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The aim of this paper is to determine the new exact solution of a magnetohydrodynamic (MHD) and
rotating flow of the Maxwell fluid induced by a suddenly moved plate in its own plane. This is accom-
plished by using the Fourier sine and Laplace transforms. Based on the modified Darcy’s law, the expres-
sion for the velocity field is obtained. It is found that similar solutions for Newtonian fluid appear as
limiting cases of our solutions. Finally some graphical results of the velocity profiles are presented for dif-
ferent values of the material constants.
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1. Introduction as these provide standard for checking the accuracies of many
Stokes’ first problem for the flat plate originated in 1851, and is
also known as the Rayleigh–Stokes problem. This problem for non-
Newtonian fluid has received much attention due to its practical
applications in industry, geophysics, chemical and petroleum engi-
neering [1]. Some investigations are notably important in indus-
tries related to paper, food stuff, personal care products, textile
coating and suspension solutions.

For the Rayleigh–Stokes problem, we shall consider an infinitely
long flat plate above which a fluid exists. Initially, both the fluid
and plate are at rest and suddenly, the plate is jerked into its plane
with a constant velocity. For Newtonian fluids and by using a sim-
ple transformation, an elegant solution was obtained for this prob-
lem by Zierep [2] and Soundalegkar [3]. More recently, Tan and
Masuoka [4,5], Fetecau and Corina Fetecau [6], Zierep and Fetecau
[7,8], Hayat et al. [9–11], Fetecau and Corina Fetecau [12] and Fete-
cau et al. [13] have studied the problem for different types of non-
Newtonian fluids.

The non-Newtonian fluids have been mainly classified under the
differential, rate and integral types. The Maxwell fluids are the sub-
class of non-Newtonian fluids and are the simplest subclass of rate
type fluids which take the relaxation phenomena into consideration.
It was employed to study various problems due to their relatively
simple structure. Moreover, one can reasonably hope to obtain exact
solutions from this type of Maxwell fluid. This motivates us to choose
the Maxwell model in this study. The exact solutions are important
ziz).
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approximate solutions which can be numerical or empirical. They
can also be used as tests for verifying numerical schemes that are
developed for studying more complex flow problems.

Exact solution of the problem is given by using the Fourier sine
and Laplace transforms method. This method has already been suc-
cessfully applied by various workers, for example, Fetecau et al.
[13,14] and Christov and Jordan [15]. Justifiably, the traditional
Fourier sine and Laplace transforms method has the following
important features. It is a very powerful technique for solving these
kinds of problems, which literally transforms the original linear
differential equation into an elementary algebraic expression.
More importantly, the transformation avoids the omission of a crit-
ical term from the resulting subsidiary equation.

The objective of the present work is to establish a new exact
solution for a magnetohydrodynamic (MHD) Maxwell fluid in a
porous medium and rotating frame. Here we examine the rotating
and MHD flow over a suddenly moved flat plate. Constitutive equa-
tions of a Maxwell fluid are used. Modified Darcy’s law has been
utilized. The solution to the resulting problem is generated by Fou-
rier sine and Laplace transforms technique. The graphs of the
velocity profiles are plotted in order to illustrate the variations of
embedded flow parameters with respect to the velocity profiles.
Interestingly, the results of many existing situations (see
[12,16,17]) are shown as the special cases of the present study.
2. Formulation of the problem

We choose a Cartesian coordinate system by considering an
infinite plate at z ¼ 0. An incompressible fluid which occupies the
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porous space is conducting electrically by the exertion of an applied
magnetic field B0, which is parallel to the z� axis. The electric field is
not taken into consideration and the magnetic Reynolds number is
small and such that the induced magnetic field is not accounted for.
The Lorentz force J � B0 under these conditions is equal to �rB2

0V .
Here J is the current density, V is the velocity field, r is the electrical
conductivity of fluid. Both plate and fluid possess solid body rota-
tion with a uniform angular velocity X about the z-axis.

The governing equations are

div V ¼ 0; ð1Þ

q
@V
@t
þ ðV � rÞV þ 2X� V þX� ðX� rÞ

� �
¼ �rpþ div S� rB2

0V þ R; ð2Þ

where q is the fluid density, r is a radial vector with r2 ¼ x2 þ y2, p is
the pressure, S is the extra stress tensor and R is Darcy’s resistance.

The constitutive relationships for Maxwell fluid are

T ¼ �pI þ S;

Sþ k
dS
dt
� LS� SLT

� �
¼ lA; ð3Þ

where T is the Cauchy stress tensor, I is the identity tensor, L is the
velocity gradient, A ¼ Lþ LT is the first Rivlin–Eriksen tensor, k the
relaxation and l is the dynamic viscosity of fluid and d

dt indicates
the material derivative.

According to Tan and Masuka [4], Darcy’s resistance in an Old-
royd-B fluid satisfying the following expression:

1þ k
@

@t

� �
R ¼ �l/

k
1þ kr

@

@t

� �
V ; ð4Þ

where kr is the retardation time, / is the porosity and k is the per-
meability of the porous medium. For Maxwell fluid kr ¼ 0 and hence

1þ k
@

@t

� �
R ¼ �l/

k
V : ð5Þ

We seek a velocity field of the form

V ¼ ðuðz; tÞ; tðz; tÞ;wðz; tÞÞ; ð6Þ

which together with Eq. (1) yield w ¼ 0. By using the Eqs. (2), (3),
and (6) we arrive at

q
@u
@t
� 2Xt

� �
¼ � @p̂

@x
þ @Sxz

@z
� rB2

0uþ Rx; ð7Þ

q
@t
@t
þ 2Xu

� �
¼ � @p̂

@y
þ @Sxz

@z
� rB2

0tþ Ry; ð8Þ

where

1þ k
@

@t

� �
Sxz ¼ l @u

@z
; ð9Þ

1þ k
@

@t

� �
Syz ¼ l @t

@z
: ð10Þ

The Rx and Ry are x- and y-components of Darcy’s resistance R, and
z-component of Eq. (2) indicates that p̂–p̂ðzÞ and the modified pres-
sure p̂ is p̂ ¼ p� q

2 X2r2.
Invoking Eqs. (5), (9), and (10) in Eqs. (7) and (8) and then

neglecting the pressure gradient we now obtain the coupled gov-
erning equations as

q 1þ k
@

@t

� �
@u
@t
� 2Xt

� �
þrB2

0 1þ k
@

@t

� �
u ¼ l@

2u
@z2 �

l/
k

u; ð11Þ

q 1þ k
@

@t

� �
@t
@t
þ 2Xu

� �
þrB2

0 1þ k
@

@t

� �
t ¼ l@

2t
@z2 �

l/
k

t; ð12Þ

where the appropriate initial and boundary conditions are
u ¼ t ¼ 0 at t ¼ 0; z > 0 ð13Þ
uð0; tÞ ¼ U; tð0; tÞ ¼ 0 for t > 0; ð14Þ

u;
@u
@z
; t;

@t
@z
! 0 as z!1; t > 0: ð15Þ
3. Solution of the problem

Letting F ¼ uþ it in Eqs. (11) and (12), the problem is reduced
by combining these two equations as

1þ k
@

@t

� �
@F
@t
þ 2iXþ rB2

0

q

 !
1þ k

@

@t

� �
F þ m/

k
F ¼ m

@2F
@z2 ; ð16Þ

where m is the kinematic viscosity. The appropriate boundary and
initial conditions are

Fð0; tÞ ¼ U; t > 0; ð17Þ

Fðz;0Þ ¼ @Fðz;0Þ
@t

¼ 0; z > 0;

Fðz; tÞ ¼ @Fðz; tÞ
@z

! 0 as z!1; t > 0:

In order to solve the linear partial differential equation (16) with
initial and boundary conditions (17), we shall use the Fourier sine
and Laplace transforms technique [13–15]. For a greater generality,
we consider the boundary condition Fð0; tÞ ¼ UðtÞ with Uð0Þ ¼ 0
and apply the Fourier sine transform with respect to z.

We thus obtain the result as follows:

k
@2Fsðg; tÞ

@t2 þ ½1þ kc� @Fsðg; tÞ
@t

þ m g2 þ /
k

� �
þ c

� �
Fsðg; tÞ

¼ g
ffiffiffiffi
2
p

r
mUðtÞ; t > 0; ð18Þ

where c ¼ 2iXþ rB2
0

q and the Fourier sine transform Fsðg; tÞ of Fðz; tÞ
has to satisfy the following conditions:

Fsðg;0Þ ¼
@Fsðg;0Þ

@t
¼ 0; g > 0: ð19Þ

Applying the Laplace transform to Eq. (18) and using the initial con-
dition (19) we found that

�Fsðg; qÞ ¼ g
ffiffiffiffi
2
p

r
m

kq2 þ ½1þ kc�qþ mg2 þ m /
k þ c

� � �UðqÞ; ð20Þ

where q is the transformed parameter while �Fsðg; qÞ and �UðqÞ are
the Laplace transform of Fsðg; tÞ and UðtÞ, respectively. Choosing
UðtÞ ¼ UHðtÞ; where HðtÞ is Heaviside unit step function and U is
the constant; we get the velocity field corresponding to the Ray-
leigh–Stokes problem.

In the case �UðqÞ ¼ U
q Eq. (20) takes the form

�Fsðg; qÞ ¼
Ug
k

ffiffiffiffi
2
p

r
1
q

m
ðq� r1Þðq� r2Þ

� �
; ð21Þ

and

r1; r2 ¼
�½1þ kc� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ kc�2 � 4k mg2 þ m /

k þ c
	 
q

2k
:

Applying the inverse Laplace transform to (21), the solution can be
expressed as

Fsðg; tÞ ¼ U

ffiffiffiffi
2
p

r
g

g2 þ /
k þ c

m

	 
 1� r2er1t � r1er2t

r2 � r1

� �" #
; t > 0: ð22Þ

Inversion of Fourier sine transform in (22) then gives

Fðz; tÞ ¼ UHðtÞ e�
ffiffiffiffiffiffi
/
kþ

c
m

p	 

z � 2

p

Z 1

0

r2er1t � r1er2t

r2 � r1

� �
g sinðzgÞ
g2 þ /

k þ c
m

	 
dg

" #
:

ð23Þ
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Fig. 1. The variation of velocity profile Fðz; tÞ for various values of rotation W when (B ¼ 1; P ¼ 2; M ¼ 2; t ¼ 3p).
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Fig. 2. The variation of velocity profile Fðz; tÞ for various values of (MHD) M when (B ¼ 1; P ¼ 2; W ¼ 1; t ¼ 3p).
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Fig. 3. The variation of velocity profile Fðz; tÞ for various values of porosity parameter B when (M ¼ 2; P ¼ 2; W ¼ 1; t ¼ 3p).
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The velocity field (23) is in different form from that of [10], and
obtained in another way. Of course, the velocity field (23) is ob-
tained in accordance with the same method used to generate the
results in [13–15].

The above expression (23) for hydrodynamic fluid (i.e. B2
0 ¼ 0) in

a non-porous space (i.e. / ¼ 0) is given by

Fðz; tÞ ¼ UHðtÞ e�ð1þiÞ
ffiffi
X
m

p
z � 2

p

Z 1

0

r4er3t � r3er4t

r4 � r3

� �
g sinðzgÞ
g2 þ 2iX

m

	 
 dg

" #
;

ð24Þ

where

r3; r4 ¼
�½1þ 2ikX� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ 2ikX�2 � 4kðm2þ 2iXÞ

q
2k

: ð25Þ

Putting X ¼ 0 into Eqs. (24) and (25), we obtain

Fðz; tÞ ¼ UHðtÞ 1� 2
p

Z 1

0

r6er5t � r5er6t

r6 � r5

� �
g sinðzgÞ

g
dg

� �
; ð26Þ

where
r5; r6 ¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4kmg2

p
2k

: ð27Þ

The velocity field Fðz; tÞ, given by Eq. (26), has been recently ob-
tained by Fetecau et al. [13, Eq. (23)].

The result (23) for a magnetohydrodynamic viscous fluid, where
k ¼ 0 in a porous space is

Fðz; tÞ ¼ UHðtÞ e�
ffiffiffiffiffiffi
/
kþ

c
m

p	 

z � 2

p

Z 1

0

ge� mg2þm/
kþcð Þt

g2 þ /
k þ c

m

	 
 sinðzgÞdg
" #

; ð28Þ

and furthermore, in the special case when c and / ¼ 0 (i.e. referring
to a hydrodynamic Newtonian flow), then Eq. (28) takes the simple
form of

Fðz; tÞ ¼ UHðtÞ 1� Erf
z

2
ffiffiffiffiffi
mt
p

� �� �
; ð29Þ

where Erf ð�Þ is the error function of Gauss (see [12,16,17]).Making
t !1 into Eqs. (23) and (28) we get

FðzÞ ¼ Ue�
ffiffiffiffiffiffi
/
kþ

c
m

p	 

z; ð30Þ

which are the steady state solutions.
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Fig. 4. The variation of velocity profile Fðz; tÞ for various values parameter P when (B ¼ 1; M ¼ 2; W ¼ 1; t ¼ 3p).
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4. Results and discussions

In this section, we present the graphical illustrations of the
velocity profiles which have been determined for the flow of Max-
well fluid over a suddenly moved of an infinite flat plate. The
emerging parameters defined here are

(I) W ¼ X is the rotating parameter,
(II) M ¼ rB2

0
q is the magnetic field parameter,

(III) B ¼ /
k is the porous parameter,

(IV) P is relaxation time parameter.

In order to illustrate the role of these parameters on the real and
imaginary parts of the velocity profile Fðz; tÞ, the Figs. 1–4 have
been displayed. In these figures, panels (a) depict the variations
of [Re½Fðz; tÞ�] for Maxwell fluid and panels (b) indicate the varia-
tions of [�Im½Fðz; tÞ�].

Fig. 1(a) shows that the real part of the velocity profile
decreases for various values of rotation W , with respect to
the increase in z. As W increases, the velocity profile
decreases.

Fig. 1(b) indicates that the magnitude of imaginary part of the
velocity profile increases initially and later decreases for various
values of rotation W , with respect to the increase in z. As W in-
creases, the velocity profile also increases. This result can be com-
pared with similar result obtained by Hayat et al. [10].

Fig. 2(a) is prepared to see the effects of the applied magnetic
field M on the real part of the velocity profile. Keeping B; P;W; t
fixed and varying M, it is noted that the real part of the
velocity profile decreases by increasing the magnetic field param-
eter M.

Fig. 2(b) is portrayed to see the effects of the applied magnetic
field on the imaginary part of the velocity profile. Keeping B; P;W; t
fixed and varying M it is observed that the imaginary part de-
creases initially and later increases.

Fig. 3(a) indicates the variations of the porosity parameter B.
Keeping M; P;W; t fixed, it is noted that by increasing the porosity
parameter B, this would lead to increase in the real part of the
velocity profile.

Fig. 3(b) Keeping M; P;W; t fixed and varying B, it is noted that
the imaginary part increases initially and later decreases.

Fig. 4(a) shows the effects of relaxation time parameter P of
Maxwell fluid on the real part of velocity profile when B;M;W; t
are fixed. It is interesting to notice that by increasing in the relax-
ation time parameter P, this would have no effect in the real part of
the velocity profile.

Fig. 4(b) is obtained when B;M;W; t are fixed and the relaxa-
tion time parameter P is increased. This would lead to imagi-
nary part of the velocity profile increases initially and later
decreases.
5. Concluding remarks

The new exact solution corresponding to the motion of Maxwell
fluid over a sudden movement of an infinite flat plate is established
by means of the Fourier sine and Laplace transforms method. It is
found that similar solutions for Newtonian fluid appear as limiting
cases of our solutions. These solutions satisfy all the above govern-
ing equations and all the above imposed boundary conditions.

The current study can be considered to be more general than
the existing studies. For example, if we were to choose
UðtÞ ¼ U sinðxtÞ or UðtÞ ¼ Ut in Eq. (18), then the solutions corre-
sponding to the second problem of Stokes or the flow due to a con-
stant accelerated plate can be recovered.
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