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ABSTRACT 

 

 

 

As artificial neural networks continue to gain popularity in the domain of 

pattern recognition, there have been growing demands for these models to be 

executed at high-speeds. Thus, to cater to this need, the VLSI design and 

implementation of a neurohardware for high-speed pattern recognition is proposed in 

this research. The UTM-Neuroprocessor implements the Kohonen Neural Network 

for pattern classification. High-speed pattern classification by the neural paradigm is 

achieved through massively parallel execution based on the neuron-parallel 

processing approach. For proof of concept purposes, a 10x10 UTM-Neuroprocessor, 

which implements a 10x10 Kohonen network, was developed in this work. The 

design and rapid FPGA prototyping of the neuroprocessor was achieved using 

VHDL and the Altera Nios embedded system development kit. The FPGA-based 

prototype of the 10x10 UTM-Neuroprocessor is able to function at a frequency of 

100 MHz and delivers performances up to 5.079 GCPS and 2.285 GCUPS. Software 

components, including a VB-based GUI, were also developed to allow execution of 

pattern recognition applications on the UTM-Neuroprocessor. For efficient VLSI 

implementation of the UTM-Neuroprocessor, the combined FPGA-VLSI approach 

was proposed. Correspondingly, the VLSI design of a 2x2 array computation engine, 

termed the Array_2x2 microchip, was developed in the AMI 0.5µm process 

technology and fabricated at the Europractice IC foundry. The fabricated Array_2x2 

microchip can be applied to produce a 2x2 UTM-Neuroprocessor, in the combined 

FPGA-VLSI implementation approach. The design consumes an area of 16.9 mm
2
 on 

silicon and is encapsulated in 84-pin PGA package. SPICE simulations of the 

Array_2x2 design proved functionality at an operating frequency of 90 MHz. The 

microchip is able to deliver performances of up to 169.41 MCPS and 75.78 MCUPS 

MCUPS for a 2x2 UTM-Neuroprocessor. 
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ABSTRAK  

 

 

 

Pertumbuhan dalam penggunaan teknologi rangkaian saraf (neural networks) 

dalam pelbagai bidang aplikasi telah mewujudkan keperluan untuk perkakasan 

mikroelektronik canggih yang mampu melaksanakan rangkaian saraf pada kelajuan 

tinggi. Oleh demikian, implementasi VLSI bagi sebuah pemproses yang 

melaksanakan rangkaian saraf Kohonen pada kelajuan tinggi untuk aplikasi 

pengecaman corak, telah dicadangkan dalam kajian ini. Pengecaman corak pada 

kelajuan tinggi oleh UTM-Neuroprocessor direalisasikan menggunakan kaedah 

pemprosesan selari. Bagi tujuan pemprototaipan, rekabentuk sebuah UTM-

Neuroprocessor, yang melaksanakan rangkaian Kohonen 10x10, telah dibangunkan. 

Pembangunan rekabentuk 10x10 UTM-Neuroprocessor telah menggunakan VHDL 

dan kit pembangunan sistem terbenam Altera Nios. Rekabentuk yang dibangunkan 

telah diprototaip segera pada FPGA dan mampu mencapai kelajuan setinggi 100 

MHz. Beberapa aturcara perisian juga telah dibangunkan bersama, untuk 

membolehkan pemprosesan aplikasi pengecaman corak pada 10x10 UTM-

Neuroprocessor. Menggunakan aturcara yang telah dibangunkan, beberapa aplikasi 

pengecaman corak dunia sebenar telah dilaksanakan. UTM-Neuroprocessor telah 

didapati mampu menawarkan kuasa pemprosesan setinggi 5.079 GCPS dan 2.285 

GCUPS untuk aplikasi-aplikasi tersebut. Bagi implementasi VLSI UTM-

Neuroprocessor, kaedah FPGA-VLSI tergabung telah dicadangkan. Berdasarkan 

cadangan tersebut, sebuah mikrocip yang melaksanakan rangkaian Kohonen 2x2 

telah direkabentuk dengan proses teknologi AMI 0.5µm. Mikrochip tersebut telah 

difabrikasi di Europractice, Belgium dan boleh digunakan untuk membangunkan 

sebuah 2x2 UTM-Neuroprocessor dalam kaedah implementasi FPGA-VLSI 

tergabung. Simulasi SPICE telah membuktikan kefungsian rekabentuk mikrocip 

tersebut pada 90 MHz. Pada kelajuan ini, Array_2x2 membolehkan kuasa 

pemprosesan setinggi 169.41 MCPS dan 75.78 MCUPS dicapai oleh sebuah 2x2 

UTM-Neuroprocessor. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

This thesis proposes the VLSI design and implementation of a neural network 

hardware, or neurohardware for pattern recognition. The aim is to produce a 

neurohardware that executes the Kohonen Neural Network at massive parallelism for 

high-speed pattern classification and serves as a comprehensive computing platform 

for pattern recognition applications. In this first chapter, the background of the 

domain is discussed, providing the rationale and focus points behind the research.  

 

 

 

1. 1  Background and Motivation 

 

Although conventional logic based computing has been successful in many 

applications, it has not been effective in solving a variety of critical and complex 

problems. At the same time, these perplexing problems are solved trivially and 

routinely in real-time by human beings. It is this intriguing predicament that has led 

to the study of information processing by the human brain and subsequently the 

emergence of artificial neural networks. Artificial neural networks, or simply neural 

networks, attempt to mimic the computational power of the mammalian brain by 

massively interconnecting very simple computational units called neurons (Misra 

1997). The adoption of this similar design philosophy provides neural networks with 

the ability to learn and solve tasks challenging to conventional computing. 
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Neural networks have found a wide range of applications, with the majority 

associated with the pattern recognition domain. The pattern classification attribute of 

neural networks have been instrumental in the following examples of pattern 

recognition applications; predictive and preventive maintenance, condition 

monitoring, character recognition, speech synthesis, intelligence based medical 

diagnosis and intrusion detection and predictive penetration services in computer 

networks.  

 

As artificial neural networks gain popularity for pattern recognition in a 

variety of application domains, it is critical that these models are able to be executed 

speedily and generate results in real-time (Lindsey 1998). Although a number of 

implementations of neural networks are available on conventional general purpose 

machines, most of these implementations require an inordinate amount of time to 

train or run neural networks and are not able to provide real-time response, especially 

when the network sizes are large. Large network sizes are often required in real 

world applications and execution performances by these machines are simply 

unacceptable. This drawback is apparently due to the fact that general purpose 

computers are traditionally based on the von-Neumann architecture which is 

sequential in nature (Schoenauer 1998). Artificial neural networks on the other hand 

have a parallel structure by conception. 

 

The most obvious solution to this problem is to accelerate the execution 

artificial neural network algorithms is through simulation on dedicated parallel 

hardware. The massively parallel and distributed processing brand of neural 

networks suggest massively parallel hardware as an obvious implementation choice 

to obtain appropriate algorithm-architecture matching and high execution speeds. 

When implemented in parallel hardware, neural networks can take full advantage of 

their inherent parallelism and run in orders of magnitude faster than software 

simulations on sequential machines. Parallel processing with multiple simple 

processing elements working together can provide tremendous speed-ups in neural 

network and produce real-time responses and fast learning phases. 

 

Consequently, a new breed of hardware, termed neurohardware, have 

emerged. Neurohardware is typically defined as dedicated hardware designed to 
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implement neural algorithms and take full advantage of the inherent parallelism in 

neural networks through parallel processing. At present, a wide spectrum of 

neurohardware implementations that primarily differ in terms of performance-space 

compromise, degree of parallelism and system architecture approaches are available. 

However, with the continuous burgeoning of neural paradigms and increasing 

applicability of neural networks in real-time based applications, there is a great 

demand and market for massively parallel and dedicated neurohardware.  

 

 

 

1.2 Problem Statement 

 

Neurohardware providing parallel execution platforms for neural networks 

can adopt two different architectural directions in doing so; general-purpose 

architectures that emulate a wide range of neural network models, and special-

purpose architectures dedicated to a specific neural paradigm (Ruckert 2002). 

Dedicated implementations are able to be built at a low hardware cost to execute the 

algorithm more quickly and efficiently compared to general-purpose architectures. 

The speed achieved by special-purpose architectures is unattainable by general-

purpose architectures (Liao 2001). Therefore, special-purpose architectures would be 

viable for neurohardware targeting high-speed execution of specific neural 

paradigms. 

 

Neural network can be effectively grouped into three categories that are 

distinguishable by their learning approaches; supervised, reinforcement and 

unsupervised (Cheang 2003). Unsupervised learning possesses a number of 

advantages over the other types of learning, which includes faster training and 

execution for large networks. This brand of networks would be suitable for pattern 

recognition problems, given their ability to detect structures and relations in data that 

are not so apparent. One such neural paradigm that has been successful in pattern 

classification and recognition applications is the Kohonen neural network (NN) 

algorithm. The Kohonen NN is a proven algorithm and could be easily mapped onto 

hardware than other neural paradigms (Glesner and Pochmuller 1994).  
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In developing the ASIC implementation of neurohardware, two main stream 

technologies can be considered. FPGAs have evolved tremendously under the current 

advancements of VLSI process technologies. The flexibility and reconfigurability of 

FPGAs advantageously support parameterized designs and rapid prototyping of 

advanced hardware architectures. VLSI implementations on the other hand are able 

to guarantee higher compaction and speed for hardware designs, compared to 

FPGAs. However, both technologies can be jointly utilized and advantageously 

exploited for implementation of neurohardware.  

 

 

 

1.3  Objectives 

 

 From the discussion in the preceding sections, the objectives of the work 

presented in this thesis are as follows: 

 

1) To design a neurohardware that provides high-speed pattern classification. 

The Kohonen NN algorithm is to be implemented, in a massively parallel and 

dedicated manner, to deliver high-speed pattern classification. 

   

2) To design a neurohardware that serves as a comprehensive computing 

platform for pattern recognition applications, based on the Kohonen NN 

algorithm. 

 

3) To propose a viable VLSI implementation approach for the designed 

neurohardware and to develop a prototype for demonstration of real-world 

pattern recognition applications. 
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1.4 Scope of Work 

 

Neuroprocessor

GUI

Nios

Standard

Peripherals

Avalon
Bus

Interface
Controller

A
v

a
lo

n
 B

u
s

Nios CPU

Nios Library
Module

PCR
Module

UART

Host PC

Array Computation Engine

Neuro Co-processor

Neuro Core

 

Figure 1.1 : Top-Level Block Diagram of UTM-Neuroprocessor 

 

 

Based on the outlined objectives, the neurohardware design illustrated by 

Figure 1.1, the UTM-Neuroprocessor, is proposed in this work. The scope of work 

involved in producing the proposed neurohardware is as follows: 

 

1) Comprehensive study of the Kohonen NN algorithm and determining 

necessary algorithmic modifications for efficient hardware implementation of 

the algorithm.  

 

2) Design and FPGA prototyping of the UTM-Neuroprocessor, using the Altera 

Nios embedded system development kit. The Neuro co-processor that 

executes the Kohonen NN at massive parallelism is designed using VHDL. 

 

3) Development of the software components of the UTM-Neuroprocessor. The 

embedded software component, the PCR module, is developed in C while the 

GUI program is developed using Visual Basics. 
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4) VLSI implementation and fabrication of the array computation engine in the 

AMI 0.5 µm process technology, to realize implementation of the UTM-

Neuroprocessor in the proposed combined FPGA-VLSI approach. 

 

5) Demonstration of real-world pattern recognition datasets on the UTM-

Neuroprocessor. Datasets from selected application domains are used to 

verify the classification speed and viability of the neuroprocessor as a 

computing platform for pattern recognition applications. 

 

 

 

1.5 Research Contributions 

  

1) A systematic study and modification of the Kohonen NN algorithm for 

efficient hardware implementation. 

 

2) A comprehensive design and prototyping flow for FPGA-based embedded 

systems using the Altera Nios development kit. 

 

3) A viable ASIC design methodology for the UTM-ECAD VLSI Laboratory, 

based on the AMI 0.5µm process technology. The design methodology 

incorporates industry standard EDA tools and is applicable from design entry 

stages to tape-out. 

 

 

 

1.6 Organization of Thesis 

 

 The work in this thesis is presented conveniently over eight chapters. The 

first chapter outlines the motivations and objectives of the thesis and subsequently 

presents the scope of work involved in meeting the research objectives. 
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 The second chapter provides brief summaries of the literature reviewed prior 

to engaging in the mentioned scope of work. Review of literature on previously 

attempted efforts assists in achieving the research objectives. 

 

 Chapter three presents the VLSI design methods and tools adopted in 

producing the FPGA prototyping and ASIC implementation of the neurohardware in 

this work.  

 

 Chapter four provides a detailed discussion on the implemented Kohonen NN 

algorithm and outlines the necessary algorithmic modifications. Based on the 

modifications, the architectural and design specifications of the neurohardware is 

ascertained. 

 

 Chapter five delivers a description of the top-level architecture and behaviour 

of the UTM-Neuroprocessor. Subsequently, the focus is shifted to the design of the 

hardware module which implements the Kohonen NN algorithm at massive 

parallelism for the neuroprocessor, is detailed elaborately in the chapter. 

 

 Chapter six dwells into the embedded system design and prototyping of the 

UTM-Neuroprocessor using the Altera Nios development kit. The software 

components of the neuroprocessor are also discussed in the chapter. 

 

 Chapter seven focuses on the VLSI implementation of the array computation 

engine, for implementation of the UTM-Neuroprocessor in the combined FPGA-

VLSI approach. The chapter also presents ASIC design and fabrication of a 

prototype design of the computation engine, termed the Array_2x2 microchip, in the 

AMI 0.5 µm process technology. 

 

 Chapter eight provides details the application demonstration work on the 

UTM-Neuroprocessor, using real-world pattern recognition datasets. Performance 

evaluation and benchmarking of the neuroprocessor against previous works are also 

reported by the chapter. 
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 In the final chapter of the thesis, the research work is summarized and 

deliverables of the research are stated. Potential extensions and improvements to the 

design are also given. 

 

 

 

1.7 Summary 

 

In this chapter, a brief introduction was given to the background and 

motivation. The need for neurohardware that executed neural networks at massive 

parallelism for high-speed pattern classification was identified. Correspondingly, 

several objectives were outlined to meet this need in the research. The UTM-

Neuroprocessor was proposed to fulfill the objectives of the research. The UTM-

Neuroprocessor executes the Kohonen Neural Network at massive parallelism for 

high-speed pattern classification and serves as a comprehensive computing platform 

for pattern recognition applications. The following chapter will discuss some 

literature relevant to producing the proposed neurohardware and covers previous 

works accomplished on the design of neurohardware for the similar objectives. 



 
REFERENCES 

 

 

 

Ahmad, R., Bambang, S.S., Rahman, W. and Rais, A. (1999). “Development of 

Optimized Digital CMOS Standard Cell Library”. Proceeding of World Engineering 

Congress (WEC99). 159-161. 

 

Altera Corporation. (2003a). “Nios Hardware Development Tutorial”. Altera 

Corporation. 

 

Altera Corporation. (2003b). “Introduction to Quartus II”. Altera Corporation. 

 

Altera Corporation. (2003c). “Sopc Builder Data Sheet”. Altera Corporation. 

 

Altera Corporation. (2003d). “Nios Software Development Tutorial”. Altera 

Corporation. 

 

Altera Corporation (2003e). “Nios Development Board: Reference Manual, Stratic 

Professional Edition”. Altera Corporation. 

 

Altera Corporation. (2003f). “Stratix Device Handbook: Volume 1”. Altera 

Corporation. 

 

Asral B.J, Ahmad, R., Rais, A. (1999). “Standard Cell Library Development.” 

Proceeding of IEEE International Conference on Microelectronics (ICM). 161-163. 

 

Beale, R. and Jackson, T. (1990). “Neural Computing: An Introduction”. Adam 

Hilger, IOP Publishing Ltd.  

 



 158

Brown, S., and Vranesic, Z. (2000).  “Fundamentals of Digital Logic with VHDL 

Design”. Singapore: McGraw_Hill. 

 

Burr, J.B. (1992). “Digital Parallel Implementations of Neural Networks”. Prentice 

Hall. 223-281. 

 

Carpinelli, J. D. (2001). “Computer Systems, Organization & Architecture”. USA: 

Addison Wesley. 

 

Cheang, CH. (2003). “A Digital Neurohardware Implementation of Kohonen Neural 

Network for Pattern Recognition”. Universiti Teknologi Malaysia. 

 

Fausett, L. (1994). “Fundamentals of Neural Networks”. Prentice-Hall Inc.  

 

Fischer, T., Eppler, W., Gemmeke, H., Kock, G. and Becher, T. (1997). “The SAND 

Neurochip and its Embedding in the MiND System”. 7
th

 International Conference on 

Artificial Neural Networks. 

 

Fisher, R.A. (1936). "The Use of Multiple Measurements in Taxonomic Problems". 

Annual Eugenics, 7, Part II, 179-188. 

 

Geus, A. J. (1989). “Logic synthesis speeds ASIC Design”. IEEE Spectrum. August 

1989.  27-31. 

 

Glesner, M. and Pochmuller, W. (1994). “Neurocomputers – An overview of neural 

networks in VLSI”. Chapman and Hall. 

 

Haykin, S. (1994). “Neural Networks: A Comprehensive Foundation”. Macmillan 

College Publishing Company.  

 

Honkela, T., Kaski, S., Lagus, K. and Kohonen, T. (1997). “Websom --- self-

organizing maps of document collections”. Workshop on Self-Organizing Maps. 

 



 159

Ienne, P. (1995). “Digital Hardware Architectures for Neural Networks”. SPEEDUP 

Journal, Vol. 9, No. 1. 

 

Kohonen, T. (1995). “Self-Organizing Maps”. Springer-Verlag. 

 

Kohonen, T. (1988). “The neural phonetic typewriter”. Computer. 

 

Kohonen, T., Torkkola, K., Shozakai, M.,.Kangas, J. and Venta, O. (1988). 

“Phonetic Typewriter for Finnish and Japanese”. Proceedings of the IEEE 1988 

International Conference on Acoustics, Speech and Signal Processing. 

 

Karnik, T. (2000). “Microprocessor Layout Method”. in Chen Wai-Kai. “The VLSI 

Handbook”. USA: CRC Press.  62.1-62.28. 

 

Kurup, P. and Abbasi, T. (1997).  “Logic Synthesis Using Synopsys”. USA: Kluwer 

Academic Publishers. 

 

Lindsey, Clark S. (1998). “Neural Networks in Hardware: Architectures, Products 

and Applications”. www.particle.kth.se/~lindsey. 

 

Manavendra Misra (1997). “Parallel Environments for Implementing Neural 

Networks”. Neural Computing Surveys. Vol 1. 48-60. 

 

Martin-Del-Brio, B., Medrano-Marques, N. and Hernandez-Sanchez, S. “A Low-

Cost Neuroprocessor Board for Emulating the SOFM Neural Model”. 5th IEEE 

International Conference on Electronics, Circuits and Systems. 

 

Melton, M.S., Tan Phan, Reeves, D.S. and Van den Bout, D.E. (1992). “The 

TInMANN VLSI Chip”. IEEE Transactions on Neural Networks. 

 

Moerland, P.D. and Fiesler, E. (1996). “Hardware-Friendly Learning Algorithms for 

Neural Networks: An Overview”. Fifth International Conference on Microelectronics 

for Neural Networks and Fuzzy Systems. 

 



 160

Moerland, P. and Fiesler, E. (1997). “Neural Network Adaptations to Hardware 

Implementations”. Handbook of Neural Computation E1.2. 1-13. 

 

Mohamed Khalil and Koay, K.H. (1999). “VHDL Module Generator: A Rapid-

prototyping Design Entry Tool for Digital ASICs”. Jurnal Teknologi. 

 

Muroga, S. (2000). “Cell-Library Design Approach”, in Chen Wai-Kai. “The VLSI 

Handbook”. USA: CRC Press.  45.1-45.3. 

 

Murphy, P.M. and Aha, D.W. (1994). “UCI Repository of machine learning 

databases”. University of California, Department of Information and Computer 

Science. (http://www.ics.uci.edu/~mlearn/MLRepository.html). 

 

Patterson, D.W. (1996). “Artificial Neural Networks: Theory and Applications”. 

Prentice Hall. 

 

Peter van der Putten. (1996). “Utilizing the Topology Preserving Property of Self-

Organizing Maps for Classification”. Utrecht University: Masters thesis.  

 

Rabaey, J. (2003). “Digital Integrated Circuits: A Design Perspective”. Usa: 

Prentice-Hall. 2
nd

 Edition. 

 

Ruping, S., Ruckert, U and Goser, K. (1993). “Hardware Design For SOFM with 

Binary Input Vectors”. “New Trends in Neural Computation, Lecture Notes in 

Computer Science”. Springer Verlag, Berlin. 

 

Ruping, S., Ruckert, U and Goser, K. (1994). “A Chip for Self Organizing Feature 

Maps”. Fourth International Conference on Microelectronics for Neural Networks 

and Fuzzy Systems. 

 

Ruping, S. and Ruckert U. (1996). “A Scalable Processor Array for SOFM”. Fifth 

International Conference on Microelectronics for Neural Networks and Fuzzy 

Systems. 

 



 161

Ruping, S., Porrmann, M. and Ruckert, U. (1997). “A High Performance SOFM 

Hardware System”. International Work-Conference on Artificial and Natural Neural 

Networks. 

 

Ruping, S., Porrmann, M. and Ruckert, U. (1999) “SOM Hardware with 

Acceleration Module for Graphical Representation of the Learning Process”. Seventh 

International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired 

Systems.  

 

Salapura, V. (1994). “Neural Networks using bit stream arithmetic: A space efficient 

implementation”. IEEE International Symposium on Circuits and Systems, London. 

 

Schoenauer, T. et al. (1998). “Digital Neurohardware: Principles and perspectives”. 

Neuronal Networks in Applications. 

 

Schoenauer, T., Jahnke, A., Roth, U. and Klar, H. (1998). “Digital Neurohardware: 

Principles and Perspectives”. Neural Networks in Applications. 

 

Skapura, D.M. (1996). “Building Neural Networks”. ACM Press. 

 

Speckmann, H., Thole, P. and Rosenstiel, W. (1992). “Hardware Implementation of 

Kohonen's Self Organising Feature Map”. International Conference of Neural 

Networks. 

 

Speckmann, H., Thole, P. and Rosenstiel, W. (1993). “Hardware Synthesis for 

Neural Networks from a Behavioral Description With VHDL”. International Joint 

Conference on Neural Networks. 

 

Silvaco International (1998). “Cell Characterization with .Modif Statement in 

SmartSpice”. Simulation Standard. Volume 9. 12-13. 

 

Synopsys Online Documentation. (2000a). “Design Compiler User Guide”. Synopsys 

Inc., USA. 

 



 162

Synopsys Online Documentation. (2000b). “Design Compiler Tutorial”. Synopsys 

Inc., USA. 

 

Synopsys Online Documentation. (2000c). “Library Compiler User Guide”. 

Synopsys Inc., USA. 

 

Tanner Research, Inc. (2001a). “L-Edit User Guide”. Tanner Research Inc., USA. 

 

Tanner Research, Inc. (2001b). “T-Spice Pro User Guide”. Tanner Research Inc., 

USA. 

 

Vesanto, J.  (2000). “Neural Network Tool for Data Mining: SOM Toolbox”. 

Symposium for Tool Environments and Development Methods for Intelligent 

Systems. 

 

Visa, A., Iivarinen, J., Valkealahti, K. and Simula, O. (1995). “Neural Network 

Based Classifier”. International Conference on Artificial Neural Networks. 

 

Weste, N.H.E. and Eshraghian, K. (1992). “Principles of CMOS VLSI Design – A 

Systems Perspective (Second Edition)”. Addison-Wesley Publishing Company. 

 

Wolberg, W. H. and Mangasarian, O. L. (1990) "Cancer diagnosis via linear 

programming". SIAM News, Volume 23, Number 5. 

 

Xiang Fang, Thole, P., Goppert, J. and Rosenstiel, W. (1996). “A Hardware 

Supported System for A Special Online Application of Self-Organising Maps”. 

International Conference on Neural Networks. 

 

Yihua Liao. (2001). “Neural Networks in Hardware: A Survey”. Department of 

Computer Science, University of California: ECS250A Project. 




