A RELIABILITY ANALYSIS OF A MALAYSIA JACKET PLATFORM

DORIS CHIN CHONG LENG

A thesis is submitted in fulfillment of the requirement for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering

Universiti Teknologi Malaysia

DECEMBER 2005

Dedicated to my beloved family and Bernard for their unfailing support...

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my supervisor, Associate Prof. Dr Iberahin Jusoh for his precious continuous guidance, support and encouragement throughout my study. His ideas, suggestions and comments have given me the courage to handle this study and formed a valuable part of this thesis.

The assistance and friendship from Mr Tan Chun Chai, over the postgraduate years at Universiti Teknologi Malaysia, has been of crucial importance for the successful completion of this work. Thank very much the help rendered.

I would like the express my indebtedness to my family members, as they are the most wonderful supporters for all the decision that I have made. Also I would like to convey my gratitude to those who have helped directly and indirectly in completing this thesis.

Finally, the financial support from the Ministry of Science, Technology and Innovation through the National Science Fellowship Fund is gratefully acknowledge

ABSTRACT

After several decades of development, structural reliability technologies are maturing and becoming one of the essential assessment and design tools in the offshore industry. The objective of the thesis is to quantify the level of structural reliability of the jacket structure in the Malaysia waters. Offshore structural reliability analyses are dependent upon the environmental loads assumed to act on the structure. The modeling of environmental loading is based on the wave climate of Malaysia waters. The joint probability density function for the significant wave height and spectral peak period is modelled. Response of the structure under environmental loading was investigated by using the time domain simulation. Necessary simulation time steps are established. Interaction ratios of the members were computed based on the API RP2A-WSD to determine the level of stress utilisation of the members. From here, critical members of the jacket structure were identified. The probability failure of the critical members and other structural members of interest was determined by using the Hasofer and Lind reliability index. The fluctuation in loads and variation material properties were accounted in the assessment. For many cases failure of one component will not results in the collapse of the whole structure. Thus, system reliability analysis was carried out by using the pushover method. The system was modeled as series of parallel sub-system and the reliability of the system was evaluated by using the simple bound. The failure path of the structure was identified. Deterministic system effects of the structure were analyzed to study the redundancy of the structure, which were quantified by the reserve strength and the damage tolerance ratio. From here, the level of reliability of the jacket structure is quantified, and it serves as a reference for the evaluation of reliability-based design of jacket structures in Malaysia waters.

ABSTRAK

Setelah melalui beberapa dekad, bidang keboleharapan struktur telah berkembang dengan pesat. Ia bukan sahaja menjadi satu takat penilaian keselamatan struktur tetapi telah menjadi satu teknik rekabentuk yang penting dalam bidang kejuruteraan luar pantai. Objektif kajian ini, adalah untuk menyelidik tahap keboleharapan struktur luar pantai yang terletak di perairan Malaysia. Dalam kajian keboleharapan struktur luar pantai, pembebanan alam sekitar yang dikenakan ke atas struktur merupakan salah satu faktor utama yang perlu diberi pertimbangan yang sewajarnya. Dalam kajian ini, sumber-sumber pembebanan alam sekitar yang dimodel adalah bergantung kepada keadaan cuaca di luar pantai Malaysia. Taburan kerangkalian bergabung untuk ketinggian ombak and tempoh puncak ombak dimodelkan. Dari sini, respons struktur semasa pembebanan alam sekitar dinilai dengan menggunakan simulasi berorientasikan masa. Tempoh simulasi yang optimum ditentukan. Dari analisis tegasan, unsur-unsur yang kritikal dikenalpasti. Untuk tujuan ini, nisbah kadar tegasan telah dikira dengan menggunakan kod API RP2A-WSD untuk mengukur kadar penggunaan tegasan. Unsur-unsur kritikal yang telah dikenalpasti, kemudian digunakan untuk analisi keboleharapan struktur. Kebarangkalian kegagalan dikira dengan menggunakan Indeks Keboleharapan Hasofer dan Lind. Selain unsur yang kritikal, unsur lain yang penting juga dinilai keboleharapannya. Variasi pembebanan dan ciri-ciri bahan juga diambil kira dalam analisis ini. Dalam kebanyakan kes, kegagalan satu elemen tidak akan menyebabkan kegagalan seluruh struktur, maka analisi keboleharapan perlu dijalankan untuk mengkaji tahap keboleharapan seluruh sistem struktur luar pantai berikut. Keboleharapan sistem dijalankan dengan menggunakan teknik peningkatan beban berperingkat sehingga seluruh struktur tersebut gagal. Maka aturan kegagalan struktur dapat dikenalpasti. Kemudian, sistem tersebut telah dimodel dengan mengunakan sistem selari yang terdiri daripada sub-sistem sesiri. Keboleharapan sistem tersebut dinilai dengan menggunakan teknik had mudah. Selain itu, kesan sistem boleh-tentu juga dijalankan untuk mengkaji kebolehan struktur tersebut bertahan apabila kegagalan berlaku dari segi tegasan baki dan nisbah kerosakan. Dari analisi ini, takat keboleharapan struktur luar pantai di Malaysia boleh dianggarkan, maka keputusan yang diperoleh dapat dijadikan sebagai rujukan untuk aplikasi rekabentuk struktur luar pantai yang berdasarkan konsep koboleharapan.

LIST OF CONTENTS

CHAPTER

1

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
LIST OF CONTENTS	vii
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
LIST OF SYMBOLS	xxiii
LIST OF APPENDICES	xxvii

INTRODUCTION

1

1.1 Introduction	1
1.2 Problem Background and Motivation	1
1.3 Research Objectives	4
1.4 Scope of Study	5
1.5 Thesis Organisation	6

LITERATURE REVIEW

2.1 Introduction	
2.2 Development of Structural Reliability	
Applications	8
2.3 Outlook to the Development of the	
Offshore Industry	10
2.4 Historical Development of Oil and Gas	
Industry in Malaysia	11
2.5 Application of Reliability Analysis in	
the Offshore Industry	14
2.6 Reliability Based Code	15
2.7 Deterministic and Probabilistic	
Approaches in Reliability Analysis	17
2.8 Fundamental of Reliability Analysis	19
2.9 Classification of Reliability Methods	21
2.10 System Reliability	23
2.11 Loading on Fixed Offshore Structures	24
2.11.1 Environmental Loadings	26
2.11.2 Joint Probability of	
Environmental Parameters	27
2.11.3 Wave Kinematics	29
2.11.4 Environmental Induced Forces	33
2.11.4.1 Wave Force	33
2.11.4.2 Current Force	36
2.11.4.3 Wind Force	37
2.12 Methods of Analysis of Fluid Loading	
on Offshore Structures	39
2.13 Response of Structure under	
Environmental Loadings	41
2.14 Concluding Remarks	43

8

2

ENVIRONMNETAL MODELING

3.1 Introduction	
3.2 Environmental Condition of South	
China Sea and Data Description	51
3.3 Joint Probability of Wave Height and	
Wave Period	53
3.3.1 Joint Distribution Functions	56
3.3.2 Comparison of Fit of Distribution	
Functions	60
3.3.3 Long Term Response of Wave	
Climate	66
3.4 Wind Speed	69
3.5 Current Speed	75
3.6 Concluding Remarks	75

4

RESPONSE OF JACKET STRUCTRE UNDER ENVIRONMENTAL LOADING CONDITIONS

ADING CONDITIONS 77

4.1 Introduction	77
4.2 Structure Description	77
4.3 Probabilistic Fluid Loading Model	80
4.4 Non-linear Dynamic Analysis	82
4.4.1 Newmark-β Method	85
4.5 Simulations Studies	86
4.5.1 Required Simulation Length	87
4.5.2 Hybrid Simulation-Analytical	
Model	94
4.5.3 Direct Simulation	96
4.5.4 Numerical Results	97

4.6 Stress Utilisation	101
4.7 Simulations Results	104
4.8 Critical Members	105
4.9 Concluding Remarks	108

5

COMPONENT RELIABILITY ANALYSIS

5.1 Introduction	109
5.2 Method of Analysis	110
5.3 Monte Carlo Simulation	111
5.3.1 Generating Random Variables	111
5.4 Loading Variables	113
5.4.1 Response Surface	114
5.4.1.1 Global Response	116
5.4.1.2 Local Response	120
5.5 Resistance Variables	123
5.5.1 Resistance Uncertainties	124
5.6 Limit State	125
5.7 Hasofer and Lind Reliability Index	128
5.8 Program Description	133
5.9 Results and Discussions	136
5.10 Sensitivity Studies	147
5.11 Concluding Remarks	152

6

SYSTEM RELIABILITY

154

109

6.1 Introduction	154
6.2 Range of Methods	154
6.3 Method of Analysis Adopted	157

6.4 Modeling of Post Failure Behaviour	159
6.5 Failure Tree	160
6.6 Methods in Computing Structural	
Reliability	163
6.6.1 Classification of System	
Reliability	164
6.7 System Effects	165
6.7.1 Reserve Strength	166
6.7.2 Residual Strength	168
6.8 Results	169
6.9 Concluding Remark	180

DISCUSSION 181

7

7.1 Introduction	181
7.2 Environmental Modeling	181
7.3 Structural Response under	
Environmental Loading Conditions	184
7.4 Component Reliability Analysis	186
7.5 Variability in Component Reliability	
Index	191
7.6 Computational Method for	
Component Reliability	192
7.7 System Reliability	193
7.8 System Effects	194

CONCLUSION

APPENDIX A - G		213-246
REFERENCES		201
	8.3 Further Work	198
	8.2 Conclusion	195
	8.1 Introduction	195

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Load Factor for the Gulf of Mexico, North Sea,	
	Mediterranean Sea and the Indonesia waters.	45
3.1	Parameters of distribution function fitted to data	
	From South China Sea	59
3.2	Occurrence of annual maxima wind speed	70
3.3	Distribution Functions	72
3.4	Test of the Goodness of Fit for the wind speed	73
4.1	Input Parameters for Environmental Loadings	82
4.2	Maximum response of wave crest from the	
	simulation of wave histories using the	
	Jonswap spectrum	90
4.3	Stress utilisation ratio for 10 most critical members	
	in the wave direction of 0 degree	105
4.4	Stress utilisation ratio for 10 most critical members	
	in the wave direction of 15 degree	106
4.5	Stress utilisation ratio for 10 most critical members	
	in the wave direction of 30 degree	106
4.6	Stress utilisation ratio for 10 most critical members	
	in the wave direction of 45 degree	107
5.1	Input data for the response surface analysis	117
5.2	Global Response	119
5.3	Ranking of the structural members that has the	
	lowest reliability index	139

5.4	Reliability index for the 10 most critical members	
	based on the stress utilisation ratio	139
5.5	Reliability Index of the Jacket Leg	140
5.6	Reliability Index of Diagonal Members	140
5.7	Reliability Index of Horizontal Members	141
5.8	Reliability Index of Inner members	
	(Horizontal members) within the Jacket	142
5.9	Reliability index of members at different	
	orientation, at the same elevation for the wave	
	direction of 0 degree	142
5.10	Comparison of the reliability index for the inclined	
	members at 2 nd elevation at the wave direction	
	of 0 degree	143
5.11	Comparison of the reliability index for member	
	251 at different wave direction	143
6.1	1 st path failure	169
6.2	2 nd path failure	170
6.3	3 rd path failure	170
6.4	4 th path failure	171
6.5	Probability of failure for each failure path	171
6.6	Bounds on the system reliability index predicted	
	from the lower bound	171
6.7	Bounds on the system reliability index predicted	
	from the upper bound	172
6.8	Reserve Strength	172
6.9	Damage tolerance ratio for a single member	
	removed	175
6.10	Damage tolerance ratio for 2 members removed	177
7.1	Comparison of significant wave height for the	
	return period of 100 years for different locations	182
7.2	Comparison of extreme wave height for the	
	South China Sea (Malaysia waters)	183
7.3	Reliability index of 4-legged jacket structure	187
7.4	Detail of Platform (after Gde Pradnyana et al. 2000)	190

B1	Jacket structure's configuration	222
C1	Numbering system of the jacket structure	227
E1	Local response for selected members of the jacket	
	structure (Wave direction- 0 degree)	232
E2	Table E2: Local response for selected members of	
	the jacket structure (Wave direction- 90 degree)	239
E3	Local response for selected members of the jacket	
	structure (Wave direction- 180 degree)	239
E4	Local response for selected members of the jacket	
	structure (Wave direction- 270 degree)	240
G1	Response Surface for the 1 st Failure Path	247
G2	Response Surface for the 2 nd Failure Path	248
G3	Response Surface for the 3 rd Failure Path	249
G4	Response Surface for the 4 th Failure Path	250

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
2.1	Types of offshore structures	44
2.2	Loading and resistance probability density and	
	safety margin	45
2.3	Definition of wave train	45
2.4	Cnoidal wave	46
2.5	Validity of wave theories (Chakrabarti, 1987)	46
2.6	Definition of wave forces on small diameter cylinder	47
2.7	Distribution of the wave induced velocity and	
	acceleration on a pile	47
2.8	Methods of combining current and wave	
	(Barltrop, 1990)	48
2.9	Frequency domain analysis (Hallam, 1997)	49
2.10	Static and dynamic analysis response curve	49
3.1	Scatter diagram for significant wave height and	
	Spectral peak period	55
3.2	Linear contour of data from South China Sea	
	(East Coast of Peninsular Malaysia)	62
3.3	Logarithmic contour of data from South China Sea	
	(East Coast of Peninsular Malaysia)	62
3.4	Linear contour plot of bivariate Lognormal	
	distribution fitted to the data from South China Sea	
	(East Coast of Peninsular Malaysia)	63

3.5	Linear contour plot of bivariate Weibull	
	distribution fitted to the data from South China Sea	
	(East Coast of Peninsular Malaysia)	63
3.6	Linear contour plot of bivariate Lonowe	
	distribution fitted to the data from South China Sea	
	(East Coast of Peninsular Malaysia)	64
3.7	Logarithmic contour plot of bivariate Lognormal	
	distribution fitted to the data from South China Sea	
	(East Coast of Peninsular Malaysia)	64
3.8	Logarithmic contour plot of bivariate Weibull	
	distribution fitted to the data from South China Sea	
	(East Coast of Peninsular Malaysia)	65
3.9	Logarithmic contour plot of bivariate Lonowe	
	distribution fitted to the data from South China Sea	
	(East Coast of Peninsular Malaysia)	65
3.10	Comparison between the Lognormal distribution and	
	and the Lonowe distribution at the tail region for	
	significant wave height	66
3.11	Comparison between the empirical distribution	
	and the fitted Lonowe model for the cumulative	
	distribution function H _s	67
3.12	Probability plot for Lognormal distribution	
	(least square method)	73
3.13	Probability plot for Extreme Value distribution	
	(least square method)	73
3.14	Probability plot for Weibull distribution	
	(least square method)	74
3.15	Probability plot for Weibull distribution using	
	maximum likelihood	74
3.16	Current profile for storm condition	75
4.1	Jacket Structure	78
4.2	Geometrical information on immerse pipe	
	option in ANSYS	79
4.3	Current profile stretching	81

4.4	Displacement at X-axis (Node 705)	87
4.5	Displacement at Y-axis (Node 705)	88
4.6	Displacement at Z-axis (Node 705)	88
4.7	Sample of simulation time history from the	
	Jonswap spectrum	90
4.8	Number of simulations required based on the	
	total set of simulated time history	94
4.9	Comparison of the displacement for Node 61	
	simulated by using the optimum time interval and	
	the larger time interval of the direct time integration	
	scheme in Ansys V.6.0	98
4.10	Comparison of the stress utilisation ratio simulated	
	by using the optimum time interval and the larger	
	time interval of the direct time integration	
	scheme in Ansys V.6.0	99
4.11	Comparison between the direction simulation	
	and the hybrid simulation analytical method	
	at load step of 226	100
4.12	Comparison between the direction simulation	
	and the hybrid simulation analytical method	
	at load step of 227	100
4.13	Stress utilisation ratio of the structural members for	
	the wave direction of 0 degree (Node I) under axial	
	and bending stress	103
4.14	Stress utilisation ratio of the structural members for	
	the wave direction of 0 degree (Node J) under axial	
	and bending stress.	103
4.15	Comparison of Stress Utilization Ratio- In Place	
	Analysis and Analysis with Environmental Load for	
	wave direction of 0 degree.	106
5.1	Mapping for Simulation, where the random number	
	from the uniform distribution is transformed to a	
	lognormal distribution	113

5.2	Response surface model to obtain stresses and forces	116
5.0	in members and joints in a structure	116
5.3	Comparison of the Results Generated from ANSYS	
	and the Global Response Mode for Base Shear	110
	(Wave Direction, 0 degree)	119
5.4	Comparison of the Results Generated from ANSYS	
	and the Global Response Mode for Overturning	
	Moment (Wave Direction, 0 degree)	120
5.5	Comparison of the Results Generated from ANSYS	
	and the Local Response Mode for Axial Stress,	
	Node I (Wave Direction, 0 degree).	121
5.6	Comparison of the Results Generated from ANSYS	
	and the Local Response Mode for Axial Stress,	
	Node J (Wave Direction, 0 degree)	122
5.7	Comparison of the Results Generated from ANSYS	
	and the Local Response Mode for Bending Stress,	
	Node I (Wave Direction, 0 degree)	122
5.8	Comparison of the Results Generated from ANSYS	
	and the Local Response Mode for Bending Stress,	
	Node J (Wave Direction, 0 degree)	123
5.9	Failure Surface	128
5.10	The Hasofer and Lind reliability index β , defined	
	as the smallest distance from the origin to the failure	
	surface in the normalized z-coordinate system	129
5.11	Linearize failure surface	130
5.12	Non-linear failure surface where vector $\overline{\alpha}$ is a unit	
	normal vector in the design point A	132
5.13	Relation between reliability index and	
	probability of failure	133
5.14	Component Reliability Program Flow Chart	135
5.15	Force Profile Distribution	144
5.16	Reliability Index of the Jacket Leg	144
5.17	Reliability Index of Diagonal Members	145
5.18	Reliability Index of Horizontal Members	145
	-	

5.19	Reliability Index of members between the jacket	
	leg (X-bracing)	146
5.20	Variation of reliability index with respect to	
	the elevation	146
5.21	Failure characteristic under tension and compression	147
5.22	The Variation of Wave Height on the	
	Reliability Index	149
5.23	The Variation of Wave Period on the	
	Reliability Index	149
5.24	The Variation of Current Speed on the	
	Reliability Index	150
5.25	The Variation of Wind Speed on the	
	Reliability Index	150
5.26	The Variation of Drag Coefficient on the	
	Reliability Index	151
5.27	Sensitivity Study (10% increase in design value)	151
5.28	Sensitivity Study (10% decrease in design value)	152
6.1	Range of methods for system reliability	155
6.2	Models of Component Post-Failure Behaviour	160
6.3	Failure Tree of the Jacket Structural System	163
6.4	Pushover Curve-Intact Condition for the wave	
	direction of 0 degree	173
6.5	Pushover Curve-Intact Condition for the wave	
	direction of 90 degree	173
6.6	Pushover curve - Intact Condition for the wave	
	direction of 180 degree	174
6.7	Pushover curve - Intact Condition for the wave	
	direction of 270 degree	174
6.8	Pushover Curve-Damage Condition for the wave	
	direction if 0 degree with member 251 removed	175
6.9	Pushover Curve-Damage Condition for the wave	
	direction of 90 degree with member 241 removed	176
6.10	Pushover Curve- Damage Condition for the wave	
	direction of 180 degree with member 271 removed	176

6.11	Pushover Curve-Damage Condition for the wave	
	direction of 270 degree with member 151 removed	177
6.12	Pushover Curve-Damage Condition for the wave	
	direction of 0 degree with member 251 and 241	
	removed	178
6.13	Pushover Curve-Damage Condition for the wave	
	direction of 90 degree with ember 241 and 251	
	removed	178
6.14	Pushover Curve-Damage Condition for the wave	
	direction of 180 degree with ember 161 and 251	
	removed	179
6.15	Pushover Curve-Damage Condition for the wave	
	direction of 270 degree with member 151 and 154	
	removed	179
7.1	Safety Indices for Various Marine and Land	
	Based Structures.(after Stiansen and	
	Thamyambali, 1987)	186
7.2	Distribution of Reliability Index for the	
	Jacket Structure	189
7.3	Reliability Index vs. E/(D+L)	
	(after Pradnyana et al., 2000)	190
A1	Jacket Structure	213
A2	1 st Elevation of Jacket Structure	213
A3	Conner A	214
A4	Conner B	214
A5	Conner C	215
A6	Conner D	215
A7	2 nd Elevation of jacket structure	216
A8	3 rd Elevation of jacket structure	216
A9	4 th Elevation of jacket structure	217
A10	5 th Elevation of jacket structure	217
A11	Row B	218
A12	Base elevation of Row B	218
A13	Row 1	219

A14	Base elevation of Row 1	219
A15	Row A	220
A16	Base elevation of row A	220
A17	Row 2	221
A18	Base elevation of Row 2	221

LIST OF SYMBOLS

А	-	Wave amplitude
A _I	-	Frontal area for inertia coefficient
A _D	-	Frontal area for drag coefficient
А	-	Area
BS	-	Base Shear
a_k	-	Magnitude of one sided JONSAWP spectrum
c	-	Celerity
C _M	-	Inertia Coefficient
C _D	-	Drag Coefficient
Cs	-	Shape Coefficient
d	-	Water depth
D	-	Diameter
D_L	-	Nominal dead load
DTR	-	Damage tolerance ratio
E	-	East
f	-	Force per length
f_a	-	Output of axial stress generated from Ansys V.6.0
f_b	-	Output of bending stress generated from Ansys V.6.0
F_y	-	Yield strength
F_b	-	Allowable bending stress
F	-	Total force
g	-	Gravitation acceleration
g<0	-	Failure state
$g(X_1, X_2,, X_n)$	-	Limit state function
Н	-	Wave height
H _{1/3}	-	1/3 of wave height

H _{1/10}	-	1/10 of wave height
H _{max}	-	Maximum wave height
Hs	-	Significant wave height
k	-	Wave number
Κ	-	Kuelegan-Carpenter number
L	-	Wave length
L	-	Nominal live load
m_{Ymax}	-	Mean value of mean maxima
MWL		Mean Water Line
N()	-	Normal distribution
Ν	-	North
Nss	-	Number of sea-state realisation
Nss _{req}	-	Number of sea-state (simulation) required
n	-	Total data
OTM	-	Overturning moment
Р	-	Probability of failure
Po	-	Probability of occurence
R	-	Resistance
Re	-	Reynolds number
R_N	-	Nominal resistance
RIF	-	Residual resistance factor
RSR	-	Reserve strength ratio
R _u	-	ultimate lateral load capacity of platform
S	-	Total wave elevation (from mean water line to sea bed)
S	-	Loading
S_N	-	Nominal loading
S _R	-	reference lateral loading
$S_w(\omega)$	-	Sea surface spectrum
$S_F(\omega)$	-	Force spectrum
t	-	time
Т	-	Wave Period
T _{min}	-	Minimum time interval
T _p	-	Spectral peak period

T _r	-	Return period
Tz	-	Zero crossing period
U	-	Uniform wind velocity
u	-	Horizontal water particle velocity
U _{TS}	-	Surface current velocity
U _{TZ}	-	Current velocity at any depth
V	-	Vertical water particle velocity
V_{Ymax}	-	Covariance of the maximum response in a single sea-
		State
$V_{\eta max}$	-	Covariance of maximum wave crest elevation
W_L	-	Nominal environmental load
X	-	distance of wave propagation along x-axis
X_i	-	Discretized wave history
X _R	-	Modeling accuracy for resistance
X _S	-	Modeling accuracy for loading
у	-	Wave elevation
Y(y)	-	Wave crest elevation function
$\overline{Y_{\max}}$	-	Mean maxima estimate
$\overline{Y_{\max}}$ \mathbf{Y}_{\max}	-	Mean maxima estimate Mean maxima response generated from the Weibull
	-	
	-	Mean maxima response generated from the Weibull
Y _{max_{mean}}	- - -	Mean maxima response generated from the Weibull 3-parameter
Y _{max_{mean}}	- - -	Mean maxima response generated from the Weibull 3-parameter Failure surface
Y _{max_{mean} Z Z}		Mean maxima response generated from the Weibull 3-parameter Failure surface Elevation of wind speed
Y _{max_{mean} Z Z Z_R}		Mean maxima response generated from the Weibull 3-parameter Failure surface Elevation of wind speed One hours mean speed at the elevation of 10m
$Y_{max_{mean}}$ Z Z Z _R Z _S		Mean maxima response generated from the Weibull 3-parameter Failure surface Elevation of wind speed One hours mean speed at the elevation of 10m One hours mean speed at the elevation of 20m
$Y_{max_{mean}}$ Z Z Z_R Z_R Z_S A(α)		Mean maxima response generated from the Weibull 3-parameter Failure surface Elevation of wind speed One hours mean speed at the elevation of 10m One hours mean speed at the elevation of 20m Periodicity function
$Y_{max_{mean}}$ Z Z Z R Z R Z S A(α) $\overline{\alpha}$		Mean maxima response generated from the Weibull 3-parameter Failure surface Elevation of wind speed One hours mean speed at the elevation of 10m One hours mean speed at the elevation of 20m Periodicity function unit normal vector
$Y_{max_{mean}}$ Z Z Z_R Z_S $\Lambda(\alpha)$ $\overline{\alpha}$ β		Mean maxima response generated from the Weibull 3-parameter Failure surface Elevation of wind speed One hours mean speed at the elevation of 10m One hours mean speed at the elevation of 20m Periodicity function unit normal vector Reliability Index
$Y_{max_{mean}}$ Z Z Z R Z R Z S $\Lambda(\alpha)$ $\overline{\alpha}$ β Φ		Mean maxima response generated from the Weibull 3-parameter Failure surface Elevation of wind speed One hours mean speed at the elevation of 10m One hours mean speed at the elevation of 20m Periodicity function unit normal vector Reliability Index Partial resistance factor
$Y_{max_{mean}}$ Z Z Z R Z R Z S A(α) $\overline{\alpha}$ β Φ ()		Mean maxima response generated from the Weibull 3-parameter Failure surface Elevation of wind speed One hours mean speed at the elevation of 10m One hours mean speed at the elevation of 20m Periodicity function unit normal vector Reliability Index Partial resistance factor Standard normal probability
$Y_{max_{mean}}$ Z Z Z R Z_S $\Lambda(\alpha)$ $\overline{\alpha}$ β Φ Φ () ϕ		Mean maxima response generated from the Weibull 3-parameter Failure surface Elevation of wind speed One hours mean speed at the elevation of 10m One hours mean speed at the elevation of 20m Periodicity function unit normal vector Reliability Index Partial resistance factor Standard normal probability Potential function
$Y_{max_{mean}}$ Z Z Z R Z S $\Lambda(\alpha)$ $\overline{\alpha}$ β Φ Φ () ϕ γ_D	- - - - - - -	 Mean maxima response generated from the Weibull 3-parameter Failure surface Elevation of wind speed One hours mean speed at the elevation of 10m One hours mean speed at the elevation of 20m Periodicity function unit normal vector Reliability Index Partial resistance factor Standard normal probability Potential function Load factor for dead load

γ	-	Peakedness parameter
λ	-	Wave length
η	-	Vertical water particle acceleration
$\eta_{\rm h}$	-	Transition point for LONOWE model
η_p	-	Wave profile
η(t)	-	Gaussian wave elevation
η_{max}	-	Crest height
ρ	-	Mass density of water
ρ _a	-	Density of air
$\mu_{\rm R}$	-	Mean of resistance
μ_{S}	-	Mean of loading
μ_Z	-	Mean of failure function
$\mu_{\mathrm{T} \mathrm{H}}$	-	Mean spectral peak period given significant wave
		height
ω	-	Wave frequency (in radian)
ω_k	-	Circular frequency
σ_R	-	Standard deviation of resistance
$\sigma_{\rm S}$	-	Standard deviation of loading
σz	-	Standard deviation of failure function
$\sigma_{\overline{Y max}}$	-	Standard deviation of mean maxima
$\sigma_{T H}$	-	correlation coefficient between the significant wave
		height and the zero crossing period
θ	-	Wave phase angle
θ_k	-	Random phase
ξ	-	Horizontal water particle acceleration

LIST OF APPENDICES

APPENDIX TITLE

PAGE

А	Jacket structure	213
В	Jacket's structure configuration	222
С	Numbering system of the jacket structure	227
D	Calculation of stress utilisation	229
Е	Response surface for component reliability	232
F	Sample calculation for the Hasofer	
	and Lind reliability index	241
G	Response surface for system reliability	247

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter discusses on the overview of the thesis. It gives a brief introduction to the title, research objectives, scopes of study and the thesis organization.

1.2 Problem Background and Motivation

The field of offshore structural reliability analysis is of particular importance at the present, considering that a number of changes that are taking place within the offshore industry. The changes include the introduction of the Load Resistance Factor Design Code (API-RP 2A LRFD, 1993) and the ISO developments. There is also an increasing appreciation within the industry of the potential benefits from the use of these techniques especially after the applications in the area of optimized inspection planning (Onoufriou, 1999). Apart from that, the introduction of goal setting regime that allows more flexibility in the way offshore platforms are design and assessed has also proliferated the reliability based assessment.

The above mentioned changes and the increasing need to address life cycle planning issues such as the Inspection, Maintenance and Reliability (IMR) planning have created a wider acceptance framework for reliability assessment methods. A number of developments in the area of reliability analysis and the increasing hardware capacity make the use of these techniques more feasible at the various stages of the life of a platform.

Although there is an increasing recognition within the industry of the significant potential safety and cost benefits from the application of offshore structural reliability analysis, there is varying degree of confidence in the methods due to the various uncertainties in this type of analysis. Moreover, the outcome of the analysis is highly dependent upon the user competency and the assumptions made. It is generally recognized that structural problems are often nondeterministic. Moreover, structures are designed and built despite imperfect information and knowledge. In short, problems of structural design must be resolved in the face of uncertainty and as a consequence, risk, which is the probability an adverse event that will occur. In order to quantify the risk, random variables such as the loadings and resistance of a structure pertaining to the limit state have to be determined.

The research in the field of offshore structural reliability is still in its stage of infancy in Malaysia compare to the countries in Europe or United States. Though the advancement of the reliability analysis has reach to a level of maturity, the published results of the application of reliability analysis on the offshore structures in Malaysia is scarcely available.

In reliability assessment, few issues have to be addressed, such as the loading probabilities, variation in the resistances and the methodology adopted in the

analysis. In the loading probabilities, environmental loading is the main concern due to its randomness. In order to capture the randomness, the evaluation of environmental loading has moved from the deterministic approach to the probabilistic approach by adopting the joint environmental model. These models are well established in the Gulf of Mexico and the North Sea, where extensive database on the oceanographic condition are at disposable. However, the weather in the Malaysia waters is rather calm and not as extreme as the weather in Gulf of Mexico or North Sea. Therefore the application of the models which are developed in other region will results in the over-design of the offshore structure. French *et al.* (1992) has noted that the design environmental criteria for the platforms in South East Asia are usually increased, in some cases by as much as 60% during the life of the platform due to the scarcity of data during the construction of the environmental design parameters for a specific location to ensure that the structures built are safe and economical.

Compared to the loading properties, the issue of variation in the structural resistance is inconsequential as study has proven that the resistance can be treated deterministically in structural analysis without affecting the results enormously (Sigurdsson, et al., 1994). However, the methodology which is adopted in the reliability assessment plays an important role in determining the results of the analysis as different methods produce different results. Major development in structural reliability methodology started in the sixties to develop the tools for quantifying the effects of uncertainties. At present, there are many methods that are well developed to assist the calculation of structural reliability. For component reliability analysis, methods such as First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM) are widely used for the assessment. While for structural system reliability analysis, the method ranges from the component based approach to the more complex one such as the full probabilistic analysis. Among the well-known theory, which are formulated for the system analysis are the branch and bound method and the beta unzipping method (Thoft-Christensen and Murotsu, 1986). The selection of method depends on other factors such as internal and external constraint. Internal constraint would be the

uncertainties associated with the data, while the external constraint would be the expertise of the analyst and the availability of computational tools. Consequently, each case is unique and the methodology adopted has to be based on the needs of the case study and the resources that are available.

Based on the above background, the research problems covered within this thesis are summarised as follows;

- i. What are the design environmental criteria for the offshore structures in the Malaysia waters by accounting the randomness of the loadings?
- ii. How reliable is the offshore structure that is built in the Malaysia waters?
- iii. For the present case study, what is the best method to be adopted considering the limited resource in data and computational efforts?

1.3 Research Objectives

The research objectives are as follows:

- To determine the environmental loading conditions at the location of the jacket structure.
- To study the response of the jacket structure under environmental loadings, i.e. wave, wind and current.
- To identify the critical members in the jacket structure.
- To investigate the level of reliability of the offshore structure in Malaysia's waters.

1.4 Scope of Study

The scopes of work were divided into three parts. The platform which was used in this study is assumed to be a new platform, not in service conditions. Therefore deterioration of the platform was not considered. It checked the soundness of the design of the structure from the reliability point of view.

The first part focused on the modelling of environmental parameters. The environmental loading condition is modelled based on the met-ocean data obtained for the Malaysia waters. Modelling works were carried out to predict the extreme condition of the ocean weather. The environmental parameters considered in the modelling work were the wave and wind loading.

In the second part, the scope of work focused on the response of the structure under environmental loading conditions. The environmental loads are imposed on the structure. The simulations studies are carried out in the dynamic, time domain analysis by taking into account of the probabilistic fluid loading by using a Finite Element Software, ANSYS. From the simulations, the critical members are identified and the utilisation ratios of the structural members are calculated.

The final part of the study focused on the reliability analysis of the structure. A reliability program is written in Matlab to study the probability failure of the critical members and other members of interest. Parametric investigations are carried out to study the effects of the environmental loadings on the structural members. From the component reliability analysis, the study proceeds to the system reliability analysis. The probability failure of the structure is investigated. The system effects analysis are also included, to study the level of redundancy of the structure.

1.5 Thesis Organisation

This thesis consists of eight chapters proceed by the introductory chapter. Chapter Two contains the reviews on the related literature and theories pertaining to reliability analysis. The development of reliability assessments, theories and the applications in the offshore industry are expounded concisely. In addition to the review of reliability analysis, theories of wave loading and structural analysis are also discussed to give a clearer picture on the analysis of offshore structures.

Chapter Three discusses on the modeling work of the environmental parameters where the platform is located. The modelling works are presented with the theories of joint probabilities, bivariate distributions and the theory of design wave. The design environmental parameters, which are determined and applied in the structural analysis

Chapter Four presents the response of the structure under environmental loading conditions. The methodology and theories which are adopted are discussed. Comparisons are made on the results based on the methodologies adopted. Results from the structural simulation studies and the utilisation ratio of critical members are presented.

The component reliability analysis is presented in Chapter Five. The chapter begins with the discussion on the methodology which are adopted, the loadings and the resistance parameters. The details on the computation of the reliability index are discussed thoroughly. The chapter is concluded with the presentation of results and general discussion. Chapter Six focuses on the system reliability of the structure. The failure path of the structure is identified for every direction and this forms the system reliability of the structure by using the series of parallel sub-system. The chapter documents the steps and theory adopted in the analysis. Apart from this, it contains brief discussion on other methodologies, which are adopted by other researchers. The chapter is concluded with the studies on the system effects on the redundancy of the structure.

Chapter Seven encapsulates the work and the general discussion of the whole thesis. It compares the results, which are obtained with the findings of other researchers.

Finally the thesis is concluded with the final chapter, the conclusion, which comprises of the summary of the works and recommendations for further research.

REFERENCES

- Aggarwal R.K., Bea R.G., Gerwick B.C. Ibbs C.W., Reimer R.B. and G.C. Lee. (1993). Development of a Methodology for Safety Assessment of Existing Steel Jacket Offshore Platforms. 22nd Annual Offshore Technology Conference. 7th-10th May 1978. Houston: OTC. 351-362.
- America Petroleum Institute. (1993). Recommended Practice for Planning,
 Designing and Constructing Fixed Offshore Platforms-Working Stress Design.
 20th ed. Washington D.C.: America Petroleum Institute.
- America Petroleum Institute. (1993). Recommended Practice for Planning,
 Designing and Constructing Fixed Offshore Platforms-Load and Resistance
 Factor Design. 1st ed. Washington D.C.: America Petroleum Institute.
- Arief S. and Wells R. (1985). *A Report on the Malaysian Petroleum Industry*. Australia: Rosecons.
- Barltrop, N.P.D., Mitchell, G.M. and Atkins J.B. (1990). *Fluid Loading on Fixed Offshore Structure*. London: Department of Energy.
- Bea R.G. (1975). Gulf of Mexico Hurricane Wave Height. *Journal of Petroleum Technology*. 1160-1172.
- Bea R.G. (1993). Reliability Based Requalification Criteria for Offshore Platforms. Proceedings of the 12th International Conference on Offshore Mechanics and Artic Engineering. Vol 2. 351-361.

- Bea R.G. and Lai N.W. (1978). Hydrodynamic Loadings on Offshore Platforms.
 Offshore Technology Conference, 10th Annual Offshore Technology Conference.
 May 8-11th 1978. Houstan: OTC, 155-164.
- Bea R.G., and Mortazavi M.M. (1996). ULSLEA: A Limit Equilibrium procedure to determine the Limit State Loading of Template-type Platforms. *Journal of Offshore Mechanics and Artic Engineering*. Transactions of the ASME. Volume 118(4). 267-275.
- Beck J.R. (2000). Worldwide Petroleum Industry Outlook: 2001-2005 projection to 2010. 17th ed. United States of America: Pen Well Publishing Company.
- Bishop N.W.M. (1991). Dynamic fatigue Response of Deepwater Offshore Structures Subjected to random Loading. *Structural Engineering Review*. Vol. 8, 1991.
- Bitner-Gregersen E.M. and Haver S. (1991). Joint Environmental Model for Reliability Calculations. *Proceedings of the First International Offshore and Polar Engineering Conference*. 11th -16th August 1991. United Kingdom: The International Society of Offshore and Polar Engineers. 246-253.
- Cassidy M.J. Houlsby G.T. and Eatock Taylor, R. (2001). Application of Probabilistic Models to the Response Analysis of Jack-Ups. *The 11th International Offshore and Polar Engineering Conference*, 17th -22nd June 2001. USA: ISOPE.
- Chakrabarti S.K.(1987). *Hydrodynamics of Offshore Structures*. Boston: Computational Mechanics Publications.
- Chakrabarti S.K.(1990). *Nonlinear Methods in Offshore Engineering*. Netherlands: Elsevier Science Publishing Company Inc.

Constantine D.M. and Tzanis K. (1994). Numerical Results of the Joint Probability of Heights and Periods of Sea Waves. *Coastal Engineering*. Vol 22. 217-235.

Dawson T.H., (1983). Offshore Structural Engineering. New Jersey: Prentice Hall

- De R.S., Karamchandani A. and Cornell C.A. (1991). Offshore Structural System Reliability under Changing Load Pattern. *Applied Ocean Research*. Vol. 13 (3). 145-157.
- Driver D.B., Borgman L.E. and Bole J.B. (1994). Typhoon Wind, Wave and Current Directionality in the South China Sea. *26th Annual Offshore Technology Conference*. 2nd-5th May 1994. Houston: OTC. 359-365.
- ESSO (1982). *EMPI in Terengganu*. Kuala Lumpur: The public affair departments of ESSO Production Malaysia Inc.
- French S., Seeto J. and Dominish PG. (1992). Structural Integrity Assessment and Life Extension of Platforms in Australia and South East Asia. *Proceeding of the* 6th International Conference on the BOSS, July 1992, London:
- Frieze P.A. (1989). Probability Based Safety Assessments of Existing and Future
 Offshore Structures. 8th International Conference on Offshore Mechanics and
 Artic Engineering, The Hague. 19th -23rd March 1989. USA: ASME. 355-362.
- Frieze P.A., Morandi A.C. Birkinshaw M. Smith D. Dixon A.T. (1997). Fixed and Jack-up Platforms: Basis for Reliability Assessment. *Journal of Marine Structure*, Volume 10. 263-284.
- Gierlinski J. T. Sears R.J. and Shetty N.K. (1993). Integrity Assessment of Fixed Offshore Structures: A Case Study Using RASOS Software. Proceedings of the 12th International Conference on Offshore Mechanics and Artic Engineering. Vol 2. 399-408.

- Gaythwaite, J., (1981). *The Marine Environment and Structural Design*. New York: Van Nostrand Reinhold Co.
- Guedes Soares and Scotto M. (2001). Modelling Uncertainty in Long Term Predictions of Significant Wave Height. *Journal of Ocean Engineering*. Vol (28). 329-342.
- Guenard Y., Goyet J., Remy B. and Labeyrie. (1987). Structural Safety Evaluation of Steel Jacket Platforms. *Marine Structural Reliability Symposium*. 5-6 October 1987. New Jersey: Society of Naval Architects and Marine Engineers(SNAME), 169-183.
- Gusmestad O.T. and Karunakaran D. (1990). Wave Current Interaction. In: *Environmental Forces on Offshore Structures and their Prediction*. London: Society for Underwater Technology. 81-110.
- Gusmestad O.T. and and Moe G. (1995). Hydrodynamic Coefficients for Calculation of Hydrodynamic Loads on Offshore Truss Structures. *Journal of Marine Structures*. Vol(9): 745-758.

Gumbel E.J. (1958). Statistic of Extreme. New York: Columbia University Press.

- Hagemeijer P.M. (1989). A Comparison between a Deterministic and Probabilistic
 Fluid Loading Model for a Jacket Structure. *Eight International Conference on Offshore Mechanics and artic Engineering*. March 19-23 1989. The Hague:
 OMAE. 89-97.
- Haldar A. and Mahadevan S. (2000). *Reliability Assessment Using Stochastic Finite Element Analysis*. United State of America: John Wiley and Sons.

- Hallam M.G., Heaf N.J., Wootton L.R, (1977). Dynamics of Marine Structures: Methods of calculating the dynamic response of fixed structures subject to wave and current action. London: Ciria Underwater Engineering Group.
- Haring R.E. and Heideman J.C. (1980). Gulf of Mexico Rare Wave Return Periods. Journal of Petroleum Technology. January 1980. Vol 32(1). 35-47.
- Haver S. (1985). Wave Climate of Northern Norway. *Applied Ocean Research*. Vol 7(2). 85-92.
- Haver S. (1987). On the Joint Distribution Of Heights and Periods of Sea Waves. *Journal of Ocean Engineering*. Vol 14 (5). 359-376.
- Health & Safety Executive (2000). Offshore Technology Report-OTO 2000 037 (A Review of Reliability Considerations for Fixed Offshore Platforms). UK: University of Surrey.
- Heideman J. C., Hagen O., Cooper C. and Finn-Erik D. (1989). Joint probability of Extreme Waves and Currents on Norwegian Shelf. *Journal of Waterway, Port, Coastal and Ocean Engineering*. Vol 115(4). 534-546.
- Huther M., Jastrzebski T. and Parmentier G. (1992). Statistical Representation of Steel Mechanical Properties for Probabilistic Analysis of Strutcures. In: Petersen K.E. and Rasmussen B. *Safety and Reliability*. New York: Elsevier Applied Science. 562-571.
- Kam J.C.P., Birkinshaw M. and Sharp J.V.(1993). Review of the Applications of Structural Reliability Technologies in Offshore Structural Safety. *Proceedings* of the 12th International Conference on Offshore Mechanics and Artic Engineering. Vol 2. United States of America: ASME. 289-296.

- Karunakaran D., Leira B.J. and Moan T. (1993). Reliability Analysis of Drag-Dominated Offshore Structures. *The Third International Offshore and Polar Engineering Conference*, Singapore. 6th -11th June 1993. USA: ISOPE, 600-605
- Knight R.M. and Daniel J.J.S. (1993). World trends in major offshore structure:1970-1999). Proceedings of Offshore 1993 IMARE/RINA, Joint Offshore Group 3rd International Conference. 17th-18th February 1993. London: Marine Management (Holdings) Ltd. 18-23.
- Lebas G., Lacasse S. and Cornell C.A. (1992). Response Surfaces for Reliability Analysis of Jacket Structures. *Journal of Offshore Mechanics and Artic Engineering*, 1992. Vol. (2). 403-409.
- Longuet-Higgins M.S. (1983). On the Joint Distribution of wave Periods and Amplitudes in a Random Wave Field. *Proc. of the Royal Society of London. England.* A 389. 241-258.
- Madsen M.N., Nielsen J.B., Klinting P. and Knudsen J. (1988). A Design Load
 Method For Offshore Structures Based Upon the Joint Probability of
 Environmental Parameters. 7th International Conference on Offshore Mechanics
 and Artic Engineering. February 7-12, 1988. United States of America: ASME, 75-80.
- Mansour A.E. (1981). Combining Extreme Environmental Loads for Reliability-Based Designs. *Extreme Loads Response Symposium*. 19th -20th Oct 1981. Arlington VA: SNAME.
- Mansour A.E., Jan H.Y., Zigelman C.I., Chen Y.N. and Harding S.J. (1984). Implementation of Reliability Methods to Marine Structures. *Transaction* SNAME.353-380

- Manuel L., Schmucker D.G., Cornell C.A., Carballo J.E. (1998). A Reliabilitybased design format for Jacket Platforms under Waves Loads. *Journal Marine Structures*. Vol (11). 413-428.
- Mathisen J. and Bitner-Gregersen E. (1990). Joint Distribution for Significant Wave Height and Wave Zero-Up-Crossing Period. *Applied Ocean Research*, Vol 12, (2). 93-103.
- Morandi A.C., Smith I.A.A. and Virk G.S. (2001). Reliability of Jack-ups under Extreme Storm Conditions. *Journal of Marine Structures*. Vol (14). 523-536.
- Morrison, J.R., O'Brien, M.P, Johnson, J.W., Schaaf, S.A. (1950). The Force Exerted by Surface Waves on Piles. *Petroleum Transaction*. Vol. (189). 149-157.
- Moses F. (1987). Application of Reliability to Formulation of Fixed Offshore Design Codes. *Marine Structural Reliability Symposium*. 5th-6th October 1987. New Jersey: SNAME., 15-30.
- Muga B.J. and Wilson J.F. (1970). *Dynamic Analysis of Ocean Structure*. New York: Plenum Press.
- Muir L.R. and Shaarawi (1986). On the Calculation of Extreme Wave Heights: A Review. *Journal of Ocean Engineering*. Vol (13). 93-119.
- Murotsu Y. and Okada H. (1987). Application of Reliability Assessment Methods to Marine Frame Structures Based on Ultimate Strength Analysis. *Marine Structural Reliability Symposium*. 5th-6th October 1987. New Jersey: SNAME.217-232.
- Myrhaug D. and Kjeldsen S.P. (1984). Parametric modeling of joint probability density distributions for steepness and asymmetry in deep water waves. *Applied Ocean Research*. Vol 6 (4). 207-220.

- Nordal H., Cornell C.A. and Karamchandani A. (1987). A Structural System
 Reliability Care Study of an Eight-leg Steel Jacket Offshore Production
 Platform. *Marine Structural Reliability Symposium*. 5-6 October 1987. New
 Jersey: Society of Naval Architects and Marine Engineers(SNAME). 193-216.
- Nowak A.S. and Collins K.R. (2000). *Reliability of Structures*. United States of America: McGraw Hill.
- Ochi M.K. (1978a). Probabilistic Extreme Values and Their Implication for Offshore Structure Design. 10th Offshore Technology Conference. 8th-11th May, 1978.
 Houston: OTC. 987-989.
- Ochi M.K. (1978b). On Long-term Statistics for Ocean and Coastal Waves. Proceedings 16th Coastal Engineering Conference. Vol. (1). 59-75
- Onoufriou T. and Forbes V.J. (2001). Developments in Structural System Reliability Assessments of Fixed Steel Offshore Platforms. *Reliability Engineering and System Safety*. Vol. (71). 189-199.
- Onoufriou T. (1999). Reliability based inspection optimisation planning for offshore structures. *Journal of Marine Structures*. Vol. 12 . 521-539.
- Pagrut P. and Deo M.C. (1992). Extreme Wave Height Estimates. Proceedings of the 2nd International Offshore and Polar Engineering Conference. 14th-19th June 1992.USA: ISOPE. 186-193.
- Patel, M. H. (1990). Offshore Structures. In: Morgan, N. ed. *Marine Technology Reference Book*. London: Butterworth.
- Petraukas C. and Aagaard P.M. (1971). Extrapolation of Historical Storm Data for Estimating Design-Wave Heights. *Society of Petroleum Engineers Journal*. Vol (11) 23-37.

- Pradnyana G., Surahman A. and Dasbi S. (2000). Review on the Regional Annex of ISO-13819 Standard for Planning, Designing and Constructing Fixed Offshore Platforms in Indonesia. *Proceeding of the 6th AEESEAP, Triennial Conference*, August, 23-25th, 2000. Indonesia.
- Rackwitz R. and Fiessler B. (1978). Structural Reliability under Combined Loading Sequences. *Computer and Structures*. Vol. 9 (5). 484-494.
- Rackwitz R. (2000). Reliability Analysis-Past, Present and Future. 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability. 24th -26th July, 2000.USA:ASCE.
- Sarpkaya T. and Isaacson M. (1981). *Mechanics of Waves Forces on Offshore Structures*. Canada: Van Nostrand Reinhold Ltd.

Schum W. (1977). The Structural Design Appraisal of Deepwater Steel Platforms. In:

Carneiro F.L.L.B., Ferrante A.J. and Brebbia C.A. *Offshore Structure Engineering 1*. England: Gulf Publishing Co. 71-100.

- Sigurdsson G., Skjong R. Skallerud B. and Amdahl. J. (1994) Probabilistic Collapse Analysis of Jackets. In: Schuëller, Shinozuka and Yao. *Structural Safety and Reliability*. Rotterdam: Balkema.535-543.
- Skrokosz M.A. (1988). A Note on the Joint Distribution of Wave Height and Period during the Growth Phase of a Storm. *Journal of Ocean Engineering* Vol. 15 (4). 379-387.
- Skrokosz M.A. and Challenor P.G. (1987). Joint Distributions of Wave Height and Period: A Critical Comparison. *Journal of Ocean Engineering*. Vol 14(4). 296-311.

- Stiansen S.G. and Thamyambali A.K. (1987). Lessons Learnt from Structural Reliability Research & Applications in Marine Structures. *Marine Structural Reliability Symposium*. 5th-6th October 1987. New Jersey: Society of Naval Architects and Marine Engineers(SNAME)1-13.
- Swanson Analysis System, (1992). ANSYS User's Manual for Revision 5.0, Volume III: Elements." Houston: Swanson Analysis System, Inc.
- Thoft-Christensen P. and Murotsu Y. (1986). *Application of Structural Systems Reliability Theory*. Berlin: Springer-Verlag.
- Torhaug R. (1996). Extreme Response of Nonlinear Ocean Structures: Identification of Minimal Stochastic Wave Input for Time-Domain Simulation. Stanford University: PhD Thesis.
- Tromas P.S. and Vanderschuren L. (1995). Response Based Design Conditions in the North Sea: Application of a New Method. 27th Annual Offshore Technology Conference. 1st - 4th May 1995. Houston: Offshore Technology Conference. 387-397.
- Tromans P.S. and Van de Graaf J.W. (1992). Substantiated Risk Assessment of Jacket Structure. *Journal of Waterway, Port Coastal and Ocean Engineering*. Vol 120(6). 535-555.
- Tucker M.J. (1991). *Wave in Ocean Engineering: Measurement, Analysis, Interpretation*. London: Ellis-Horwood.
- Turner R.C. and Baker M.J. (1988). A Probabilistic Wave Model and Reliability Analysis. Proceedings IFIP Working Conference on Reliability and Optimisation of Structural Systems. In: *Lecture Notes in Engineering*. Berlin: Springer-Verlag.

- Van de Graaf J.W., Tromans P.S. and Efthymiou M. (1994). The Reliability of Offshore Structures and Its Dependence on Design Code and Environment. 26th Annual Offshore Technology Conference. 2nd-5th May 1994. Houston: OTC. 105-118.
- Vledder G. P. V. and Zitman T. J. (1992). Design Waves: Statistics and Engineering Practice. 2nd International Offshore and Polar Engineering Conference. 14th -19th June 1992. San Francisco, USA: The International Society of Offshore and Polar Engineers. 170-178.
- Vugts J.H. (1979). A Review of Hydrodynamic Loads on Offshore Structures and their Formulation. Second International Conference on Behavior of Offshore Structures, Imperial College, London. 28th to 31st Aug 1979. England: BHRA Fluid Engineering. 693-708.
- Wheeler J.D. (1970). Method for Calculating Forces Produced by Irregular Waves. *Journal of Petroleum Technology*. Vol (22). 359-367.
- Wilson E.L. (2002). Three Dimensional Static and Dynamic Analysis of Structures-A Physical Approach with Emphasis on Earthquake Engineering. 3rd ed. California: Computers and Structures Inc.

Wilson J.F. (1984). *Dynamics of Offshore Structures*. New York: John Wiley & Sons.

- Winterstein S.R. and Torhaug R. (1993). Estimating Extreme Response of Jackup Structures from Limited Time-Domain Simulation. 12th International Conference on Offshore Mechanics and Artic Engineering. United States of America: ASME, 251-258
- World Energy Council (2001). Survey of Energy Resources 2001. World Energy Council: London.

Yan J.L. Chen Y. N., Tan P. L. and Bai Y. (2002). Prediction of Most Probable Extreme Values for Jackup Dynamic Analysis. *Journal of Marine Structures* Vol (15). 15-34.