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Abstract: Problem statement: Forecasting of palm oil yield has become an ingurelement in the
management of oil palm industry for proper plannaoyd decision making. The importance of yield
forecasting has led us to explore modeling of paliinyield for Malaysia using the most recent
development of Artificial Neural Network (ANN). Theaain issue in yield forecasting is to predict the
future value with the minimum erropproach: Artificial neural networks are computing systems
containing many interconnected nonlinear neuroapable of extracting linear and nonlinear regufarit

a given data set. It is an artificial intelligenoedel originally designed to replicate the humaairis
learning process, a network with many elementseorans that are connected by communications channel
or connectors. The ANN can perform a particularcfion when certain values are assigned to the
connections or weights between elements. In thidysta secondary data set from the Malaysian Pdalm O
Board (MPOB) on the foliar nutrient compositionttiézer trials and Fresh Fruit Bunch (FFB) yielceie
taken and analyzed. The foliar nutrient compositiariables are the nitrogen N, phosphorus P, potass
K, calcium Ca and magnesium Mg concentration, wthike fertilizer trials data are the N, P, K and Mg
fertilizers and are measured in kg per palm per.yEae foliar composition data was presented infoinm

of measured values whiles the fertilizer data inliral levels, from zero to threeResults. Two
experiments were conducted to demonstrate the mgaiéation ANN and for both experiment, the result
demonstrated that the number of hidden nodes pesdaic effect to the overall forecast performanchef
ANN architecture. From the first experiment, ibgls that the number of runs does not affect the ANN
performance, but changing the momentum to learrates, due to shows a significant improvement é th
forecast result. The experimental result will belia form of statistical analysis, the best neaetivork
performance, the residual analysis and the effedhe learning rate on the NN performan€enclusion:

This study showed that modeling of oil palm yieking neural network requires data to be prepared or
modified to satisfy the requirement of the paramsetavolved. This analysis yields the conclusioatth
only the number of hidden nodes has a significafdiénce on the NN performance and there is naceffe
resulting from the number of runs or the momentammtvalue on the neural network’s performance.

Key words: Palm oil yield, neural network, forecast accuracyl dime series model, Artificial Neural
Network (ANN), Fresh Fruit Bunch (FFB), human brdgrtilizer data

INTRODUCTION and used in many fields of application. New uses fo
ANN are being devised daily by researchers. Some of
Neural network or popularly known as Artificial the most traditional applications include the arda
Neural Networks (ANN), are computational models Classification- to determine military operationrfr
that consist of a number of simple processing unitsatellite photographs; to distinguish among diffiére
which communicate by sending signals to each othetypes of radar returns (weather, birds, or airyrat
over a large number of weighted connections. Omg ve identify diseases of the heart from electrocardiogg;
important feature in ANN is in its adaptive nature Noise reduction-to recognize a number of patterns
where “learning by example” replaces “programming” (voice, images) corrupted by noise and Prediction -
in solving problems. This feature renders comporteti  predict the value of a variable, given historic ues.
models very appealing in applications where one hakxamples include forecasting of various types afi
little, or an incomplete understanding, of the peots  market and stock forecasting and weather foregastin
to be solved, but where training data is availablany = (Kubde and Bansod, 2010; Adeli and Panakkat, 2009;
different types of neural networks are being depetb Wanget al., 2009; Faraway and Chatfield, 1998).
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Neural networks, sometimes referred to as In this study, the raw data used are checked,
connectionist models, are parallel-distributed ni®de validated and then partitioned them into training,
that have several distinguishing features (Shetbai.,  validation and testing set of data. The validitgttes
2009; Ismail and Jamaluddin, 2008). essential in ANN as it will indicate the presende o

Since the invention of backpropagation algorithmfaulty data and once found, it pattern must be rbagd
to train feedforward multi-layer neural networks aa&nd reason for deviances explained. In some cases,
decade ago, Neural Networks (NN) have been widelportion of the data may be discarded. By definitio
used for many types of problems in business, inglust r&ining sets are used to actually update the weigha
and science. One major use of NN is for time serie§€WOrk, validation sets are used to decide the

. - et architecture of the network and testing sets aesl us
E)I{lecag;tr:ngbeMapr;)c/);?Sciﬁcgass;lljtle?r?;tlil\i::tlct)gglsm;gr bo:h examine the final performance of the network. The

forecasting researchers and practitioners. Thé)rnmary concerns should be to ensure that (i) the

X . ) aining set contains enough data and a suitable da
popularity of NN is derived from the fact that thase . distribution to adequately demonstrate the propgmtie

generalized no_nlinear fore_casting m_odels. Foreegsti | ish the network to learn; (ii) there is no unwatea
has been dominated by linear statistical methods fosimilarity between data in different data sets.

several decades. Although linear models possesg man

advantages in implementation and interpretatioay th Mathematical model: ANN is an artificial intelligence
have serious limitation in that they cannot capturemodel originally designed to replicate the humaairiis
nonlinear relationships in the data, which are camm learning process. A network consists of many elésnen
in many complex real world problems. One of theor neurons that are connected by communications
major reasons for that problem is that there is a&hannels or connectors. It can perform a particular
varying degree of nonlinearity in the data, whichfunction when certain values are assigned to the
cannot be handled properly by linear statisticalconnections or weights between elements. In a yste
methods (Khamiset al., 2006, Fukushima, 2010; Where there is no assumed structure but the netarerk

Cherkassky and Ma, 2009; Chow, 2007; Adeli andtrained so that a particular input leads to a djetairget
Panakkat, 2009). output (Shahrabiet al., 2009; Blackwell and Chen,

In this study, we discuss the modeling of oil pa|mZOOQ). The mathematical model for a neural network
yield using ANN where data are required to be pregpa  CONSISts of a set of simple functions linked togethy
and modified to satisfy the requirement of theVEIGNIS. Ithasa setof inputs x, output unitsigt hidden
parameters involved in the neural network architect units z, which link the inputs to outputs (Fig. The

. L hidden units extract useful information from inpatsd
The model developed will be used for forecastingibf use them to predict the output. The type on neural
palm yield. :

network here is known the multilayer perceptron
(Eskandariniaet al., 2010).
MATERIALSAND METHODS A network with an input vector of elements(k=
1, 2,.., N) is transmitted through a connection that is
ANN architecture has a set of requirements thamultiplied by weight, w, to give the hidden unit g =
must be satisfied. When modeling oil palm yielde th 1,2, 3, ..., N):
date are reorganized to fit the ANN requirementhef N
parameters involved. The data used in this stugdy arz,=> w,x +w, Q)
secondary data set obtained from the Malaysian Palm '#
Oil Board (MPOB). The data include the fresh fraiit
palm yield, the foliar nutrient composition, feiir
trials. The amount of oil palm yield is measuredthy
amount of Fresh Fruit Bunch (FFB) yield. The foliar
nutrient composition include the Nitrogen (N), The hidden units consist of the weighted input and
Phosphorus (P), Potassium (K), Calcium (Ca) and bias (). A bias is simply a weight with constant
Magnesium (Mg) concentration, while the fertilizer input of 1 that serves as a constant added to ¢ighiv
trials data are fertilizers with the same nutrientThese inputs are passed through a layer of adiivati
composition which are measured in kg per palm (palnfunction f which produces:
tree) per year. The foliar composition data arehi@ N
form of measured values whiles the fertilizer data h, =f{zwjlxl +ng} 2)
ordinal levels, from zero to three. =1

Where:
Ny, = The number of hidden units
N; = The number of input units
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Bias Bias instead, it lets the data determine the appropriate

0 NQ\_ functional form (Shabrét al., 2009).

X In accordance to standard analytical practice, the
sample size was divided on a random basis two sets,
namely the training set and the testing set. Taimitrg

¥2 set and the testing set contain 80 and 20% ofdts t
sample respectively. To evaluate the modeling awyur
the correlation coefficient, r and Mean SquaresErr

O ¥ (MSE) were calculated. The model with a higherd an

o lower MSE was considered to be a relatively superio

Input layer v Hidden layer “714; Output layer model. . . . X .

A parametric analysis would be impossible without

a discussion of the degrees of freedom of the m&two

In any parametric analysis, the number of degrdes o

freedom is defined as the number of observatiomgisni

The activation functions are designed tothe number of parameters that are free to varya(@tij
accommodate the nonlinearity in the input-outputand Porter, 2008). If N represents the number of
relationships. A common function is sigmoid or gbservations and k the number of estimated paraspete
hyperbolic tangent: then the degrees of freedom, df, can be calculatied):

Xy

Fig. 1: Feed-forward neural network

= = -2 df =N -k (6)
f(z) =tanh(2 = 1 1 o (2] 3)

This approach to the degrees of freedom can be
The outputs from hidden units pass another lafer o@pplied directly to the feed-forward neural netwairk
filters: the network has only a single output. In this céeek
represent the number of estimated parameters. These
N, N, N, estimated parameters include not only the connectio
Vi :Zijhj+Wk0:Zijf|:szlxl +\Nj0:|+wk0 (4)  weights that feed into the output and the output's
= = = intercept parameter, but also the connection weight
that interconnect the hidden layers. It also cal@d the
and fed into another activation function F to proelu pias weights that correspond to each of the hidden
outputy (k=1,2,3, ..., layers’ transformation nodes. So, the numbers of
parameters estimated in the feed-forward neural
Ny, N; i H .
v =F(v,) = le Wkif(;: WX + W, ] . Wk0:| 5) networks with one hidden layer are calculated as:
= =

k=n(n+2)+1 (7

The weights adjustable parameters of the networkyhere:

and are determined from a set of data through the, = The number of hidden neurons
process of training (Cao and Zhu, 2010; Gholizadem, Number of input nodes
and Darand, 2009a). The training of a network is
accomplished using an optimization procedure (fich
nonlinear least squares). The objective is to mimém
the Sum of Squares of Errors (SSE) between th ) .
measured and predicted output. There are n{)he size O.f the net_vvork. If there are N observatjahen

: : e maximum size of the hidden nodes can be
assumptions about functional form, or about thecalculated using:
distributions of the variables and errors of thedelp '
ANN model is more flexible than the standard N -1
statistical technique (Gholizadeh and Darand, 2009b™m =" (8)
Chow, 2007). It allows for nonlinear relationshipda '
complex classificatory equations. The users do not As shown in Fig. 1, the input nodes are N, P, K, C
need to specify as much details about the functionaand Mg concentrations and the output node is FFB
form before estimating the classification equatbert,  yield which is measured in tonne per hectare par.ye
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because we have input and target data set as sinown
Fig. 2. We also assume that all the inputs have a
significant influence on the production of oil palm
yield. We start the network with a small number of
hidden nodes, which are added one by one until the
maximum number of hidden nodes, which is defined
from Eq. 8, is reached.

The first step in training a feed-forward netwask
to create the network object. The functizawff creates
a trainable feed-forward network (Al-Zubi al., 2010;
Wang et al., 2009). The user should determine the
transfer function in the first and second layerd aten
the transfer function was obtained and the command
newff used, the network was ready for training. Before
training a feed-forward network, the weights anasbs
must be initialized. The initial weights and biases
created with the commaridit. This function takes a
network object as input and returns a network dbjec
with all weights and biases initialized. For feedward
networks, the weights’ initialization is usuallyt s®
random (ands), which sets weights to random values
between -1 and 1.

This study considers the training networks for
function approximation. The training process regslir
networks inputsnput and target outputsrget. During
training, network’s weights and biases are itesdyiv
adjusted to minimize the network performance fuorcti
using mean squares erronse. The training algorithm
used in our study is Leverberg-Marquarditaiflm)
because this algorithm appears to be the fastetstoche
for training moderate-sized feed-forward neural
networks and it is also very efficient (Fahimifaatdal .,
2009). We then apply an early stopping technique to
avoid overtraining the neural networks and to imgro
generalization of the networks. This technique iegu
the data to be divided into three sets of data. firke
set is the training set. This is used to compui th
gradient and update the network weights and biases.

ANN application: In modeling oil palm yield we ran
neural networks using the neural networks toolbox i
MATLAB package with a built-in procedure for a
S|mp_le neural network§ program..NevertheIess we ar uring the initial phase of training, as does tiaéntng
required to develop a simple algorithm to calltieeral gt error, However, when the network begins to diver
networks built-in procedure. Each procedure has it$ne gata. the error on the validation set will oy
own specific name. In the first part we only coes&ll  pegin to rise. When the validation error incredsesa
N, P, K, Ca and Mg concentration from foliar an&lys specified number of iteration, the training is gteg
as input nodes and FFB as the output node (Figit®. and the weights and biases at the minimum of the
number of hidden nodes varies from one station tqgjidation error are returned as shown in Fig. 2-3
another because of the different number ofpresents the MSEalue for each phase. The MS&lue
observations. The maximum number of hidden nodes igecreases when the number of epoch is less thanlfiv
obtained from Eq. 8 to ensure that the degree ofemains consistent until epoch fifteen, when taining
freedom of the model is a!ways positive. stops. We divided the data into 3 sets, the trgisiet,

In our case we consider the fully connected feedvalidation set and testing set of data with ratly I5
forward neural network and supervised neural netsior and 15% respectively.
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The second set of data is the validation set. Tiwr en
the validation set is monitored during the training
rocess. The validation error will normally decieas
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Bestlinear fit: A= (0.403)T (0.313) Experiment 1: This experiment considers three factors,

12 oDatapoints namely hidden nodes, number of runs and momentum
R =059 - AST term. This was carried out by changing the levebrd
’ factor and assuming that two factors are fixedutothe
08l o networks. We then changed them from one level x ne
< osl ®as Ieve_l,_ recorde_d the error in e;timation for eaclageh
Lo (training, validation and testing) then calculatee t
0.4 qﬁg%’ﬁ-e‘ average of the error. As an example, supposethieat
B . hidden node was set to three and number of runs was
o 35 %g‘?%é ] also three and that the momentum term is 0.25. iWew
o ] can write the experiment as [3, 3, 0.25].
o The first value represents the number of Hidden
Y%z 04 08 08 1 Nodes, (HN), the second value represents the Number

T of Runs, (NR) and the last value represents the
Momentum Term, (MT). In general the experiment can
Fig. 4:The correlation coefficient between theuatt be written as [HN, NR, MT]. The momentum term level
(A) and predicted (T) values will increase and the process is repeated for éatbr
until the maximum value at [10, 20, 0.95] is reathe
In our study we use the correlation coefficienbas The three layers of fully connected neural networks
method of measuring the correlation between theafct with nine input nodes and one output node.
value and the predicted value. When the correlation
value approaches one, it shows that the actual ari@xperiment 2: In the second experiment, we changed
predicted values are close and that the modeltHi's the momentum term with the learning rate and we set
data well. Let X and X be the actual value and the momentum term at random. We still used the two
predicted value from the specified mode}, and o2 be factors of the number of hidden nodes and the numbe
the variance of the actual and predicted obsemwatia O-f runs. The experiment then included the number of
_ - hidden nodes HN, number of runs NR and learning, rat
X and X are the mean actual and mean predicted R and could be written as [HN, NR, LR]. We
observation. So, the correlation coefficient betwéde considered the number of hidden nodes as havirensev
actual and predicted values is defined as: levels, i.e. 2, 4, 6, 8, 10, 12 and 14 and the rarmnab
runs as also having seven levels i.e. 3, 5, 7,19,15
0, (X, ~X)(X ~X) and 20. The learning rate had five levels, i.e50M15,
r=2'# (9) 0.25, 0.45, 0.65 and 0.95. We repeated the praess
= Ox Oy the first experiment until the maximum levels fach
factor were obtained.

MATLAB also provides the graphically best fitted
line between the actual and target values. RESULTS

We also carry out test to determine if the number
of hidden nodes, the number of runs, momentum term&le

and Iearnmg.rate (_joes a_ffect thg performance_e)f\tN and output layer. Six combination activation fuoes
model. In doing this we fl_rst clarify how the expeent | o considered, namely log-sigmoid and log-sigmoid
was .deS|gned. In the first stage, th_ree factorsewer(LL), log-sigmoid and pure-lin (LP), log-sigmoid @n
considered namely the number of hidden nodes HNtvan-sigmoid (LT), tan-sigmoid and pure-lin (TP)n4a
number of runs NR and momentum rate MR. Thesjgmoid and log-sigmoid (TL) and tan-sigmoid and-ta
number of hidden nodes has eight levels, betwesmd3  sigmoid (TT). All the combinations of activation
10, there are six levels for the number of runs3(37,  functions were run and the mean squares errordohn e
10, 15 and 20) and four levels for the momentums$gr number of hidden nodes were recorded. The three
which are 0.25, 0.5, 0.75 and 0.95. We combined thphases in NN modeling are the training, vaiafat
information from fertilizer trials (N, P, K and Mg and testing. Using the average MSE, the
fertilisers) and information from foliar analysiset N,  performance of NN architecture is determirdere

P, K, Ca and Mg concentration. Therefore, this akeur we consider the MSE as the testing variable of each
network architecture involves nine inputs and onephase. We also tested the correlation between the
output as shown in Fig. 4. predicted and observed values.
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Table 1: The F statistics value for different conattion of activation  number of runs or the momentum term value on the

functions used in coastal and inland areas neural network’s performance.
The F-value

Station  Training Validation Testing Average Coatisn Results of experiment 2: After running the analysis of

Inland stations variance, we found that the F value for the hiddedes
ILD1 3.368*  17.997*  12.055* 10.729* 3.062* is 8.0480 (p = 0.0000 and df = (6, 2932)) and twalke
* * * * .

:::Bg ;-?gg* ggsg* i“égig %Oégsl’} i-igi* for the number of runs is 2.8840 (p = 0.0080 and (8,
ILD4 2901*  15.055¢  10.452* 13.700¢ 3.058* 2932)). :I'hls indicates that both factors affect tiearal
ILD5 1.859 2.306* 42.523* 16.715* 2.519* network’s performance. However, the F value for the
ILD6  3.132* 22,047  4755* 0.927  4.606* learning rate is 1.6090 (p = 0.1540 and df = (33}

* * * . . o
ILb7 1766 13455+  7.028" 5812* 0916 which means that the null hypothesis cannot betesje
ILDT 0.853 11.736*  12.742* 3.732* 0.613 : .
Coastal stations and we conclude that the learning rate does nlteinée
CLD1  0.847 11.091*  18.495* 15.103* 6.454* the neural network’s performance.
CLD2  3.664*  7.724* 9.166*  10.197* 2.403*
CLD3  3.265*  3.762* 1.918  2.905*  4.017*
CLD4  1.295 12.413*  6.006* 8.957* 5.272* DISCUSSION
CLD5  1.524 10.218*  7.112* 1615  2.139 _ o
CLD6 3.232*  6.523* 10.145* 7.518*  6.146* We are interested to test whether all combination
CLD7  1.366 5.092* 3.354*  2.865* 5.911* of activation functions will produce equal MSE vedu
CLDT 2.704* 8.083*  35.022* 13.037* 2.047 So that, two hypotheses were tested; the null

Note: * significant at 5% level

hypothesis, It all the MSE forming for each
combination activation functions are equal and the
a alternative hypothesis, Hat least one combination
f’;f‘;od”area"" LP LT ™ IE il activation function is not equal. In this case, the
ILD1 0116 0432 0146 0444 0143 0146 dependent variable was MSE value and_ the mdependen
ILD2 0.116 0.126 0.124 0131 0.126 0.122 variables were the combinations of activation fiorct
ILD3 0119 0119 0113 0109 0.114 0.117 For further explanation, station ILD1was consideasd
ILD4 0136 0128 0130 0129 0135 0132 z5 example. For each combination activation fumgtio

ILD5 0.094 0113 0.107 0096 0.096  0.097 . , : _
ILD6 0099 0101 0099 0102 04105 0072 the NN was running using 2 hidden nodes to 30 dde

Table 2: The MAPE values of the neural network nhode

ILD7 0.167 0.158 0.169 0164 0161 0.175 hodes and the MSE values and correlation coefficien
ILDT 0.057 0.056 0.056  0.058 0.057 0057 for each phase were recorded. The numbers of hidden
Coastal

Slpl 0146 0134 0139 0149 0122 0146 node depended on the maximum number of hidden
CLD2 0073 0064 0072 0066 0078 0074 Nodes which was obtained from equation (6.3). Then,
CLD3 0.076 0.066 0.075 0069 0.084 0.079 rearranged the MSE values and performed the asalysi
CLD4 0113 0129 0.112 0128 0.116  0.113 of variance.

CLD5 0149 0149 0158 0143 0153 0151 As a standard procedure, thetgtistic was used to
CLD6 0.128 0124 0123 0124 0.133 0.130 :
CLD7 0107 0108 0108 0103 0106 0110 test the null hypothesis. The results of the testtlie
CLDT 0.150 0.146 0.151 0.157 0153 0.152 inland area are presented in Table 1. The F vdhres
The activation function combination (input layerttimiden layer and  training, validate, testing and average are 3.388397,
hidden layer to output layer) 12.055 and 10.729, respectively and found staditbyic
significant at 5% level at (5, 198) degrees of diaa.
Results of experiment 1: After completing the Then, by using the same procedure, others stateye w
experiment, we rearranged the data for varianclysisa obtained. As we can see, almost all the stationwsti
and response surface analysis. The F value of hiddghe p-value less than 5% corresponded with their
nodes, 8.7759 (p = 0.0000 and df = (7, 1912))ceieid  degrees of freedom, which signified rejection oé th
that the performance of the neural networks modes w null hypothesis, except for stations ILD6, ILD7 atie
statistically affected by the number of hidden rodehe  ILDT. At station ILD6 the average MSE for different
F value for number of runs, 1.6950 (p = 0.1330@iw  combination activation functions can be assumedlequ
(5, 1914)) and the momentum term, 1.3300 (p = @263as it was also found in the training and corretatio
and df = (3, 1916)), show that both factors did notresults at station ILD7.
influence the overall performance of the neuraivoeks. Our analysis shows that the result is the same for
This analysis yields the conclusion that only thenher ~ coastal area, where all the tests are significaitiea 5
of hidden nodes has a significant influence onNine  percent level (Table 2). In the training phase, rié
performance and there is no effect resulting fréva t hypothesis is not rejected at three stations, foe o
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