.4. The structure is also easy to be 

fabricated.
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Input

Output

Figure 1.3: Non–Modified Conventional Parallel – Coupled Line Bandpass Filter. 

Input

Output

Figure 1.4: Modified Conventional Parallel – Coupled Line Bandpass. 

1.4. Characteristic of Improved Design 

In any pair of symmetric coupled microstrip lines, as shown in Figure 1.3, the 

odd mode propagates faster than the even mode along the pair, i.e., phase constant 

for the odd mode is less than the phase constant of the even mode o < e. To modify

the propagation velocity of even and odd mode, a symmetric coupled section with 

identical physical dimension should be modified for identical electrical lengths by 

the traveling path for the odd mode should be extended or for even mode should be 

reduced. For symmetric coupled microstrips lines, the typical current distributions of 

the odd and even modes are shown in Figure 1.5. It shows that the electromagnetic

energy for the odd mode concentrates around the center gap, while for the even 

mode, it concentrates around the outer metallic edges.
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Figure 1.5: Current Distribution of the Odd – and Even – Modes of a Pair of

Symmetric Coupled Microstrip [11]. 

Jz2, even

-Jz2, odd

Jz1, even

Jz1, odd

air

The possible and simplest way to extend the electrical path for the odd mode, 

and at same time to increase that for the even mode to a minim extent, is to modify

the flat coupled lines to corrugated coupled lines by introducing square grooves at 

periodical order as shown in Figure 1.4. 

Due to the modification, the symmetric coupled microstrip lines no longer 

symmetric with respect to the propagation direction. The even and odd modes of 

symmetric coupled lines are perturbed and turn into c – mode and – mode,

respectively. Most of the energy of the – mode will travel along the central wiggle 

coupling slot will experience periodical changes in propagation direction, while that 

of the c – mode along the straight outer metallic edges does not experience any 

changes in propagation direction. Based on that, the total electrical lengths of these

two eigen – modes in a coupled section can be equalized, i.e., c = , since the path

length lc > l  and phase constant c > .
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1.5. Parallel – Coupled – Line Filter Design Specification 

The design parameters chosen are 3rd to 9th order Butterworth and Chebyshev 

response bandpass filters centered at fc = 2.5 GHz with 10 % fractional bandwidth, 

substrate dielectric constant is r = 10.2 Figure 1.6 shows substrate thickness h = 1.27 

mm and metal layer thickness t = 0.017 mm.

Figure 1.6: Cross section view of the microstrip coupled line. 

The design parameters are chosen for two different responses at various 

orders to prove the applicability of the modified filter regardless of filter response 

type and order of the filter.

Coupled line 

t

h

w ws
tt

r Substrate

Ground

1.6. Objectives

The main goal of this research is to design, simulate and analyze modified

structures of conventional parallel – coupled bandpass filter without recalculating the

physical dimension, which improve the performance of filter, by minimizing

spurious response at harmonic (2fc) (improving the suppression performance of 2nd

harmonic signal) and frequency response symmetry for lower cut off and upper cut 

off frequency characteristics.
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1.7. Scopes

The scope of this project is divided into several parts; the first part is to 

identify the design equations for conventional parallel – coupled – line bandpass 

filter. Based on the design equations, MathCAD files are developed to calculate the 

physical parameters for conventional parallel – coupled – line bandpass filter. The 

filter responses based on the various design equations are compared and analyzed.  

The second part is based on the chosen design equation in the first part, 

design conventional parallel – coupled – line bandpass filter for Butterworth and 

Chebyshev responses for the 3rd to 9th Order. The designs are simulated using Sonnet 

release 9 and analyzed. 

The third part, is the improvement of the filter performance by modifying the 

conventional parallel – coupled bandpass filter structure by introducing number of 

grooves from 1 to 7 in all the design above, simulate the designs. The structures are 

simulated and analyzed. 

A comparison study was carried out for the modified and non – modified 

structures for the parallel coupled bandpass filter from the second and third part. 

Finally based on the modified structures, optimized filter is determined which as 

minimum harmonic response and fulfilled the design specifications. 

1.8. Overview on the Thesis Organization 

Chapter 1 provides a first glimpse at the basic aspects of the research 

undertaken; introduction, problem statement, proposed design, characteristics of the 

improved design, parallel – coupled – line filter design specification, objectives as 

well as the scopes of the research. 
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Chapter 2 gives an overview of the fundamentals of parallel coupled 

bandpass filter design equations in terms of filter specifications. It also shows how a 

parallel coupled can be used for the filter design, based on the given specification 

how to obtain the Zoe and Zoo from lowpass filter prototype elements. Various 

methods utilized to reduce the second harmonic are investigated and comments are 

given.

Chapter 3 shows the detail studies of various types of design equations and 

modifications on the design equations. Careful and detail studies were carried out on 

chapter to obtain a right design equation. Finally an appropriate design equation was 

achieved and used for further design of the parallel coupled bandpass filter. Filter 

design parameters are presented for various orders and responses for parallel coupled 

bandpass filter center frequency 2.5 GHz with operation bandwidth of 10 %. 

In chapter 4, results and discussion are presented. Based on the design 

equation from chapter 3, the design modification was introduced on the parallel 

coupled bandpass filter and simulated. The complete results are given for non 

modified and modified filters.  

From the results and discussion of chapter 4, further modification has been 

done on the filter design parameter to achieve the actual design specification 

proposed in this research. The modification is carried out for various orders and 

responses. Finally, the results are presented and discussed.  

Chapter 6 concludes the thesis followed by recommendations for future work. 




