
IRPA Grant Final Report

DESIGN & DEVELOPMENT OF STREET LIGHT

MONITORING AND MANAGEMENT SYSTEM

MUSA BIN MOHD MOKJI

PROF IR DR SHEIKH HUSSAIN SHAIKH SALLEH

KAMARULAFIZAM BIN ISMAIL

UNIVERSITI TEKNOLOGI MALAYSIA

 iii

TABLE OF CONTENT

CHAPTER TITLE PAGE

 ABSTRACT ii

 TABLE OF CONTENT iii

 LIST OF TABLES vii

 LIST OF FIGURES viii

 LIST OF APPENDICES xi

CHAPTER I INTRODUCTION 1

CHAPTER II SYSTEM HARDWARE DESIGN 4

 2.1 Streetlight Monitoring Unit 4

 2.1.1 Introduction 4

 2.1.2 Feeder Interface Unit 8

 2.1.3 Feeder Controller Unit. 9

 2.1.4 Firmware Design 11

 2.1.4.1 Software Design of FIU 11

 2.1.4.2 Software Design of FCU 14

 2.1.4.3 Circuit Diagram of FIU and FCU 16

 2.2 Power Analysis Unit 24

 2.2.1 Introduction 24

 2.2.2 Analyzing measurement data 26

 2.2.3 Transients 27

 iv

CHAPTER TITLE PAGE

 2.2.4 Harmonics 27

 2.2.5 The Algorithm 28

CHAPTER III SYSTEM SOFTWARE DESIGN 30

 3.1 Introduction 30

 3.2 Regional Control Centre-RCC 32

 3.2.1 Station Enrollment 34

 3.2.2 Setting 35

 3.2.3 System Log 42

 3.2.4 Internet/Networking 43

 3.2.5 GSM Control Panel 44

 3.3 National Control Centre-NCC 46

CHAPTER IV COMMUNICATION INTERFACE 49

 4.1 GSM Network 49

 4.1.1 Why use SMS? 51

 4.2 PLCC 52

 4.2.1 Types of PLC technology 53

 4.2.1.1 Indoors/Short Range 53

 4.2.1.2 Outdoors/Long Haul 53

 4.2.1.3 Automotive 54

 4.2.2 Broadband over power lines 55

 4.2.3 IEEE 56

 4.3 TCPIP 57

 4.3.1 The Network Interface Layer 58

 4.3.1.1 PPP 59

 4.3.2 The Internet Layer 61

 v

CHAPTER TITLE PAGE

 4.3.2.1 IP Addresses 64

 4.3.2.2 Conserving IP Addresses: CIDR,

DHCP, NAT, and PAT

69

 4.3.3 The Domain Name System 73

 4.3.3.1 ARP and Address Resolution 75

 4.3.3.2 IP Routing: OSPF, RIP, and BGP 76

 4.3.3.3 IP version 6 78

 4.3.4 The Transport Layer Protocols 79

 4.3.4.1 Ports 79

 4.3.4.2 TCP 81

 4.3.4.3 UDP 83

 4.3.4.4 ICMP 84

 4.3.5 TCP Logical Connections and ICMP 86

 4.3.6 The TCP/IP Application Layer 90

 4.3.6.1 TCP and UDP Applications 90

 4.4 Summary 93

CHAPTER V FILED TEST 95

 5.1 Introduction 95

 5.2 Communication 96

 5.3 GSM Modem 97

 5.4 Client/Server Connectivity 98

 5.5 Server System/NCC 100

CHAPTER VI CONCLUSION 103

 REFERENCES 105

 vi

CHAPTER TITLE PAGE

 APPENDICES 106

 Appendix A: FCU Firmware Source Code 106

 Appendix B: FIU Firmware Source Code 114

 Appendix C: Client Software Source Code 128

 ii

ABSTRACT

The management of streetlights by the power utility company and local

authorities are typically faced with the problem of high operational expenditure, low

efficiency and increase customer complaint. They are also faced with increase customer

complaint due to unattended faulty streets lights and frequent power outages. There is a

significant pressure to reduce these operational expenses, improve efficiency and image.

By operational efficiency we meant how faulty street lights are managed effectively

through the use of a low cost automated system, thus improve efficiency and enhancing

customer services. Operational cost reduction is achieved through accurately

identification of faulty lights and timely action taken to rectify such fault. Currently these

maintenance routines [i.e. random patrols around the street light zones] are conducted

daily in parallel to records of faulty lights reported by customers. These incurred

substantially high operational expenditure year to year. The objective of this project is to

develop a low cost SLM system with features suffice enough for the utility companies to

effectively manage and maintain street lights and also monitor power quality to ensure

continuous and uninterrupted supply to customers both residential and industries. SLMS

consist of interface modules (FC-Feeder Controller, FIU-Feeder Interface Units) installed

at the substation or streetlights panel to collect the status of power over each feeder pillar.

Information of faulty lights collected by the FIU (which will measure the current/power

on the feeder and record any changes e.g. a drop in power indicating a faulty light in that

feeder line) is passed back to FC using the PLC (Power line carrier) technique. The FC

manages several feeder pillars and relay back the information received from FIU to a

management system server located at the office (RCC-Regional Control Center & NCC-

National Control Center) using “SMS” GSM network. RCC then sends an alert SMS to

operational personnel to inform them of the faulty record. The management system keeps

records for management reporting and analysis.

 xi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A FCU Firmware Source Code 106

B FIU Firmware Source Code 114

C Client Software Source Code 128

 viii

LIST OF FIGURES

FIGURE’S NO TITLE PAGE

2.1 Block Diagram of SLMS (street lighting monitoring system) 5

2.2 Drawing structures of SLMS (street lighting monitoring system) 6

2.3 Connection and location of FIU and FCU in SLMS (Street Light

Monitoring System)

7

2.4 Feeder Interface Unit (FIU) 8

2.5 Block diagram of FIU (3 phase) 8

2.6 Inside view of FIU. FIU can add up to 4 cards (include main board) to

monitor until 4 outputs feeder

9

2.7 Feeder Control Unit (FCU) 9

2.8 Block diagram of FCU 10

2.9 Inside view of FCU 11

2.10 Flow chart micro-controller program of FIU 12

2.11 Binary data format sending from FIU to FCU 14

2.12 Flow chart micro-controller program of FCU 15

2.13 Block diagram of FIU (3 phase) 16

2.14 50 Hz Amplifier circuit of FIU 16

2.15 RMS to DC converter circuit of FIU 17

2.16 DC adder circuit of FIU 17

2.17 Comparator circuit of FIU 18

2.18 Photo coupler circuit of FIU 18

2.19 Clock circuit of FIU 19

2.20 Micro-controller circuit of FIU 19

2.21 TTL to RS232 converter circuit of FIU 20

 ix

2.22 Total circuit for FIU main board 20

2.23 Simulated complete PCB of FIU 21

2.24 Schematic diagram of FCU 21

2.25 Photo coupler circuit of FCU 22

2.26 Micro-controller circuit of FCU 22

2.27 RS232-TTL converter circuit of FCU 23

2.28 Total circuit for FCU main board 23

2.29 Simulated complete PCB of FCU 24

2.30 This flow chart depicts an example of a data analysis system 26

2.31 Long-term monitoring of harmonic rms currents may be presented in a

histogram

27

3.1 Authentication of RCC 33

3.2 Main user interface 34

3.3 New station enrollment 35

3.4 System Setting-General 36

3.5 System Setting-Communication 37

3.6 System setting- Security/Authentication 38

3.7 System Setting-Logging 39

3.8 System Setting-Fault Code 40

3.9 System setting-Database Management 41

3.10 System Setting-Sound Alert 42

3.11 System logging information 43

3.12 Internet/Networking control panel 44

3.13 GSM modem control panel 45

3.14 Login/ authentication dialog 46

3.15 Main Interface dialog 47

3.16 Internet/networking server control panel 48

4.1 GSM Communication 50

4.2 Abbreviated TCP/IP protocol stack 58

4.3 PPP frame format (using HDLC) 59

4.4 IP packet (datagram) header format 62

 x

4.5 IP Address Format 64

4.6 Network Address Translation (NAT) 71

4.7 Port Address Translation (PAT) 72

4.8 TCP segment format 81

4.9 UDP datagram format 84

4.10 TCP logical connection phases 88

4.11 TCP/IP protocol suite architecture 93

5.1 Pilot plan implementation 95

5.2 FIU layout design 96

5.3 GSM modem control panel 98

5.4 Client configuration utility 100

5.5 Server socket starting interface 101

 vii

LIST OF TABLES

TABLE’S NO TITLE PAGE

3.1 Comparison of SQL Implementation 32

4.1 Subnet number of bits 65

4.2 IP address space 70

4.3 Well-known port number 80

1

CHAPTER 1

INTRODUCTION

Operation and maintenance of infrastructure and facilities of power distribution

(at the feeder level) has always been a major concern of power utility companies and

local authority (who manage the power distribution within their jurisdiction). Their main

concern is usually the inefficient utilization of resource in order to give good customer

service level. Managing the street lighting is an area of interest of TNB due to the vast

distribution of lighting network implemented in cities and town. The size of the

distribution has grown tremendously and as such there is a need to have a monitoring and

management system to help reducing the operating cost while improving and optimize

the utilization of workforce to handle maintenance activities.

This project will develop a mechanism to facilitate the monitoring,

identifying/locating and rectifying the fault lights within the feeder network. A feeder

control unit will measure the current/power on the feeder and record any changes e.g:

drop in current indicating a faulty lamp in that particular feeder line.

Enhance feature of this product will include a smart module placed at individual

lighting pole at the incoming feeder to collect data and distribute the status of these lights.

Data collected at the feeder points will be remotely monitored by a central control system

located in the central/regional offices.

 In this period of research, we tend to prove on some concept and idea. This

concept will bring together many parts from different technology and put them in a

system to realize the idea.

2

 At the end of this research, we manage to integrate this different kind of

technology and make them talk to each other while passing the appropriate information.

As the result, we have a system which monitor the status of the streetlight and power

quality in our transmission and distribution system

Classification of power quality (PQ) related voltage and current waveform

distribution is a key task power system monitoring. TNB engineers will use PQ to access

the quality of power received by customers in an electrical power system. The study of

power quality has been a major effect at any electrical utilities and industries.

Operation and maintenance of infrastructure and facilities of power distribution

(at the feeder level) has always been a major concern of power utility companies and

local authority (who manage the power distribution within their jurisdiction). Their main

concern is usually the inefficient utilization of resource in order to give good customer

service level. Managing the street lighting is an area of interest of TNB due to the vast

distribution of lighting network implemented in cities and town. The size of the

distribution has grown tremendously and as such there is a need to have a monitoring and

management system to help reducing the operating cost while improving and optimize

the utilization of workforce to handle maintenance activities.

This project will develop a mechanism to facilitate the monitoring,

identifying/locating and rectifying the fault lights within the feeder network. A feeder

control unit will measure the current/power on the feeder and record any changes e.g:

drop in current indicating a faulty lamp in that particular feeder line.

Enhance feature of this product will include a smart module placed at individual lighting

pole at the incoming feeder to collect data and distribute the status of these lights. Data

collected at the feeder points will be remotely monitored by a central control system

located in the central/regional offices.

3

 The main feature of this system will prevent unauthorized access and usage of the

streetlight monitoring and management system by both power utility company personnel

and its approved sub-contractor. The proposed system can perform the following tasks:

 - Monitor on/off of the streetlights

 - Monitor status of feeder line

 - Monitor abnormal lighting timing

 - Data transfer based on compression technique to main station

- Analysis of feeder line using signal analysis technique for preventive

maintenance

 This project will consist of several units within the research environment,

developing various component of the system. These units are.

i. Controller access unit.

ii. Back office and database unit.

iii. DSP security interface

iv. Communication interface unit

v. Each unit is responsible to design, document and code their respective

component.

4

CHAPTER 2

SYSTEM HARDWARE DESIGN

2.1 Streetlight Monitoring Unit

2.1.1 Introduction

There are various methods to monitor streetlights condition. The most common

and easiest way is by visual checking during the streetlight when it is in operation. This

procedure requires a number of resources including time, manpower and cost and no

longer become an effective method of monitoring and maintenance task. The rapid

development of technology has changed the style of monitoring streetlight from the

conventional to the remote and distributed method. For instance, today we can monitor

the streetlight from a centralized monitoring center by using a PC.

In Malaysia, Iconergy Sdn. Bhd with cooperation with University Technology

Malaysia has developed a system which can manage and monitor the streetlight condition

using a very advance method. The system is known as “Power Quality Management and

Street Light Monitoring System” (PQSLM).

“Power Quality Management and Street Light Monitoring System” (PQSLM) is a

system which monitor street light condition without having to go to the remote site.

PQSLM uses 3 medium of data transfer from street light panel box to the central

monitoring station. At the street light panel box, PQSLM will measure the current level

5

and process the data a dedicated microcontroller. The microcontroller will send data to

the substation via power line communication protocol.

The above mentioned process is conducted by a hardware known as FIU (feeder

interface unit). FIU is located inside the street lighting panel box. FIU consists of a

several major part such as current sensor, microcontroller circuit and PLC module. The

current sensor is a power clamp which also called CT coil (current transformer coil).

This power clamp will transfer the actual current value to the small AC voltage with

specific ratio depend on the type of power clamp. Then, the microcontroller will do some

comparison with threshold voltage to determine the status of the streetlights. After the

process, the microcontroller will also send the data to PLC module.

Figure 2.1: Block Diagram of SLMS (street lighting monitoring system).

Street
 Lights

FIU (feeder
interface unit)

FCU (feeder
control unit)

Street light panel box Substation building

Server and
Client PC

CT Coil
Or

Power clamp

PLCC SMS

6

Figure 2.2: Drawing structures of SLMS (street lighting monitoring system).

According to the PLCC module specification, the data can be transferred in a

distance of more than 500 meter.

FCU (feeder controller unit) is located inside the substation building. FCU

received the data from FIU and then communicates with GSM modem to send SMS to

the central station. FCU receives two dedicated input one from street light and another

one from power quality analyzer unit. This power quality (PQ) analyzer unit utilizes a

7

high-speed digital signal processing (DSP) technology where the hardware is special

design for complex and accurate mathematical calculation.

PQ is used for signal analysis to detect power the disturbance in 240Vac voltage

signal. This FCU is also equipped with a backup power supply for continuous operation.

The backup power supply is programmed to send a signal to FCU in case of power

failure, and FCU will send SMS to the central station for immediately power shutdown

information. For the security purpose, this system can easily detect the signal from the

door sensors or motion sensors and then send the SMS to the central station. The FCU

will continuously send the SMS if the sensors are still alerted. PQSLM is not just a

monitoring system. It is also embedded with power disturbance and security solution.

Figure 2.3: Connection and location of FIU and FCU in SLMS (Street Light

Monitoring System).

8

Streetlight monitoring system usually implements one of these techniques which

is either measuring the status of each and single streetlight or measuring the total current

that flows to a certain feeder. The designed system measure the current level of a feeder

which represents the status of streetlight for the whole feeder. This method can be

explained by OHM law theory where the current (I) is equal to the voltage (V) divide by

resistance (R). For instance, when we have 100 lights from one output feeder, each light

consume 1 ampere current during normal operational time and by omitting the cable

resistance, the total current will be 100-Ampere. So, if the current below the 100-A, we

can detect a faulty of the light even if only one light goes OFF.

2.1.2 Feeder Interface Unit

Figure 2.4: Feeder Interface Unit (FIU).

Figure 2.5: Block diagram of FIU (3 phase).

9

 Figure 2.5 is a block diagram of an FIU. The FIU receives the input from a power

clamp. Power clamp is used to measure the current that flow inside the supply cable for a

streetlight feeder. The power clamp converts the current value from electromagnetic field

to the small ac voltage (r.m.s) in according to the manufacturer defined ratio. FIU is using

the power clamp with 1A/ 10mV rating.

Figure 2.6: Inside view of FIU. FIU can add up to 4 cards (include main board) to

monitor until 4 outputs feeder.

2.1.3 Feeder Controller Unit.

Figure 2.7: Feeder Control Unit (FCU)

10

Basically, FCU are the main microcontroller, which control the data flow between

FIU, FCU and central station. FIU incorporates a PLCC module as the data transceiver

between FIU and FCU and GSM modem as the transceiver between FCU and central

station. The FCU has one unique feature. It is pinging capability. It means that the user

can ping the FCU to request the current status of the monitored substation. This is done

by doing a missed call to the GSM modem terminal and the FCU will send the status of

all connected substation.

Figure 2.8: Block diagram of FCU.

The FCU is also designed to monitor input for power quality analyzer, security and

240Vac signal detector. FCU used switching power supply with 240Vac input and triple

output +5, +12 and –12V DC. This power supply is connected from a UPS, so that the

FCU can maintain the operation in case of power failure and send notification message to

central station.

11

Figure 2.9: Inside view of FCU.

2.1.4 Firmware Design

2.1.4.1 Software Design of FIU

FIU uses a small microcontroller to control the whole circuit operation. The

microcontroller is PIC16F84A from MICROCHIP. In this chapter will describe in details

about the programming of the microcontroller by using assembly language.

We needs a hex file to be download to the flash ROM (read only memory) of

microcontroller. After we write or burn the flash ROM, now it can works as programmed.

Before we start making the assembly file, the first step is constructing the flow chart.

Flow chart is important because it shows the structure of our program briefly. Then, from

that we can easily to understand the flow of subroutine inside the programming.

12

Figure 2.10: Flow chart microcontroller program of FIU.

On the initialization of the circuit, the FIU starts the scanning task especially on

the interrupt signal from the all inputs. So far, it was designed have 5 inputs, which is

coming from GSM MODEM, OFF, LEAK, FAULT, GOOD and OVER sensor. Data

format from GSM MODEM is in serial data and another sensor is digital logic pulse.

The same process happen at the FIU when it receives any signal from the others

sensors. FIU monitor the streetlight and directly send the code data depend on the

streetlight status to FCU. This process continues until we switch OFF the power supply.

POWER ON

Scan interrupts from?

GSM
request?

OFF

LEAK

FAULT

GOOD

OVER

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Receive
Data=’X

Receive
Data=’G

Yes
No No

Yes

Send OFF code to
FCU

Send LEAK code to
FCU

Send FAULT code
to FCU

Send GOOD code
to FCU

Send OVER code
to FCU

No

Card delay

Card delay

Card delay

Card delay

Card delay

13

So it will be functioning continuously and have good capability to monitor in real time

situation every day.

The figure below is a complete binary data format sending from FIU to FCU. This

data call “streetlight status data” (SLSD). This type of data are 8 bit, none parity, stop

bit 1 with speed 1200bps. The baud rate is 1200bps because PLCC module can send data

maximum speed on that speed. Five bit data from the LSB is a Status Code bits data.

Then, 3 bits data from the MSB is an Identity bits. Identity bits are used to separate the

FIU data if more then one FIU was connected in the same phase in power line.

 MSB LSB

 0 0 0 0 0 0 0 0

Below is the list down of data for one sample unit FIU. We can see the setting of

Status Code and Identity bits. So, if we have additional FIU needs to put in the same

phase power line, we just change the Identity bits to 010 or else than 001.

001 00000 ;main board off

 001 00001 ;main board leak

 001 00010 ;main board fault

 001 00011 ;main board good

 001 00100 ;main board over

 001 00101 ;card1 off

 001 00110 ;card1 leak

 001 00111 ;card1 fault

 001 01000 ;card1 good

 001 01001 ;card1 over

Status Code bits Identity bits

14

 001 01010 ;card2 off

 001 01011 ;card2 leak

 001 01100 ;card2 fault

 001 01101 ;card2 good

 001 01110 ;card2 over

 001 01111 ;card3 off

 001 10000 ;card3 leak

 001 10001 ;card3 fault

 001 10010 ;card3 good

 001 10011 ;card3 over

Figure 2.11: Binary data format sending from FIU to FCU.

2.1.4.2 Software Design of FCU

FCU (feeder controller unit) also used same type of microcontroller as FIU

(feeder interface unit). It also runs a similar firmware as which programmed in the flash

ROM.

15

POWER ON

Initialize STATUS LED

FCU

GSM

SAG

SWELL

Yes

Yes

Yes

Yes

No

No

No

No

Disable DTR/RTS on GSM

Send 240V recover message

Scan interrupts from?

UPS
Yes

SECU-
RITY

Yes

No

No

 Get STATUS Code S/L Send SMS Delay 5 second

Interrupt FIU

Send SMS Delay 5 second

Send SMS Delay 5 second

Delay 10 minute

Missed
call?

Yes

No

 Get STATUS Code S/L Send SMS

Delay 5 second

SECUR
I TY

A

A

No

Send
SMS

Ok Send
SMS

Delay 10 minute 240Vac
OK=?

No

Ok Send
SMS

Figure 2.12: Flow chart microcontroller program of FCU.

16

2.1.4.3 Circuit Diagram of FIU and FCU

Figure 2.13: Block diagram of FIU (3 phase).

By refer to the block diagram above; it is easily to show the schematic diagram of

FIU. In this chapter will explain the function of schematic diagram according to the block

diagram. Subsequent figures show the circuit diagram of component for FIU and FCU.

Figure 2.14: 50 Hz Amplifier circuit of FIU

17

Figure 2.15: RMS to DC converter circuit of FIU

Figure 2.16: DC adder circuit of FIU

18

Figure 2.17: Comparator circuit of FIU

Figure 2.18: Photo coupler circuit of FIU

19

Figure 2.19: Clock circuit of FIU

Figure 2.20: Microcontroller circuit of FIU

20

Figure 2.21: TTL to RS232 converter circuit of FIU

1 2 3 4

A

B

C

D

4 321

D

C

B

A Titl

Numb RevisiSiz
A

Date 26-Jul- Sheet
File C:\Program Files\Design Explorer 99 Drawn

GN
N1

P1

R
100

R
100

R
10

GN

P1

GN

P1

VR
10

VR
10

OFFS

LEAKS

LEAKS
OFFS

GN

BC

YC

RC RMIND

RMS2D
RMS2DC1.

RMIND

RMIND

RMS2D
RMS2DC2.

RMIND

RMIND

RMS2D
RMS2DC3.

RMIND

ADDE OVERI
GOODI
LEAKI

LEAKS

OFFI
OFFS

COMPA
COMPARE.

ADDE OVERI
GOODI
LEAKI

LEAKS

OFFI
OFFS

INDC ADDE
INDC
INDC

ADDE
ADDER.

INDC ADDE
INDC
INDC

R1 13
R2 8
T1 11
T2 10

R1 12
R2 9
T1 14
T2 7

C11
C1 3 C2 4

C2 5

U

23
+ C10 + C

10

RX23

TX23

RXTT

TXTT

+ C
10

+ C
10

+ C
10

V-

GNN1

GN P5GN

RXTT
TXTT

RX23

TX23

1 2 3 4 5 6 7 8 CN

PLC

P5

1
6
2
7
3
8
4
9
5

CN1

SERIA

1 2 3 4 CN

PW

GN

N1

P1

P5

OVERT
GOODT
LEAKT

OFFT

OVERI
GOODI
LEAKI
OFFI

PHOT
PHOTO.S

OVERT
GOODT
LEAKT

OFFT

OVERI
GOODI
LEAKI
OFFI

RX23
TX23

CPUCL

TIME
TIMER.S

CPUCL

HOL
CL

CL

OVERT

LEAKT
OFFT

GOODT
RXTT
TXTT

CLKI
HOL

MICO
MICON.

OVERT

LEAKT
OFFT

GOODT
RXTT
TXTT

CLKI
HOL

VC

1
2
3
4
5
6

CN

CLAM

1
2
3
4
5
6

CN

CLAM

1
2
3
4
5
6

CN

CLAM

1
2
3
4
5
6

CN1

CLAM

BC

YC

RC

BC

YC

RC

BC

YC

RC

BC

YC

RC

GN

GN

GN

GN

TO PC

GN GN

P1

N1

P5
P1

N1

P5
TXTT TXTT

RC RC

BC BC

RXTT

YC YC

RXTT

HOL HOL
CL CL

OFFS
LEAKS

OFFS
LEAKS

VS

12 34 56 78 910
1112
1314
1516
1718
1920
2122
2324
2526
2728
2930
3132
3334

CN

CAR

RXTT
RXTT

GN GN

P1

N1

P5
P1

N1

P5

TXTT TXTT

RC RC

BC BC

RXTT

YC YC

RXTT

HOL HOL
CL CL

OFFS
LEAKS

OFFS
LEAKS

12 34 56 78 910
1112
1314
1516
1718
1920
2122
2324
2526
2728
2930
3132
3334

CN

CAR

TXTT

TXTT

REVERSE
P5

P1

N1

RXTT

RXTT
RXTT

GN GN

P1

N1

P5

P1

N1

P5

TXTT TXTT

RC RC

BC BC

RXTT

YC YC

RXTT

HOL HOL
CL CL

OFFS
LEAKS

OFFS
LEAKS

12
34
56
78
910

1112
1314
1516
1718
1920
2122
2324
2526
2728
2930
3132
3334

CN

CAR

1
2

CN1

LEA

1
2

CN1

OF

GN

GN

+ C
10

V+

P5

DTC
14

DTC
14

GN

RA

4K

P5

UP

UP
UP
UP

UP

UP

UP

GN

UP

DTC
14

DTC
14

GN

UP

GN

TXTT DTC
14

DTC
14

GN

UP

GN

TXTT DTC
14

DTC1
14

GN

UP

GN

TXTT DTC
14

DTC
14

GN

UP

GN

UP

UP
UP
UP

RC

YC

BC CL

R
100

R
100

R
100

P5

P5

P5

1
2

CN

DGN

CLAMRM

50HZAM
50HZAMP1.

CLAMRM

CLAMRM

50HZAM
50HZAMP2.

CLAMRM

CLAMRM

50HZAM
50HZAMP3.

CLAMRM

D

tx23

rx23

FCU MAINBOARD

REV1.2 ICONERGY-

Figure 2.22: Total circuit for FIU main board

21

Figure 2.23: Simulated complete PCB of FIU

Figure 2.24: Schematic diagram of FCU

22

Figure 2.25: Photo coupler circuit of FCU

Figure 2.26: Microcontroller circuit of FCU

23

Figure 2.27: RS232-TTL converter circuit of FCU

1 2 3 4

A

B

C

D

4321

D

C

B

A Title

Number RevisionSize

A4

Date: 28-Jul-2005 Sheet of
File: C:\Program Files\Design Explorer 99 SE\FIU2.ddbDrawn By:

RXTTLA
TXTTLA

CLK

RA3

4K7

P5

SEND

RA017

RA118

RA21

RA32

RA4/T0CKI3

RB0/INT6

RB1 7

RB2 8

RB3 9

RB4 10

RB5 11

RB6 12

RB7 13

MCLR4 OSC1/CLKIN16 OSC2/CLKOUT 15
U1

PIC

RXTTLB
TXTTLB

CLK3 4

U3B

74LS04

1 2

U3A

74LS04

C6

0.1uF

5 6

U3C

74LS04

R6
470

R5
470

XTAL1

4.00 MHz
P5

R7
330

R1 IN13

R2 IN8

T1 IN11

T2 IN10

R1 OUT 12

R2 OUT 9

T1 OUT 14

T2 OUT 7

C1+1

C1 -3 C2+ 4

C2 - 5

U2

232

+

C1
10u

GND

+

C2
10u

RX232A

P5

TX232A

RXTTLA

TXTTLA

GND

LD2LD4

+ C4
10u

LD6

+ C3
10u

LD8

+ C5
10u

V-

GND N12

GND

P5

P5

RA2

1K

GND

P5

LD1LD3LD5LD7

RA1

1K

R1

2K2

R2

2K2

R3

2K2

R4

2K2

UP1

UP2

A1

K2 E 3

C 4
PC1

UP4

A1

K2 E 3

C 4
PC2

UP5

A1

K2 E 3

C 4
PC3

UP6

A1

K2 E 3

C 4
PC4

UP3

UP3
UP4
UP5
UP6

UP1
UP2
UP3
UP4
UP5
UP6
UP7
UP8

RX232B

TXTTLB

RXTTLB

TX232B

1
2
3
4

CN2

PWR

GND

N12

P12

P5 VCC

VSS
P12

N12

GND
N12

P12

1
2
3
4
5
6
7
8

CN1

PLCC

P5

RX232B
TX232B

P5

1
2
3
4
5

CN5

DSP

GND

GND

RX232A

TX232A

1
6
2
7
3
8
4
9
5

CN4

COMM_A

TO GSM

GND

P5

1
2
3
4

CN3

GSMPS

Figure 2.28: Total circuit for FCU main board

24

 Figure 2.29: Simulated complete PCB of FCU

24

2.2 Power Analysis Unit.

2.2.1 Introduction.

Power quality, in recent years, has become an important issue and is receiving

increasing attention by utility, facility, and consulting engineers. Present equipment

setups and devices used in commercial and industrial facilities, such as digital computers,

power electronic devices, and automated equipment, are sensitive to many types of power

disturbances. Power disturbances arising within customer facilities have increased

significantly due to the increasing use of energy efficient equipment such as switch-mode

power supplies, inverters for variable speed drives, and more. The monitoring and data

collection of power disturbances for power quality study therefore has to be conducted at

the users’ premises. To understand the power quality problem better requires a

comprehensive monitoring and data capturing system that is used to characterize

disturbances and power quality variations.

The threatened limitations of conventional electrical power sources have focused

a great deal of attention on power, its application, monitoring and correction. Power

economics now play a critical role in industry as never before. With the high cost of

power generation, transmission, and distribution, it is of paramount concern to effectively

monitor and control the use of energy. The electric utility’s primary goal is to meet the

power demand of its customers at all times and under all conditions. But as the electrical

demand grows in size and complexity, modifications and additions to existing electric

power networks have become increasingly expensive. The measuring and monitoring of

electric power have become even more critical because of down time associated with

equipment breakdown and material failures. For economic reasons, electric power is

generated by utility companies at relatively high voltages (4160, 6900, 13,800 volts are

typical). These high voltages are then reduced at the consumption site by step-down

transformers to lower values which may be safely and more easily used in commercial,

industrial and residential applications. Personnel and property safety are the most

important factors in the operation of electrical system operation. Reliability is the first

25

consideration in providing safety. The reliability of any electrical system depends upon

knowledge, preventive maintenance and subsequently the test equipment used to monitor

that system.

Power quality has become a key concern for utility, facility, and consulting

engineers because end-use equipment is now more sensitive to disturbances arising both

from the utility power supply and within a customer's power distribution system. Also,

this equipment is more interconnected in networks and industrial processes, meaning the

effects of a problem with any one piece of equipment are much more severe.

This increased awareness of the importance of power quality has generated

significant advances in monitoring equipment that can characterize disturbances and

power quality variations. (“Categories of Power Quality Variations” below.) Today's

monitoring tools can present information as individual events, like disturbance

waveforms, trends, or statistical summaries. By comparing events with libraries of typical

power quality variation characteristics and correlating them with system events, like

capacitor switching, you can determine the causes of these variations.

In the same manner, you can correlate the measured data with verified effects on

specific equipment to help characterize the sensitivity of that equipment to power quality

variations. This will help you identify what equipment requires power conditioning as

well as provide specifications for that protection

26

Figure 2.30: This flow chart depicts an example of a data analysis system.

2.2.2 Analyzing measurement data.

As we've seen, analyzing power quality measurements has become increasingly

more sophisticated. It's not enough to simply look at rms quantities of voltage and current

because some disturbances have durations in the millisecond range. In addition, today's

end-use equipment is more sensitive to these very short disturbances. Finally, there is

more equipment connected to our power systems that, in fact, cause disturbances or

power quality problems.

Your data analysis system must be flexible enough to handle data from a variety

of monitoring equipment as well as maintain a database you can use for many different

applications (Fig. 1 above).

Different types of power quality variations require different types of analysis to

characterize system performance. And with a flexible system, you can customize these

applications to individual user needs.

27

2.2.3 Transients.

These power quality variations are normally characterized by the actual

waveform. However, you can develop summary descriptors for the following:

• Peak magnitude

• Primary frequency

• Time of occurrence

• Rate of rise

2.2.4 Harmonics.

Individual snapshots of voltage and current with the associated harmonic

spectrums characterize these power quality variations. It's important to note that

harmonic distortion levels are always changing, so these characteristics can't be

represented with a single snapshot. As a result, you'll need to compile time trends and

statistics. Fig. 4 above shows an example time trend plot for one month, and Fig. 5 below

shows the statistics of harmonic current level for a much longer period of time.

Figure 2.31: Long-term monitoring of harmonic rms currents may be presented in a

histogram

28

A data analysis system for power quality measurements should be able to process

data from a variety of instruments and support a range of applications for processing the

generated data. With continuous power quality monitoring, it's very important to be able

to summarize variations with time trends and statistics as well as characterize individual

events.

2.2.5 The Algorithm

Consider the following power line carrier signal.

 x(t) = A Sin(2π ft). (2.1)

To estimate its instantaneous energy and frequency, the equation (1) must be in

complex or discrete-analytical form. So that the real and imaginary part can be

separated and calculated independently.

 z(n) = x(n) + jH[x(n)] (2.2)

Where H[] is the Hilbert transform of x(n) which has approximately unity gain and

introduce a π/2 phase shift with respect to the original signal. The Hilbert transform

calculation method is

jXi[n] = ∑
−

=

1

0

1 N

mN
XR[m]⊗ VN[n-m] (2.3)

VN[n]= -2j cot (π n/N), n=odd. (2.4)

 0, n=even.

29

Where XR[m] is the DFS[6] of x(n) and the ⊗ denote the circular convolution

technique.

Another characteristic of analytical signal is the relationship between the signal

amplitude and the instantaneous energy. The instantaneous energy is basically

representing the temporal strength of a time varying signal.

Ez = z(n)z*(n) = c(n)c*(n). (2.5)

The detection by Instantaneous Energy gives a unique feature that can represent

every single disturbance associated with power quality disturbances such as voltage sag,

transient voltage swell and waveform distortion.

30

CHAPTER III

SYSTEM SOFTWARE DESIGN

3.1 Introduction

This system comes together with a manager software. This software acts as an

interface between the remote monitoring unit and a system operator who is responsible of

handling the fault alert of a malfunctioned or damaged facility. This software consists of

Regional Control Centre-RCC and National Control Centre-NCC. RCC is a software

located at the local area covered by the substation that is being monitored. One RCC may

consist of hundreds of substation depending on the geographical factor as well as the

political establishments. For example, one RCC may control and monitor 500 substations

located at a particular town or district. While another town or district will be covered by

another RCC. While NCC is a software located at a central control station which serve as

a server to all the RCC. RCC and NCC are connected through the internet.

At the NCC, one can observe the status and the condition of all the RCC as well

as the status of each and every single substation. Here we deploy the concept of

distributed and centralized system. The reason of having this kind of architecture is to

help the local maintenance company to response to the fault alert as soon as possible once

they received the alarm notification. But at the same time, the alert is also being sent to a

centralized monitoring station. This method will minimize the task load of a particular

manager software when the task loads are being shared among the other manager

software which in this case the NCC and RCC. Using only one manager software is a

way to reduce the cost but putting all the load to one software is not a wise decision. Just

imagine what happen when all the substations are sending alert at the same time. This

31

situation will create a bottleneck where the software won’t be able to serve every single

alert properly due to the limitation on the bandwidth and processing speed. So, the

proposed architecture will help to eliminate this problem where each RCC will act as a

data aggregator and relayed the processed data to the NCC.

The software is designed using Microsoft Visual Studio C++ with the support of

Microsoft Foundation Class library. This development environment is chosen due to its

capability of handling various type of hardware and communication interface. In

addition, the user interface is preferable compared to other development platform for

instance visual basic, visual Interdev end etc.

The whole system uses MySQL database scheme to store information regarding

to the substation profile, user account, log, fault, region information and others. It is

chosen because MySQL is a free database system. Means that, no license required

compared to other database scheme. MySQL is a lite version of Microsoft SQL Server

database. So, it is simpler and faster. But the important issue such as security feature is

improved.

SQL, or Structured Query Language is a specialize type of programming language

developed to work with relational database such as MySQL, Oracle, Ms SQL Server,

PostGre SQL, Informix and others.

SQL standard is defined by ANSI, American National Standard Institute in the

ISO/IEC 9075:1992 document. Every relational database applies its own version of SQL

standard; many enhance that standard. Standardizing the programming language allows

the developer to address the database in much the same way from platform to platform

32

Table 3.1: Comparison of SQL Implementation

RDBMS Advantages Drawbacks

Oracle Versatile, Stable, Secure Potentially high total cost

ownership (TCO)

Ms SQL Server Stable and secure, Microsoft offer

excellent support

Relatively high

TCO,proprietary

Postgre SQL Up-and-coming database with low

TCO

Has yet to be widely

implemented in large scale

business use

Informix Stable, good support available Generally higher TCO

MySQL Offer best case scenario database in

many ways; low TCO, high

stability, very high security and

excellent support

Not all available version can

offer the full range of

MySQL capabilities

3.2 Regional Control Centre-RCC.

RCC holds the most important information as it is the closest interface to the

remote monitoring unit namely FCU and FIU. It works in real-time environment and

handles a lot of critical processes. The design has been associated with a lot of crashed-

proof subroutine to prevent system crash upon system and technical failure. This is to

ensure that the system is able to continue to perform the monitoring task in any condition

without the need of user intervention. We tend to provide a fully automatic self

manageable system which can assist the power utility company to maximize the

productivity as well as providing the best service to the customer end.

As for security reason, RCC software comes with an authentication procedure to

make sure only the authorized person is accessible to the data. During this procedure, the

user is required to pass through two steps of authentication which is software and

database authentication. Figure 3.1 shows the dialog that appears when the program is

33

executed. This software incorporates a multilevel security where different role of user

may have different option of accessibility. For instance, an administrator may have

greater access to the system that an operator. If the user enters the correct information,

the system will proceed to the main interface; otherwise the system will be terminated

Figure 3.1: Authentication of RCC

When the authentication procedure is successfully passed, then the main interface

will appear. Here one can observe the menu on the left hand side and a list of registered

substation on the right hand side. The menu consists of substation enrollment, setting,

log, internet/networking, GSM modem control panel, and remote server desktop. When

the software is executed, it will read the default setting from the computer registry and

display the appropriate information according to the preloaded information. By using this

way, user setting will remain every time a user executes the software.

34

Figure 3.2: Main user interface.

3.2.1 Station Enrollment

Figure 3.3 shows the station enrollment dialog. Note that a station will have a unique

identifier by a code number consist of area code and index of enrollment. There are also 4

field for feeder information which represented by card information. The user need to

specify the detail information related to the location of the streetlight on a particular

feeder. But if the card is not installed, or a particular feeder is not being monitored, the

user is advised to leave the name field blank. Note that there are also 5 fields to specify

the phone number of contact person. These fields are used to put down the contact of the

persons who are responsible to attend to the alert on fault notification. One can enable or

disable this contact person.

35

Figure 3.3: New station enrollment.

3.2.2 Setting

According to the standard interface building scheme, a software need to have a

configuration panel to adjust and modify the way the program should run depending on

the user. So in this software, the configuration panel has also being created. It consists of

general setting, communication, security/authentication, logging, fault code, database

management, sound and alert. Figure 3.4 to Figure 3.10 shows the related configuration

panel.

36

Figure 3.4: System Setting-General

Figure 3.4 shows a general setting of the system. As this software works on the

regional basis, the region needs to be set prior to its operation. Here, the region name,

region code and gsm id need to be specified. While for internet based communication

parameter such as server ip address and communication channel or port need to be

specified.

37

Figure 3.5: System Setting-Communication

This communication setting refers to the procedure to control and monitor the

gsm modem. In this system, it uses the serial communication method where certain

parameter needs to be specified before it is ready to exchange the data.

38

Figure 3.6: System setting- Security/Authentication

In software which implements security and authentication, the control panel to

handle this kind of secret information is very important. User enrollment is necessary

when more than one user is using the software and when certain privilege is assigned.

39

Figure 3.7: System Setting-Logging

The software is programmed to log all activities which involved the user

intervention and self-operating routine and procedure. By this way, one can track the

software activity as well a record to trace error. The log files can be set whether the to use

a custom identifier or current date and time for the filename.

40

Figure 3.8: System Setting-Fault Code

This software is programmer to respond to the preset alert. The above figure

shows a table of which the alert is registered as well as the system behavior once it

received the alert. These include alert notification color, blinking alert and send sms to

user alert. This setting can be change, add and delete and this framework has provide a

flexible and a ready-to-expand system.

41

Figure 3.9: System setting-Database Management

As the monitoring system involved a lot of data, database management remain

one of the important module. Here the database can be backup, import/export and

deleted/refreshed. The system need to forward the alert to the NCC using the internet. But

as the internet connection is not a guarantee, this system is ready to tolerate with

connection failure. The data submission can be scheduled according to the preset hours,

preset interval and instant submission.

42

Figure 3.10: System Setting-Sound Alert

The most popular alert method is by using sound. In this system, one can preset

the preferred sound scheme to indicate alert notification.

3.2.3 System Log

For further reference and analysis, the software incorporated a system log of the

received alert. The log consists of complete information needed to identify a fault error

including time, date, fault location, staff on duty and detail of the fault. This information

can be viewed and sorted according to the date, source of fault and type of fault. Then

one can transform the data into graphical representation for a better view and analysis.

These include bar graph, pie chart and line graph.

43

Figure 3.11: System logging information

3.2.4 Internet/Networking.

As the system communicates with the server via the internet, RCC software has

the capability to control and monitor the connection with the server. The

internet/networking control panel has provided quite a powerful tool for this purpose.

44

Prior to establish connection, the user needs to specify the appropriate server ip and port

number. This information is very important as the system will exchange a lot of data in

the network system which might cover the whole world. The system has a multithreaded

routine to listen the incoming connection and each connection will be assigned to a new

process. By this way, each connection can be handled simultaneously utilizing optimized

computer scheduling.

Figure 3.12: Internet/Networking control panel

45

3.2.5 GSM Control Panel.

The system monitor and control the gsm modem via the communication

procedure of serial data transmission. The GSM modem is a very complex device where

the information of the current gsm network setting is being transferred continuously. So

the communication routine needs to accommodate these features by providing a robust

communication interface to handle all sorts of messages and decode them into

meaningful messages. The most important routine in this communication scheme is sms

based messaging system. The system receives the fault notification via short message

service. Thus, the sms identification and decoding scheme need to be very accurate to

prevent loss of data of delayed of data.

Figure 3.13: GSM modem control panel.

46

3.3 National Control Centre-NCC.

The NCC acts as centralized server where it monitors all the connected clients. It

run in windows based computer with a reliable internet connection. As the RCC, NCC

also deploys a multilevel access security where different role of login will have different

option of privilege.

Figure 3.14: Login/ authentication dialog

When a user has successfully logged in, the main interface will appear. On the left

hand side, one can observed a tree holding the information of regional control centre-

RCC. And at the right hand side, one can observe a list containing the substation related

to the RCC clicked on the tree. Note that, all the action being taken at the server level will

be transmitted to the related client which hold the identical information and vice versa.

One can add, delete and rename the regional information. The server will have the full

control over the connected client including shutting down the program or the client

computer. But this kind of features only available in the administrator mode.

47

Figure 3.15: Main Interface dialog

Server holds all the client connectivity information. It runs an endless loop to

listen to the client request or connection. The communication process exchanges the data

in the secure manner where all the information is encrypted via a 128-bit blowfish

algorithm. Furthermore, the communication packet is self defined where the data is

exchanged with a stream of structured with holds the information agreed by both sender

and recipient. The server can close connection to the client and might as well ping them

to check the connection status.

48

Figure 3.16: Internet/networking server control panel

49

CHAPTER IV

COMMUNICATION INTERFACE

4.1 GSM Network

The most important communication method used in our system is short message

service using GSM networks. We use this facility to relay the fault notification message

to a central regional station. This technology has been in the market since 20 years ago. A

few years back, we have seen a lot of revolution occur in the communication area,

especially in the mobile communication using GSM. Nowadays, GSM network is no

longer carry short message and voice, but it also carry multimedia message and video

streaming. Even though there many improvements occur in the GSM network, the

messaging system still remains with the improved quality and reliability.

SMS stands for short message service. Simply put, it is a method of

communication that sends text between cell phones, or from a PC or handheld to a cell

phone. The "short" part refers to the maximum size of the text messages: 160 characters

(letters, numbers or symbols in the Latin alphabet). For other alphabets, such as Chinese,

the maximum SMS size is 70 characters.

Even if you are not talking on your cell phone, your phone is constantly sending

and receiving information. It is talking to its cell phone tower over a pathway called a

control channel. The reason for this chatter is so that the cell phone system knows which

cell your phone is in, and so that your phone can change cells as you move around. Every

so often, your phone and the tower will exchange a packet of data that lets both of them

know that everything is OK.

50

Your phone also uses the control channel for call setup. When someone tries to

call you, the tower sends your phone a message over the control channel that tells your

phone to play its ring tone. The tower also gives your phone a pair of voice channel

frequencies to use for the call.

The control channel also provides the pathway for SMS messages. When a friend

sends you an SMS message, the message flows through the SMSC, then to the tower, and

the tower sends the message to your phone as a little packet of data on the control

channel. In the same way, when you send a message, your phone sends it to the tower on

the control channel and it goes from the tower to the SMSC and from there to its

destination.

Figure 4.1: GSM Communication

The actual data format for the message includes things like the length of the

message, a time stamp, the destination phone number, the format, etc. For a complete

byte-by-byte breakdown of the message format.

51

4.1.1 Why use SMS?

SMS has several advantages. It is more discreet than a phone conversation,

making it the ideal form for communicating when you don't want to be overheard. It is

often less time-consuming to send a text message than to make a phone call or send an e-

mail. SMS doesn't require you to be at your computer like e-mail and instant messaging

(IM) do -- although some phones are equipped for mobile e-mail and IM services.

SMS is a store-and-forward service, meaning that when you send a text message

to a friend, the message does not go directly to your friend's cell phone. The advantage of

this method is that your friend's cell phone doesn't have to be active or in range for you to

send a message. The message is stored in the SMSC (for days if necessary) until your

friend turns his cell phone on or moves into range, at which point the message is

delivered. The message will remain stored on your friend's SIM card until he deletes it.

In addition to person-to-person messages, SMS can be used to send a message to

a large number of people at a time, either from a list of contacts or to all the users within

a particular area. This service is called broadcasting and is used by companies to contact

groups of employees or by online services to distribute news and other information to

subscribers.

In a 2004 University of Plymouth study on the psychology of SMS users,

researchers found that mobile phone users were primarily either "texters" or "talkers".

Compared to the talkers, the texters sent nearly double the number of SMS messages and

made less than half as many voice calls per month. The texters preferred SMS to voice

calls for its convenience as well as for the ability to review a message before sending it.

Companies have come up with many uses for the service beyond just your typical person-

to-person message. Because SMS doesn't overload the network as much as phone calls, it

is frequently used by TV shows to let viewers vote on a poll topic or for a contestant. As

a promotional tool, wireless carriers put up giant screens at concerts and other large-scale

events to display text messages from people in the audience.

52

You can use text messaging subscription services to get medication reminders

sent to your phone, along with weather alerts, news headlines or even novels broken into

160-character "chapters." Internet search engines such as Yahoo! and Google have short

messaging services that enable users to get information such as driving directions, movie

show times or local business listings just by texting a query to the search engine's phone

number. Social networking services such as Dodgeball use SMS to alert people who live

in big cities when their friends or crushes are nearby. The possibilities for integrating

SMS into your lifestyle seem endless.

4.2 PLCC

Another important block in our system is the power line communication carrier

technology. Power line communications stands for the use of power supply grid for

communication purpose. Power line network has very extensive infrastructure in nearly

each building. Because of that fact the use of this network for transmission of data in

addition to power supply has gained a lot of attention. Since power line was devised for

transmission of power at 50-60 Hz and at most 400 Hz, the use this medium for data

transmission, at high frequencies, presents some technically challenging problems.

Besides large attenuation, power line is one of the most electrically contaminated

environments, which makes communication extremely difficult. Further more the

restrictions imposed on the use of various frequency bands in the power line spectrum

limit the achievable data rates

Power line communication (PLC), also called Broadband over Power Lines (BPL)

or Power Line Telecoms (PLT), is a wired technology that is able to use the current

electricity networks for data and voice transmission. The carrier can communicate voice

and data by superimposing an analog signal over the standard 50 or 60 Hz alternating

current (AC). Traditionally electrical utilities used low-speed power-line carrier circuits

for control of substations, voice communication, and protection of high-voltage

transmission lines. One example of this technology is SCADA. More recently, high-

53

speed data transmission has been developed using the lower voltage transmission lines

used for power distribution. A short-range form of power-line carrier is used for home

automation and intercoms.

4.2.1 Types of PLC technology

 4.2.1.1 Indoors/Short Range

Indoors, the PLC equipment can use the household electrical power wiring as a

transmission medium. This is a technique used in home automation for remote control of

lighting and appliances without installation of additional control wiring. The Home Plug

system is an example of this technology. The X10 home automation system uses power

line communication at the zero crossing voltage point in the AC wave.

Typically these devices operate by injecting a carrier wave of between 20 and 200

kHz into the household wiring at the transmitter. The carrier is modulated by digital

signals. Each receiver in the system has an address and can be individually commanded

by the signals transmitted over the household wiring and decoded at the receiver. These

devices may either be plugged into regular power outlets or else permanently wired in

place. Since the carrier signal may propagate to nearby homes (or apartments) on the

same distribution system, these control schemes have a "house address" that designates

the owner.There are also some very low-bit rate power line communication systems used

for automatic meter reading.

4.2.1.2 Outdoors/Long Haul

Utility companies use special coupling capacitors to connect low-frequency radio

transmitters to the power-frequency AC conductors. Frequencies used are in the range of

30 to 300 kHz, with transmitter power levels up to hundreds of watts. These signals may

54

be impressed on one conductor, on two conductors or on all three conductors of a high-

voltage AC transmission line. Several different PLC channels may be coupled onto one

HV line. Filtering devices are applied at substations to prevent the carrier frequency

current from being bypassed through the station apparatus and to ensure that distant faults

do not affect the isolated segments of the PLC system. These circuits are used for control

of switchgear, and for protection of transmission lines. For example, a protection relay

can use a PLC channel to trip a line if a fault is detected between its two terminals, but to

leave the line in operation if the fault is elsewhere on the system.

While utility companies use microwave and now, increasingly, fiber optic cables

for their primary system communication needs, the power-line carrier apparatus may still

be useful as a backup channel or for very simple low-cost installations that do not warrant

a fibre drop.

4.2.1.3 Automotive

Power-line technology enables in-vehicle network communication of Data, Voice,

Music and Video signals by digital means over Direct Current (DC) battery power-line.

Advanced digital communication techniques tailored to overcome hostile and noisy

environment are implemented in a small size silicon device. One power-line can be used

for multiple independent networks.

Prototypes are successfully operational in vehicles, using automotive compatible

protocols such as CAN-bus, LIN sub-bus, and DC-bus.

Automotive applications include Mechatronics (e.g. Climate control, Door

module, Immobilizer, Obstacle detector). Telematics and Multimedia. Benefits Saving

the Cost and Weight of Ordinary Wiring, Flexible Modifications Simplicity of

Installation.

55

4.2.2 Broadband over power lines

Broadband over Power Lines (BPL) aka Powerband is the use of PLC technology

to provide broadband Internet access through ordinary power lines. A computer (or any

other device) would need only to plug a BPL "modem" into any outlet in an equipped

building to have high-speed Internet access.

BPL offers obvious benefits over regular cable or DSL connections: the extensive

infrastructure already available would appear to allow more people in more locations to

have access to the Internet. Also, such ubiquitous availability would make it much easier

for other electronics, such as televisions or sound systems, to hook up. However,

variations in the physical characteristics of the electricity network and the current lack of

IEEE standards mean that provisioning of the service is far from being a standard,

repeatable process and the amount of bandwidth a BPL system can provide compared to

cable and wireless is in question.

High-speed data transmission or Broadband over Power Line uses the electric

circuit between the electric substations and home networks. A standard used for this is

ETSI PLT. PLC modems transmit in medium and high frequency (1.6 to 30 MHz electric

carrier). The asymmetric speed in the modem is generally from 256 kbit/s to 2.7 Mbit/s.

In the repeater situated in the meter room the speed is up to 45 Mbit/s and can be

connected to 256 PLC modems. In the medium voltage stations, the speed from the head

ends to the Internet is up to 135 Mbit/s. To connect to the Internet, utilities can use

optical fiber backbone or wireless link.

Much higher speed transmissions using microwave frequencies transmitted via a

newly discovered surface wave propagation mechanism have been demonstrated using

only a single power line conductor. These systems have shown the potential for

symmetric and full duplex communication in excess of 1 Gbit/s in each direction.

Multiple WiFi channels as well as simultaneous analog television in the 2.4 and 5.3 GHz

unlicensed bands have been demonstrated operating over medium voltage lines.

56

Differences in the electrical distribution systems in North America and Europe

affect the implementation of BPL. In North America relatively few homes are connected

to each distribution transformer, whereas European practice may have hundreds of homes

connected to each substation. Since the BPL signals do not propagate through the

distribution transformers, extra equipment is needed in the North American case.

4.2.3 IEEE

IEEE P1901 is a working group for delivering broadband over power lines. The

aim is to define medium access control and physical layer specifications that can be all

classes of BPL devices - from the long distance connections to those within the home.

Other related IEEE groups are:

IEEE BPL — Standardization of Broadband Over Power Line Technologies

IEEE P1675 — Standard for Broadband over Power Line Hardware

IEEE P1775 — Another project approved by NesCom (IEEE Communications Society)

on 12 May 2005 focuses on PLC equipment, electromagnetic compatibility requirements,

and testing and measurement methods.

Power line communication technology is a new and fast growing technology due

to its potential and huge demand. This is one of the most important future technologies

with a lot of rooms of improvement. In our system, there is no specific requirement for

this plcc. We just use a generic kind of plcc modem and that will make our system

become vulnerable to technology changes.

57

4.3 TCPIP

As the world become smaller with the tremendous reach of mobile

communication technology, the growth of the internet and networking technology has

also shown a great potential to become a very important transport to carry information

around the globe. Nowadays, almost every area on the earth has the internet facilities.

The rapid development has made this facilities become very popular and the reliability

and cheap service has made many people chose the internet as their main media of

communication for business and others.

For the advantages, we chose the internet and networking facilities to be an

important part of the system. The data can be sent and access from all over the world

using the computers and network connectivity. This technology has shown a great

demand and the development is very fast and has a very huge potential to be utilized in

the future.

An increasing number of people are using the Internet and, many for the first

time, are using the tools and utilities that at one time were only available on a limited

number of computer systems (and only for really intense users!). One sign of this growth

in use has been the significant number of TCP/IP and Internet books, articles, courses,

and even TV shows that have become available in the last several years; there are so

many such books that publishers are reluctant to authorize more because bookstores have

reached their limit of shelf space! This memo provides a broad overview of the Internet

and TCP/IP, with an emphasis on history, terms, and concepts. It is meant as a brief guide

and starting point, referring to many other sources for more detailed information

TCP/IP is most commonly associated with the UNIX operating system. While

developed separately, they have been historically tied, as mentioned above, since 4.2BSD

Unix started bundling TCP/IP protocols with the operating system. Nevertheless, TCP/IP

protocols are available for all widely-used operating systems today and native TCP/IP

58

support is provided in OS/2, OS/400, and Windows 9x/NT/2000, as well as most Unix

variants.

Figure 4.2: Abbreviated TCP/IP protocol stack

Figure 4.2 shows the TCP/IP protocol architecture; this diagram is by no means

exhaustive, but shows the major protocol and application components common to most

commercial TCP/IP software packages and their relationship.

4.3.1 The Network Interface Layer

The TCP/IP protocols have been designed to operate over nearly any underlying

local or wide area network technology. Although certain accommodations may need to be

made, IP messages can be transported over all of the technologies shown in the figure, as

well as numerous others. It is beyond the scope of this paper to describe most of these

underlying protocols and technologies.

Two of the underlying network interface protocols, however, are particularly

relevant to TCP/IP. The Serial Line Internet Protocol (SLIP, RFC 1055) and Point-to-

59

Point Protocol (PPP, RFC 1661), respectively, may be used to provide data link layer

protocol services where no other underlying data link protocol may be in use, such as in

leased line or dial-up environments. Most commercial TCP/IP software packages for PC-

class systems include these two protocols. With SLIP or PPP, a remote computer can

attach directly to a host server and, therefore, connect to the Internet using IP rather than

being limited to an asynchronous connection.

4.3.1.1 PPP

It is worth spending a little bit of time discussing PPP because of its importance in

Internet access today. As its name implies, PPP was designed to be used over point-to-

point links. In fact, it is the prevalent IP encapsulation scheme for dedicated Internet

access as well as dial-up access. One of the significant strengths of PPP is its ability to

negotiate a number of things upon initial connection, including passwords, IP addresses,

compression schemes, and encryption schemes. In addition, PPP provides support for

simultaneous multiple protocols over a single connection, an important consideration in

those environments where dial-up users can employ either IP or another network Layer

protocol. Finally, in environments such as ISDN, PPP supports inverse multiplexing and

dynamic bandwidth allocation via the Multilink-PPP (ML-PPP) described in RFCs 1990

and 2125.

 +----------+----------+----------+-------------+---------+--------+----------+

 | Flag | Address | Protocol | Information | Padding | FCS | Flag |

 | 01111110 | 11111111 | 8/16 bits| * | * | 8 bits | 01111110 |

 +----------+----------+----------+-------------+---------+--------+----------+

Figure 4.3: PPP frame format (using HDLC)

60

PPP generally uses an HDLC-like (bit-oriented protocol) frame format as shown

in Figure 4.3, although RFC 1661 does not demand use of HDLC. HDLC defines the first

and last two fields in the frame:

• Flag: The 8-bit pattern "01111110" used to delimit the beginning and end of the

transmission.

• Address: For PPP, uses the 8-bit broadcast address, "11111111".

• Frame Check Sequence (FCS): An 8-bit remainder from a cyclic redundancy

check (CRC) calculation, used for bit error detection.

RFC 1661 actually describes the use of the three other fields in the frame:

• Protocol: An 8- or 16-bit value that indicates the type of datagram carried in this

frame's Information field. This field can indicate use of a particular Network

Layer protocol (such as IP, IPX, or DDP), a Network Control Protocol (NCP) in

support of one of the Network Layer protocols, or a PPP Link-layer Control

Protocol (LCP). The entire list of possible PPP values in this field can be found in

the IANA list of PPP protocols.

• Information: Contains the datagram for the protocol specified in the Protocol

field. This field is zero or more octets in length, up to a (default) maximum of

1500 octets (although a different value can be negotiated).

• Padding: Optional padding to add length to the Information field. May be

required in some implementations to ensure some minimum frame length and/or

to ensure some alignment on computer word boundaries.

The operation of PPP is basically as follows:

1. After the link is physically established, each host sends LCP packets to configure

and test the data link. It is here where the maximum frame length, authentication

protocol (Password Authentication Protocol, PAP, or Challenge-Handshake

Authentication Protocol, CHAP), link quality protocol, compression protocol, and

other configuration parameters are negotiated. Authentication, if it used, will

occur after the link has been established.

61

2. After the link is established, one or more Network Layer protocol connections are

configured using the appropriate NCP. If IP is to be used, for example, it will be

set up using PPP's IP Control Protocol (IPCP). Once each of the Network Layer

protocols has been configured, datagrams from those protocols can be sent over

the link. Control protocols may be used for IP, IPX (NetWare), DDP (AppleTalk),

DECnet, and more.

3. The link will remain configured for communications until LCP and/or NCP

packets close the link down.

4.3.2 The Internet Layer

The Internet Protocol (RFC 791), provides services that are roughly equivalent to

the OSI Network Layer. IP provides a datagram (connectionless) transport service across

the network. This service is sometimes referred to as unreliable because the network does

not guarantee delivery nor notify the end host system about packets lost due to errors or

network congestion. IP datagrams contain a message, or one fragment of a message, that

may be up to 65,535 bytes (octets) in length. IP does not provide a mechanism for flow

control.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Version| IHL | TOS | Total Length |

 +-+

 | Identification |Flags| Fragment Offset |

 +-+

 | TTL | Protocol | Header Checksum |

 +-+

 | Source Address |

62

 +-+

 | Destination Address |

 +-+

 | Options.... (Padding) |

 +-+

 | Data...

 +-+-+-+-+-+-+-+-+-+-+-+-+-

Figure 4.4: IP packet (datagram) header format.

The basic IP packet header format is shown in Figure 4.4. The format of the

diagram is consistent with the RFC; bits are numbered from left-to-right, starting at 0.

Each row represents a single 32-bit word; note that an IP header will be at least 5 words

(20 bytes) in length. The fields contained in the header, and their functions, are:

• Version: Specifies the IP version of the packet. The current version of IP is

version 4, so this field will contain the binary value 0100. [NOTE: Actually, many

IP version numbers have been assigned besides 4 and 6; see the IANA's list of IP

Version Numbers.]

• Internet Header Length (IHL): Indicates the length of the datagram header in 32

bit (4 octet) words. A minimum-length header is 20 octets, so this field always has

a value of at least 5 (0101) Since the maximum value of this field is 15, the IP

Header can be no longer than 60 octets.

• Type of Service (TOS): Allows an originating host to request different classes of

service for packets it transmits. Although not generally supported today in IPv4,

the TOS field can be set by the originating host in response to service requests

across the Transport Layer/Internet Layer service interface, and can specify a

service priority (0-7) or can request that the route be optimized for either cost,

delay, throughput, or reliability.

63

• Total Length: Indicates the length (in bytes, or octets) of the entire packet,

including both header and data. Given the size of this field, the maximum size of

an IP packet is 64 KB, or 65,535 bytes. In practice, packet sizes are limited to the

maximum transmission unit (MTU).

• Identification: Used when a packet is fragmented into smaller pieces while

traversing the Internet, this identifier is assigned by the transmitting host so that

different fragments arriving at the destination can be associated with each other

for reassembly.

• Flags: Also used for fragmentation and reassembly. The first bit is called the

More Fragments (MF) bit, and is used to indicate the last fragment of a packet so

that the receiver knows that the packet can be reassembled. The second bit is the

Don't Fragment (DF) bit, which suppresses fragmentation. The third bit is unused

(and always set to 0).

• Fragment Offset: Indicates the position of this fragment in the original packet. In

the first packet of a fragment stream, the offset will be 0; in subsequent fragments,

this field will indicates the offset in increments of 8 bytes.

• Time-to-Live (TTL): A value from 0 to 255, indicating the number of hops that

this packet is allowed to take before discarded within the network. Every router

that sees this packet will decrement the TTL value by one; if it gets to 0, the

packet will be discarded.

• Protocol: Indicates the higher layer protocol contents of the data carried in the

packet; options include ICMP (1), TCP (6), UDP (17), or OSPF (89). A complete

list of IP protocol numbers can be found at the IANA's list of Protocol Numbers.

An implementation-specific list of supported protocols can be found in the

protocol file, generally found in the /etc (Linux/Unix), c:\windows (Windows 9x,

ME), or c:\winnt\system32\drivers\etc (Windows NT, 2000) directory.

• Header Checksum: Carries information to ensure that the received IP header is

error-free. Remember that IP provides an unreliable service and, therefore, this

field only checks the header rather than the entire packet.

• Source Address: IP address of the host sending the packet.

• Destination Address: IP address of the host intended to receive the packet.

64

• Options: A set of options which may be applied to any given packet, such as

sender-specified source routing or security indication. The option list may use up

to 40 bytes (10 words), and will be padded to a word boundary; IP options are

taken from the IANA's list of IP Option Numbers.

4.3.2.1 IP Addresses

IP addresses are 32 bits in length (Figure 4.5). They are typically written as a

sequence of four numbers, representing the decimal value of each of the address bytes.

Since the values are separated by periods, the notation is referred to as dotted decimal. A

sample IP address is 208.162.106.17.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 --+-------------+--

 Class A |0| NET_ID | HOST_ID |

 |-+-+-----------+---------------+-------------------------------|

 Class B |1|0| NET_ID | HOST_ID |

 |-+-+-+-------------------------+---------------+---------------|

 Class C |1|1|0| NET_ID | HOST_ID |

 |-+-+-+-+---------------------------------------+---------------|

 Class D |1|1|1|0| MULTICAST_ID |

 |-+-+-+-+---|

 Class E |1|1|1|1| EXPERIMENTAL_ID |

 --+-+-+-+--

Figure 4.5: IP Address Format

65

IP addresses are hierarchical for routing purposes and are subdivided into two

subfields. The Network Identifier (NET_ID) subfield identifies the TCP/IP sub network

connected to the Internet. The NET_ID is used for high-level routing between networks,

much the same way as the country code, city code, or area code is used in the telephone

network. The Host Identifier (HOST_ID) subfield indicates the specific host within a sub

network.

To accommodate different size networks, IP defines several address classes.

Classes A, B, and C are used for host addressing and the only difference between the

classes is the length of the NET_ID subfield:

• A Class A address has an 8-bit NET_ID and 24-bit HOST_ID. Class A addresses

are intended for very large networks and can address up to 16,777,214 (224-2)

hosts per network. The first bit of a Class A address is a 0 and the NETID

occupies the first byte, so there are only 128 (27) possible Class A NETIDs. In

fact, the first digit of a Class A address will be between 1 and 126, and only about

90 or so Class A addresses have been assigned.

• A Class B address has a 16-bit NET_ID and 16-bit HOST_ID. Class B addresses

are intended for moderate sized networks and can address up to 65,534 (216-2)

hosts per network. The first two bits of a Class B address are 10 so that the first

digit of a Class B address will be a number between 128 and 191; there are 16,384

(214) possible Class B NETIDs. The Class B address space has long been

threatened with being used up and it is has been very difficult to get a new Class

B address for some time.

• A Class C address has a 24-bit NET_ID and 8-bit HOST_ID. These addresses are

intended for small networks and can address only up to 254 (28-2) hosts per

network. The first three bits of a Class C address are 110 so that the first digit of a

Class C address will be a number between 192 and 223. There are 2,097,152 (221)

possible Class C NETIDs and most addresses assigned to networks today are

Class C (or sub-Class C!).

66

The remaining two address classes are used for special functions only and are not

commonly assigned to individual hosts. Class D addresses may begin with a value

between 224 and 239 (the first 4 bits are 1110), and are used for IP multicasting (i.e.,

sending a single datagram to multiple hosts); the IANA maintains a list of Internet

Multicast Addresses. Class E addresses begin with a value between 240 and 255 (the first

4 bits are 1111), and are reserved for experimental use.

Several address values are reserved and/or have special meaning. A HOST_ID of

0 (as used above) is a dummy value reserved as a place holder when referring to an entire

subnetwork; the address 208.162.106.0, then, refers to the Class C address with a

NET_ID of 208.162.106. A HOST_ID of all ones (usually written "255" when referring

to an all-ones byte, but also denoted as "-1") is a broadcast address and refers to all hosts

on a network. A NET_ID value of 127 is used for loopback testing and the specific host

address 127.0.0.1 refers to the localhost.

Several NET_IDs have been reserved in RFC 1918 for private network addresses

and packets will not be routed over the Internet to these networks. Reserved NET_IDs are

the Class A address 10.0.0.0 (formerly assigned to ARPANET), the sixteen Class B

addresses 172.16.0.0-172.31.0.0, and the 256 Class C addresses 192.168.0.0-

192.168.255.0. An additional addressing tool is the subnet mask. Subnet masks are used

to indicate the portion of the address that identifies the network (and/or subnetwork) for

routing purposes. The subnet mask is written in dotted decimal and the number of 1s

indicates the significant NET_ID bits. For "classful" IP addresses, the subnet mask and

number of significant address bits for the NET_ID are:

Table 4.1: Subnet number of bits.

Class Subnet Mask Number of Bits

A 255.0.0.0 8

B 255.255.0.0 16

C 255.255.255.0 24

67

Depending upon the context and literature, subnet masks may be written in dotted

decimal form or just as a number representing the number of significant address bits for

the NET_ID. Thus, 208.162.106.17 255.255.255.0 and 208.162.106.17/24 both refer to a

Class C NET_ID of 208.162.106. Some, in fact, might refer to this 24-bit NET_ID as a

"slash-24."

Subnet masks can also be used to subdivide a large address space into

subnetworks or to combine multiple small address spaces. In the former case, a network

may subdivide their address space to define multiple logical networks by segmenting the

HOST_ID subfield into a Subnetwork Identifier (SUBNET_ID) and (smaller) HOST_ID.

For example, user assigned the Class B address space 172.16.0.0 could segment this into

a 16-bit NET_ID, 4-bit SUBNET_ID, and 12-bit HOST_ID. In this case, the subnet mask

for Internet routing purposes would be 255.255.0.0 (or "/16"), while the mask for routing

to individual subnets within the larger Class B address space would be 255.255.240.0 (or

"/20").

But how a subnet masks work? To determine the subnet portion of the address,

we simply perform a bit-by-bit logical AND of the IP address and the mask. Consider the

following example: suppose we have a host with the IP address 172.20.134.164 and a

subnet mask 255.255.0.0. We write out the address and mask in decimal and binary as

follows:

 172.020.134.164 10101100.00010100.10000110.10100100

AND 255.255.000.000 11111111.11111111.00000000.00000000

 --------------- -----------------------------------

 172.020.000.000 10101100.00010100.00000000.00000000

From this we can easily find the NET_ID 172.20.0.0 (and can also infer the HOST_ID

134.164).

As an aside, most ISPs use a /30 address for the WAN links between the network

and the customer. The router on the customer's network will generally have two IP

addresses; one on the LAN interface using an address from the customer's public IP

68

address space and one on the WAN interface leading back to the ISP. Since the ISP

would like to be able to ping both sides of the router for testing and maintenance, having

an IP address for each router port is a good idea.

By using a /30 address, a single Class C address can be broken up into 64 smaller

addresses. Here's an example. Suppose an ISP assigns a particular customer the address

24.48.165.130 and a subnet mask 255.255.255.252. That would look like the following:

 024.048.165.130 00011000.00110000.10100101.10000010

AND 255.255.255.252 11111111.11111111.11111111.11111100

 --------------- -----------------------------------

 024.048.165.128 00011000.00110000.10100101.10000000

So we find the NET_ID to be 24.48.165.128. Since there's a 30-bit NET_ID, we

are left with a 2-bit HOST_ID; thus, there are four possible host addresses in this subnet:

24.48.165.128 (00), .129 (01), .130 (10), and .131 (11). The .128 address isn't used

because it is all-zeroes; .131 isn't used because it is all-ones. That leave .129 and .130,

which is ok since we only have two ends on the WAN link! So, in this case, the

customer's router might be assigned 24.48.165.130/30 and the ISP's end of the link might

get 24.48.165.129/30. Use of this subnet mask is very common today (so common that

there is a proposal to allow the definition of 2-address NET_IDs specifically for point-to-

point WAN links).

• A last and final word about IP addresses is in order. Most Internet protocols

specify that addresses be supplied in the form of a fully-qualified host name or an

IP address in dotted decimal form. However, spammers and others have found a

way to obfuscate IP addresses by supplying the IP address as a single large

decimal number. Remember that IP addresses are 32-bit quantities. We write the

address in dotted decimal for the convenience of humans; the computer still

interprets dotted decimal as a 32-bit quantity. Therefore, writing the address as a

single large decimal number will still allow the computer to see the address as a

32-bit number.

69

4.3.2.2 Conserving IP Addresses: CIDR, DHCP, NAT, and PAT

The use of class-based (or classful) addresses in IP is one of the reasons that IP

address exhaustion has been a concern since the early 1990s. Consider an organization,

for example, that needs 1000 IP addresses. A Class C address is obviously to small so a

Class B address would get assigned. But a Class B address offers more than 64,000

address, so over 63,000 addresses are wasted in this assignment.

An alternative approach is to assign this organization a block four Class C

addresses, such as 192.168.128.0, 192.168.129.0, 192.168.130.0, and 192.168.131.0. By

using a 22-bit subnet mask 255.255.252.0 (or "/22") for routing to this "block," the

NET_ID assigned to this organization is 192.168.128.0.

This use of variable-size subnet masks is called Classless Interdomain Routing

(CIDR), described in RFCs 1518 and 1519. In the example here, routing information for

what is essentially four Class C addresses can be specified in a single router table entry.

But this concept can be expanded even more. CIDR is an important contribution

to the Internet because it has dramatically limited the size of the Internet backbone's

routing tables. Today, IP addresses are not assigned strictly on a first-come, first-serve

basis, but have been preallocated to various numbering authorities around the world. The

numbering authorities in turn, assign blocks of addresses to major (or first-tier) ISPs;

these address blocks are called CIDR blocks. An ISP's customer (which includes ISPs

that are customers of a first-tier ISP) will be assigned an IP NET_ID that is part of the

ISP's CIDR block. So, for example, let's say that Gary Kessler ISP has a CIDR block

containing the 256 Class C addresses in the range 196.168.0.0-196.168.255.0. This range

of addresses could be represented in a routing table with the single entry 196.168.0.0/16.

Once a packet hits the Gary Kessler ISP, it will be routed it to the correct end destination.

But don't stop now! By shrinking the size of the subnet mask so that a single

NET_ID refers to multiple addresses (resulting in shrinking router tables), we could

extend the size of the subnet mask to actually assign to an organization something smaller

than a Class C address. As the Class C address space falls in danger of being exhausted,

70

users are under increasing pressure to accept assignment of these sub-Class C addresses.

An organization with just a few servers, for example, might be assigned, say, 64

addresses rather than the full 256. The standard subnet mask for a Class C is 24 bits,

yielding a 24-bit NET_ID and 8-bit HOST_ID. If we use a "/26" mask

(255.255.255.192), we can assign the same "Class C" to four different users, each getting

1/4 of the address space (and a 6-bit HOST_ID). So, for example, the IP address space

208.162.106.0 might be assigned as follows:

 Table 4.2: IP address space

NET_ID
HOST_ID

range

Valid

HOST_IDs

208.162.106.0 0-63 1-62

208.162.106.64 64-127 65-126

208.162.106.128 128-191 129-190

208.162.106.192 192-255 193-254

Note that in ordinary Class C usage, we would lose two addresses from the space

— 0 and 255 — because addresses of all 0s and all 1s cannot be assigned as a HOST_ID.

In the usage above, we would lose eight addresses from this space, because 0, 64, 128,

and 192 have an all 0s HOST_ID and 63, 127, 191, and 255 have an all 1s HOST_ID.

Each user, then, has 62 addresses that can be assigned to hosts.

The pressure on the Class C address space is continuing in intensity. Today, the

pressure is not only to limit the number of addresses assigned, but organizations need to

show why they need as many addresses as they want. Consider a company with 64 hosts

and 3 servers. The ISP may request that that company only obtain 32 IP addresses. The

rationale: the 3 servers need 3 addresses but the other hosts might be able to "share" the

remaining pool of 27 addresses (recall that we lost HOST_ID addresses 0 and 31).

71

A pool of IP addresses can be shared by multiple hosts using a mechanism called

Network Address Translation (NAT). NAT, described in RFC 1631, is typically

implemented in hosts, proxy servers, or routers. The scheme works because every host on

the user's network can be assigned an IP address from the pool of RFC 1918 private

addresses; since these addresses are never seen on the Internet, this is not a problem.

Figure 4.6: Network Address Translation (NAT)

Consider the scenario shown in Figure 4.6. When the user accesses a Web site on

the Internet, the NAT server will translate the "private" IP address of the host

(192.168.50.50) into a "public" IP address (220.16.16.5) from the pool of assigned

addresses. NAT works because of the assumption that, in this example, no more than 27

of the 64 hosts will ever be accessing the Internet at a single time.

But suppose that assumption is wrong. Another enhancement, called Port Address

Translation (PAT) or Network Address Port Translation (NAPT), allows multiple hosts to

share a single IP address by using different "port numbers" (ports are described more in

Section 3.3).

72

Figure 4.7: Port Address Translation (PAT)

Port numbers are used by higher layer protocols (e.g., TCP and UDP) to identify a

higher layer application. A TCP connection, for example, is uniquely identified on the

Internet by the four values (aka 4-tuple) <source IP address, source port, destination IP

address, destination port>. The server's port number is defined by the standards while

client port numbers can be any number greater than 1023. The scenario in Figure 4.7

shows the following three connections:

• The client with the "private" IP address 192.168.50.50 (using port number 12002)

connects to a Web server at address 98.10.10.5 (port 80).

• The client with the "private" IP address 192.168.50.6 (using port number 22986)

connects to the same Web server at address 98.10.10.5 (port 80).

73

• The client with the "private" IP address 192.168.50.6 (using port number 8931)

connects to an FTP server at address 99.12.18.6 (port 21).

PAT works in this scenario as follows. The router (running PAT software) can

assign both local hosts with the same "public" IP address (220.16.16.5) and differentiate

between the three packet flows by the source port.

A final note about NAT and PAT. Both of these solutions work and work fine, but

they require that every packet be buffered, disassembled, provided with a new IP address,

a new checksum calculated, and the packet reassembled. In addition, PAT requires that a

new port number be placed in the higher layer protocol data unit and new checksum

calculated at the protocol layer above IP, too. The point is that NAT, and particularly

PAT, results in a tremendous performance hit.

One advantage of NAT is that it makes IP address renumbering a thing of the

past. If a customer has an IP NET_ID assigned from its ISP's CIDR block and then they

change ISPs, they will get a new NET_ID. With NAT, only the servers need to be

renumbered.

Another way to deal with renumbering is to dynamically assign IP addresses to

host systems using the Dynamic Host Configuration Protocol (DHCP). DHCP is also an

excellent solution for those environments where users move around frequently; it

prevents the user from having to reconfigure their system when they move from, say, the

Los Angeles office network to the New York office.

4.3.3 The Domain Name System

While IP addresses are 32 bits in length, most users do not memorize the numeric

addresses of the hosts to which they attach; instead, people are more comfortable with

host names. Most IP hosts, then, have both a numeric IP address and a name. While this

is convenient for people, however, the name must be translated back to a numeric address

for routing purposes.

74

Earlier discussion in this paper described the domain naming structure of the

Internet. In the early ARPANET, every host maintained a file called hosts that contained

a list of all hosts, which included the IP address, host name, and alias(es). This was an

adequate measure while the ARPANET was small and had a slow rate of growth, but was

not a scalable solution as the network grew.

[NOTE: A hosts file is still found on UNIX systems although usually used to

reconcile names of hosts on the local network to cut down on local DNS traffic; the file

can usually be found in the /etc directory. On Microsoft Windows systems, the HOSTS

file can typically be found in the c:\windows folder; in Windows NT and 2000, it can be

found in c:\winnt\system32\drivers\etc.]

To handle the fast rate of new names on the network, the Domain Name System

(DNS) was created. The DNS is a distributed database containing host name and IP

address information for all domains on the Internet. There is a single authoritative name

server for every domain that contains all DNS-related information about the domain;

each domain also has at least one secondary name server that also contains a copy of this

information. Thirteen root servers around the globe (most in the U.S., actually, with the

remainder in Asia and Europe) maintain a list of all of these authoritative name servers.

When a host on the Internet needs to obtain a host's IP address based upon the

host's name, a DNS request is made by the initial host to a local name server. The local

name server may be able to respond to the request with information that is either

configured or cached at the name server; if necessary information is not available, the

local name server forwards the request to one of the root servers. The root server, then,

will determine an appropriate name server for the target host and the DNS request will be

forwarded to the domain's name server.

Name server data files contain the following types of records including:

• A-record: An address record maps a hostname to an IP address.

• PTR-record: A pointer record maps an IP address to a hostname.

75

• NS-record: A name server record lists the authoritative name server(s) for a given

domain.

• MX-record: A mail exchange record lists the mail servers for a given domain. As

an example, consider the author's e-mail address, kumquat@sover.net. Note that

the "sover.net" portion of the address is a domain name, not a host name, and mail

has to be sent to a specific host. The MX-records in the sover.net name database

specifies the host mail.sover.net is the mail server for this domain.

• CNAME-record: Canonical name records provide a mechanism of assigning

aliases to host names, so that a single host with a IP address can be known by

multiple names.

 4.3.3.1 ARP and Address Resolution

Early IP implementations ran on hosts commonly interconnected by Ethernet

local area networks (LAN). Every transmission on the LAN contains the local network,

or medium access control (MAC), address of the source and destination nodes. MAC

addresses are 48-bits in length and are non-hierarchical, so routing cannot be performed

using the MAC address. MAC addresses are never the same as IP addresses.

When a host needs to send a datagram to another host on the same network, the

sending application must know both the IP and MAC addresses of the intended receiver;

this is because the destination IP address is placed in the IP packet and the destination

MAC address is placed in the LAN MAC protocol frame. (If the destination host is on

another network, the sender will look instead for the MAC address of the default

gateway, or router.)

Unfortunately, the sender's IP process may not know the MAC address of the

intended receiver on the same network. The Address Resolution Protocol (ARP),

described in RFC 826, provides a mechanism so that a host can learn a receiver's MAC

address when knowing only the IP address. The process is actually relatively simple: the

host sends an ARP Request packet in a frame containing the MAC broadcast address; the

76

ARP request advertises the destination IP address and asks for the associated MAC

address. The station on the LAN that recognizes its own IP address will send an ARP

Response with its own MAC address. As Figure 4.2 shows, ARP message are carried

directly in the LAN frame and ARP is an independent protocol from IP. The IANA

maintains a list of all ARP parameters.

Other address resolution procedures have also been defined, including:

• Reverse ARP (RARP), which allows a disk-less processor to determine its IP

address based on knowing its own MAC address

• Inverse ARP (InARP), which provides a mapping between an IP address and a

frame relay virtual circuit identifier

• ATMARP and ATMInARP provide a mapping between an IP address and ATM

virtual path/channel identifiers.

• LAN Emulation ARP (LEARP), which maps a recipient's ATM address to its

LAN Emulation (LE) address (which takes the form of an IEEE 802 MAC

address).

[NOTE: IP hosts maintain a cache storing recent ARP information. The ARP cache can

be viewed from a UNIX or DOS (in Windows 95/98/NT) command line using the arp -a

command.]

4.3.3.2 IP Routing: OSPF, RIP, and BGP

As an OSI Network Layer protocol, IP has the responsibility to route packets. It

performs this function by looking up a packet's destination IP NET_ID in a routing table

and forwarding based on the information in the table. But it is routing protocols, and not

IP, that populate the routing tables with routing information. There are three routing

protocols commonly associated with IP and the Internet, namely, RIP, OSPF, and BGP.

77

OSPF and RIP are primarily used to provide routing within a particular domain,

such as within a corporate network or within an ISP's network. Since the routing is inside

of the domain, these protocols are generically referred to as interior gateways protocols.

The Routing Information Protocol version 2 (RIP-2), described in RFC 2453,

describes how routers will exchange routing table information using a distance-vector

algorithm. With RIP, neighboring routers periodically exchange their entire routing

tables. RIP uses hop count as the metric of a path's cost, and a path is limited to 16 hops.

Unfortunately, RIP has become increasingly inefficient on the Internet as the network

continues its fast rate of growth. Current routing protocols for many of today's LANs are

based upon RIP, including those associated with NetWare, AppleTalk, VINES, and

DECnet. The IANA maintains a list of RIP message types.

The Open Shortest Path First (OSPF) protocol is a link state routing algorithm

that is more robust than RIP, converges faster, requires less network bandwidth, and is

better able to scale to larger networks. With OSPF, a router broadcasts only changes in its

links' status rather than entire routing tables. OSPF Version 2, described in RFC 1583, is

rapidly replacing RIP in the Internet.

The Border Gateway Protocol version 4 (BGP-4) is an exterior gateway protocol

because it is used to provide routing information between Internet routing domains. BGP

is a distance vector protocol, like RIP, but unlike almost all other distance vector

protocols, BGP tables store the actual route to the destination network. BGP-4 also

supports policy-based routing, which allows a network's administrator to create routing

policies based on political, security, legal, or economic issues rather than technical ones.

BGP-4 also supports CIDR. BGP-4 is described in RFC 1771, while RFC 1268 describes

use of BGP in the Internet. In addition, the IANA maintains a list of BGP parameters.

As an alternative to using a routing protocol, the routing table can be maintained

using "static routing." One example of static routing is the configuration of a default

gateway at a host system; if the host needs to send an IP packet off of the local LAN

segment, it is just blindly forwarded to the default gateway (router). Edge router's, too,

78

commonly use static routing; the single router connecting a site to an ISP, for example,

will usually just have a static routing table entry indicating that all traffic leaving the

local LAN be forwarded to the ISP's access router. Since there's only a single path into

the ISP, a routing protocol is hardly necessary.

All IP hosts and routers maintain a table that lists the most up-to-date routing

information that that device knows. On a Windows system, you can examine the routing

table by issuing a route print command; on UNIX systems, use netstat -r.

Figure 4.2 shows the protocol relationship of RIP, OSPF, and BGP to IP. A RIP

message is carried in a UDP datagram which, in turn, is carried in an IP packet. An OSPF

message, on the other hand, is carried directly in an IP datagram. BGP messages, in a

total departure, are carried in TCP segments over IP.

4.3.3.3 IP version 6

The official version of IP that has been in use since the early 1980s is version 4.

Due to the tremendous growth of the Internet and new emerging applications, it was

recognized that a new version of IP was becoming necessary. In late 1995, IP version 6

(IPv6) was entered into the Internet Standards Track. The primary description of IPv6 is

contained in RFC 1883 and a number of related specifications, including ICMPv6.

IPv6 is designed as an evolution from IPv4, rather than a radical change. Primary

areas of change relate to:

• Increasing the IP address size to 128 bits

• Better support for traffic types with different quality-of-service objectives

• Extensions to support authentication, data integrity, and data confidentiality

• The architecture and structure of IPv6 addresses is described in RFC 2373. In July

1999, the IANA delegated the initial IPv6 address space to the worldwide

79

regional registries in order to begin immediate worldwide deployment of IPv6

addresses.

4.3.4 The Transport Layer Protocols

The TCP/IP protocol suite comprises two protocols that correspond roughly to the

OSI Transport and Session Layers; these protocols are called the Transmission Control

Protocol and the User Datagram Protocol (UDP). One can argue that it is a misnomer to

refer to "TCP/IP applications," as most such applications actually run over TCP or UDP,

as shown in Figure 4.2.

4.3.4.1 Ports

Higher-layer applications are referred to by a port identifier in TCP/UDP

messages. The port identifier and IP address together form a socket, and the end-to-end

communication between two hosts is uniquely identified on the Internet by the four-tuple

(source port, source address, destination port, destination address).

Port numbers are specified by a 16-bit number. Port numbers in the range 0-1023

are called Well Known Ports. These port numbers are assigned to the server side of an

application and, on most systems, can only be used by processes with a high level of

privilege (such as root or administrator). Port numbers in the range 1024-49151 are called

Registered Ports, and these are numbers that have been publicly defined as a convenience

for the Internet community to avoid vendor conflicts. Server or client applications can use

the port numbers in this range. The remaining port numbers, in the range 49152-65535,

are called Dynamic and/or Private Ports and can be used freely by any client or server.

Some well-known port numbers include:

80

Table 4.3: Well-known port number

Port #
Common

Protocol
Service Port #

Common

Protocol
Service

7 TCP echo 80 TCP http

9 TCP discard 110 TCP pop3

13 TCP daytime 111 TCP sunrpc

19 TCP chargen 119 TCP nntp

20 TCP ftp-control 123 UDP ntp

21 TCP ftp-data 137 UDP netbios-ns

23 TCP telnet 138 UDP netbios-dgm

25 TCP smtp 139 TCP netbios-ssn

37 UDP time 143 TCP imap

43 TCP whois 161 UDP snmp

53 TCP/UDP dns 162 UDP snmp-trap

67 UDP bootps 179 TCP bgp

68 UDP bootpc 443 TCP https (http/ssl)

69 UDP tftp 520 UDP rip

70 TCP gopher 1080 TCP socks

79 TCP finger 33434 UDP traceroute

A complete list of port numbers that have been assigned can be found in the

IANA's list of Port Numbers. An implementation-specific list of supported port numbers

and services can be found in the services file, generally found in the /etc (Linux/Unix),

c:\windows (Windows 9x, ME), or c:\winnt\system32\drivers\etc (Windows NT, 2000)

directory.

4.3.4.2 TCP

81

TCP, described in RFC 793, provides a virtual circuit (connection-oriented)

communication service across the network. TCP includes rules for formatting messages,

establishing and terminating virtual circuits, sequencing, flow control, and error

correction. Most of the applications in the TCP/IP suite operate over the reliable transport

service provided by TCP.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Source Port | Destination Port |

 +-+

 | Sequence Number |

 +-+

 | Acknowledgement Number |

 +-+

 |Offset |(reserved) | Flags | Window |

 +-+

 | Checksum | Urgent Pointer |

 +-+

 | Options.... (Padding) |

 +-+

 | Data...

 +-+-+-+-+-+-+-+-+-+-+-+-+-

Figure 4.8: TCP segment format

The TCP data unit is called a segment; the name is due to the fact that TCP does

not recognize messages, per se, but merely sends a block of bytes from the byte stream

between sender and receiver. The fields of the segment (Figure 4.8) are:

82

• Source Port and Destination Port: Identify the source and destination ports to

identify the end-to-end connection and higher-layer application.

• Sequence Number: Contains the sequence number of this segment's first data byte

in the overall connection byte stream; since the sequence number refers to a byte

count rather than a segment count, sequence numbers in contiguous TCP

segments are not numbered sequentially.

• Acknowledgment Number: Used by the sender to acknowledge receipt of data;

this field indicates the sequence number of the next byte expected from the

receiver.

• Data Offset: Points to the first data byte in this segment; this field, then, indicates

the segment header length.

• Control Flags: A set of flags that control certain aspects of the TCP virtual

connection. The flags include:

o Urgent Pointer Field Significant (URG): When set, indicates that the

current segment contains urgent (or high-priority) data and that the Urgent

Pointer field value is valid.

o Acknowledgment Field Significant (ACK): When set, indicates that the

value contained in the Acknowledgment Number field is valid. This bit is

usually set, except during the first message during connection

establishment.

o Push Function (PSH): Used when the transmitting application wants to

force TCP to immediately transmit the data that is currently buffered

without waiting for the buffer to fill; useful for transmitting small units of

data.

o Reset Connection (RST): When set, immediately terminates the end-to-end

TCP connection.

o Synchronize Sequence Numbers (SYN): Set in the initial segments used to

establish a connection, indicating that the segments carry the initial

sequence number.

83

o Finish (FIN): Set to request normal termination of the TCP connection in

the direction this segment is traveling; completely closing the connection

requires one FIN segment in each direction.

• Window: Used for flow control, contains the value of the receive window size

which is the number of transmitted bytes that the sender of this segment is willing

to accept from the receiver.

• Checksum: Provides rudimentary bit error detection for the segment (including

the header and data).

• Urgent Pointer: Urgent data is information that has been marked as high-priority

by a higher layer application; this data, in turn, usually bypasses normal TCP

buffering and is placed in a segment between the header and "normal" data. The

Urgent Pointer, valid when the URG flag is set, indicates the position of the first

octet of nonexpedited data in the segment.

• Options: Used at connection establishment to negotiate a variety of options;

maximum segment size (MSS) is the most commonly used option and, if absent,

defaults to an MSS of 536. Another option is Selective Acknowledgement

(SACK), which allows out-of-sequence segments to be accepted by a receiver.

The IANA maintains a list of all TCP Option Numbers.

4.3.4.3 UDP

UDP, described in RFC 768, provides an end-to-end datagram (connectionless)

service. Some applications, such as those that involve a simple query and response, are

better suited to the datagram service of UDP because there is no time lost to virtual

circuit establishment and termination. UDP's primary function is to add a port number to

the IP address to provide a socket for the application.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

84

 +-+

 | Source Port | Destination Port |

 +-+

 | Length | Checksum |

 +-+

 | Data...

 +-+-+-+-+-+-+-+-+-+-+-+-+-

Figure 4.9: UDP datagram format

The fields of a UDP datagram (Figure 4.9) are:

• Source Port: Identifies the UDP port being used by the sender of the datagram;

use of this field is optional in UDP and may be set to 0.

• Destination Port: Identifies the port used by the datagram receiver.

• Length: Indicates the total length of the UDP datagram.

• Checksum: Provides rudimentary bit error detection for the datagram (including

the header and data).

4.3.4.4 ICMP

The Internet Control Message Protocol, described in RFC 792, is an adjunct to IP

that notifies the sender of IP datagrams about abnormal events. This collateral protocol is

particularly important in the connectionless environment of IP. ICMP is not a classic

host-to-host protocols like TCP or UDP, but is host-to-host in the sense that one device

(e.g., a router or computer) is sending a message to another device (e.g., another router or

computer).

The commonly employed ICMP message types include:

85

• Destination Unreachable: Indicates that a packet cannot be delivered because the

destination host cannot be reached. The reason for the non-delivery may be that

the host or network is unreachable or unknown, the protocol or port is unknown

or unusable, fragmentation is required but not allowed (DF-flag is set), or the

network or host is unreachable for this type of service.

• Echo and Echo Reply: These two messages are used to check whether hosts are

reachable on the network. One host sends an Echo message to the other,

optionally containing some data, and the receiving host responds with an Echo

Reply containing the same data. These messages are the basis for the Ping

command.

• Parameter Problem: Indicates that a router or host encountered a problem with

some aspect of the packet's Header.

• Redirect: Used by a host or router to let the sending host know that packets

should be forwarded to another address. For security reasons, Redirect messages

should usually be blocked at the firewall.

• Source Quench: Sent by a router to indicate that it is experiencing congestion

(usually due to limited buffer space) and is discarding datagram’s.

• TTL Exceeded: Indicates that a datagram has been discarded because the TTL

field reached 0 or because the entire packet was not received before the

fragmentation timer expired.

• Timestamp and Timestamp Reply: These messages are similar to the Echo

messages, but place a timestamp (with millisecond granularity) in the message,

yielding a measure of how long remote systems spend buffering and processing

datagram’s, and providing a mechanism so that hosts can synchronize their

clocks.

ICMP messages are carried in IP packets. The IANA maintains a complete list of ICMP

parameters.

4.3.5 TCP Logical Connections and ICMP

86

It is imperative to understand how a TCP connection is established to get a good

feel for how TCP operates. TCP connections have three main parts: connection

establishment, data exchange, and connection termination. The example below shows a

POP3 server (listening on TCP port 110) being contacted by a client (using TCP port

1967).

CLIENT SERVER

syn, SEQ=800 1

---> 1

src_port=1967, dst_port=110 1

 1

 syn, ack, SEQ=1567, ACK=801 1 CONNECTION

<--- 1

 src_port=110, dst_port=1967 1 ESTABLISHMENT

 1

ack, SEQ=801, ACK=1568 1

---> 1

src_port=1967, dst_port=110 1

 ack, SEQ=1568, ACK=801 2

<--- 2

 src_port=110, dst_port=1967 2

 DataLen=18 (POP3 Server V1.12\n) 2

 2

ack, SEQ=801, ACK=1586 2

---> 2

src_port=1967, dst_port=110 2

87

DataLen=5 (quit\n) 2 DATA

 2 EXCHANGE

 ack, SEQ=1586, ACK=806 2

<--- 2

 src_port=110, dst_port=1967 2

 DataLen=9 (Sayonara\n) 2

 2

ack, SEQ=806, ACK=1595 2

---> 2

src_port=1967, dst_port=110 2

fin, ack, SEQ=806, ACK=1595 3

---> 3

src_port=1967, dst_port=110 3

 3

 ack, SEQ=1595, ACK=807 3

<--- 3

 src_port=110, dst_port=1967 3 CONNECTION

 3

 fin, ack, SEQ=1595, ACK=807 3 TERMINATION

<--- 3

 src_port=110, dst_port=1967 3

 3

ack, SEQ=807, ACK=1596 3

---> 3

src_port=1967, dst_port=110 3

Figure 4.10: TCP logical connection phases

88

The connection establishment phase comprises a three-way handshake during

which time the client and server exchange their initial sequence number (ISN) and

acknowledge the other host's ISN. In this example, the client starts by sending the server

a TCP segment with the syn-bit set and a Sequence Number of 800. The syn-bit tells the

receiver (i.e., the server) that the sender (i.e., the client) is in "ISN initialization" mode

and that the ISN hasn't yet been confirmed. The segment's Acknowledgement Number

isn't shown because its value is, at this point, invalid.

The server responds with a segment with the syn- and ack-bits set, a Sequence

Number of 1567, and an Acknowledgement Number of 801. The syn-bit and ISN of 1567

have the same meaning as above. The ack-bit indicates the value of the

Acknowledgement Number field is valid and the ACK value of 801 is the way in which

the server confirms the client's ISN.

The final part of the three-way handshake is when the client sends a segment with

just the ack-bit set. Note that the Acknowledgement Number field (1568) is one greater

than the server's ISN.

This three-way handshake is sometimes referred to as an exchange of "syn,

syn/ack, and ack" segments. It is important for a number of reasons. For individuals

looking at packet traces, recognition of the three-way handshake is how to find the start

of a connection. For firewalls, proxy severs, intrusion detectors, and other systems, it

provides a way of knowing the direction of a TCP connection setup since rules may differ

for outbound and inbound connections.

The second part of the TCP connection is data exchange. The information here is

more or less made up for example purposes only; it shows a POP server sending a banner

message to the client system, the user sending the "quit" command, and the server signing

off. (Note that the "\n" indicates an "end-of-line" indicator.) These segments show the

changing of, and relationship between, the client's and server's sequence and

acknowledgement numbers.

89

The final phase is connection termination. Although TCP connections are full-

duplex (even if a given application does not allow two-way simultaneous

communication), the TCP protocol views the logical connection as a pair of simplex

links. Therefore, connection termination requires four segments or, more properly, two

pair of segments. In this case, the client sends the server a segment with the fin- and ack-

bits set; the server responds with a segment with just the ack-bit set and the

Acknowledgment Number is incremented. The server then sends a fin/ack segment to the

client.

The paragraphs above describe a normal scenario setting up a TCP connection

between a client and server. Two UDP hosts communicate in a similar fashion; one host

sends a UDP datagram to the other which is presumably listening on the port indicated in

the datagram.

But what happens if a host isn't listening on a port to which a connection is

attempted or the host doesn't actually exist? Here's what happens in these "abnormal"

conditions:

• Host not listening on TCP port: If Host A attempts to contact Host B on a TCP

port that Host B is not listening on, Host B responds with a TCP segment with the

reset (RST) and acknowledge (ACK) flags set.

• Host not listening on UDP port: If Host A attempts to contact Host B on a UDP

port that Host B is not listening on, Host B sends an ICMP port unreachable

message to Host A.

• Host does not exist: If Host A attempts to contact Host B and Host B is not

listening (e.g., Host B's IP address either doesn't exist or is unavailable), Host B's

subnet's router will send an ICMP host unreachable message to Host A.

90

4.3.6 The TCP/IP Application Layer

The TCP/IP Application Layer protocols support the applications and utilities that

are the Internet. This section will list a number of these applications and show a sample

packet decodes of all protocol layers.

4.3.6.1 TCP and UDP Applications

Commonly used protocols (as shown in Figure 4.2) include:

• Archie: A utility that allows a user to search all registered anonymous FTP sites

for files on a specified topic. Largely obsolete today, obviated by the World Wide

Web.

• BGP: The Border Gateway Protocol version 4 (BGP-4) is a distance vector

exterior gateway routing protocol, commonly used between two ISPs or between

a customer site and ISP if there are multiple links.

• DNS: The Domain Name System (described in slightly more detail in Section

3.2.2 above) defines the structure of Internet names and their association with IP

addresses, as well as the association of mail and name servers with domains.

• Finger: Used to determine the status of other hosts and/or users (RFC 1288).

• FTP: The File Transfer Protocol allows a user to transfer files between local and

remote host computers (RFC 959).

• Gopher: A tool that allows users to search through data repositories using a

menu-driven, hierarchical interface, with links to other sites. Largely obsolete

today, obviated by the World Wide Web (RFC 1436).

• HTTP: The Hypertext Transfer Protocol is the basis for exchange of information

over the World Wide Web (WWW). Various versions of HTTP are in use over

the Internet, with HTTP version 1.0 (RFC 1945) being the most current. WWW

pages are written in the Hypertext Markup Language (HTML), an ASCII-based,

platform-independent formatting language (RFC 1866).

91

• IMAP: The Internet Mail Access Protocol defines an alternative to POP as the

interface between a user's mail client software and an e-mail server, used to

download mail from the server to the client and providing significant flexibility in

mailbox management.

• OSPF: The Open Shortest Path First version 2 (OSPFv2) protocol is a link state

routing protocol used within an organization's network. This is the preferred so-

called interior gateway protocol.

• Ping: A utility that allows a user at one system to determine the status of other

hosts and the latency in getting a message to that host. Uses ICMP Echo

messages. For more information and insight, see The Ping Page.

• POP: The Post Office Protocol defines a simple interface between a user's mail

client software (e.g., Eudora, Outlook, or the e-mail capability of your browser)

and an e-mail server, used to download mail from the server to the client and

allows the user to manage their mailboxes. The current version is POP3 (RFC

1460).

• RADIUS: The Remote Authentication Dial-In User Service (RADIUS) is a

remote-access protocol.

• RIP: The Routing Information Protocol (RIP) is a distance-vector routing protocol

used within an organization's network.

• SSH: The Secure Shell is a protocol that allows remote logon to a host across the

Internet, much like Telnet. Unlike Telnet, however, SSH encrypts passwords and

data traffic.

• SMTP: The Simple Mail Transfer Protocol is the standard protocol for the

exchange of electronic mail over the Internet (RFC 821). SMTP is used between

e-mail servers on the Internet or to allow an e-mail client to send mail to a server.

RFC 822 specifically describes the mail message body format, and RFCs 1521

and 1522 describe MIME (Multipurpose Internet Mail Extensions). Reference

books on electronic mail systems include !%@:: Addressing and Networks by D.

Frey and R. Adams (O'Reilly & Associates, 1993) and THE INTERNET

MESSAGE: Closing the Book With Electronic Mail by M. Rose (PTR Prentice

Hall, 1993).

92

• SNMP: The Simple Network Management Protocol defines procedures and

management information databases for managing TCP/IP-based network devices.

SNMP (RFC 1157) is widely deployed in local and wide area networks. SNMP

Version 2 (SNMPv2, RFC 1441) adds security mechanisms that are missing in

SNMP, but is also very complex; widespread use of SNMPv2 has yet to be seen.

Additional information on SNMP and TCP/IP-based network management can be

found in SNMP by S. Feit (McGraw-Hill, 1994) and THE SIMPLE BOOK: An

Introduction to Internet Management, 2/e, by M. Rose (PTR Prentice Hall, 1994).

• SSL: The Secure Sockets Layer (SSL), designed by Netscape, provides a

mechanism for secure communications over the Internet, based on certificates and

public key cryptography. The most commonly known SSL application is HTTP

over SSL, commonly designated as https. The newest version of SSL is called

Transport Layer Security (TLS) (RFC 2246). SSL is not, however, HTTP-

specific; protocols such as IMAP4 (imaps), FTP (ftps), Telnet (telnets), and POP3

(pop3s) all have definitions for operation over SSL.

• TACACS+: The Terminal Access Controller Access Control System plus is a

remote access protocol.

• Telnet: Short for Telecommunication Network, a virtual terminal protocol

allowing a user logged on to one TCP/IP host to access other hosts on the network

(RFC 854).

• TFTP: The Trivial File Transfer Protocol (TFTP) is used for some specialized

simple file transfer applications.

• Time/NTP: Time and the Network Time Protocol (NTP) are used so that Internet

hosts can synchronize their system time from well-known Internet time servers.

• Traceroute: A tool that displays the route taken by packets across the Internet

between a local and remote host. The traceroute command is available on

Linux/Unix systems; Windows systems starting with Windows 95 have a tracert

command utility.

• Whois/NICNAME: Utilities that search databases for information about Internet

domains and domain contact information (RFC 3912).

93

4.4 Summary

As this discussion has shown, TCP/IP is not merely a pair of communication

protocols but is a suite of protocols, applications, and utilities. Increasingly, these

protocols are referred to as the Internet Protocol Suite, but the older name will not

disappear anytime soon.

 ---------------- ----------------

 | Application |<------ end-to-end connection ------>| Application |

 |--------------| |--------------|

 | TCP |<--------- virtual circuit --------->| TCP |

 |--------------| ----------------- |--------------|

 | IP |<-- DG -->| IP |<-- DG -->| IP |

 |--------------| |-------+-------| |--------------|

 | Subnetwork 1 |<-------->|Subnet1|Subnet2|<-------->| Subnetwork 2 |

 ---------------- --------+-------- ----------------

 HOST GATEWAY HOST

Figure 4.11: TCP/IP protocol suite architecture.

Figure 4.11 shows the relationship between the various protocol layers of TCP/IP.

Applications and utilities reside in host, or end-communicating, systems. TCP provides a

reliable, virtual circuit connection between the two hosts. (UDP, not shown, provides an

end-to-end datagram connection at this layer.) IP provides a datagram (DG) transport

service over any intervening subnetworks, including local and wide area networks. The

underlying subnetwork may employ nearly any common local or wide area network

technology. Note that the term gateway is used for the device interconnecting the two

subnets, a device usually called a router in LAN environments or intermediate system in

OSI environments.

95

CHAPTER V

FILED TEST

5.1 Introduction

Figure 5.1: Pilot plan implementation

Substation UTM-FIU Substation Taman
Universiti-FIU Substation Subang

Jaya-FIU

RCC Subang
Jaya

RCC Skudai

• www services

• User Account

• Databases

• Even Log and History

• Reporting and Printing services

• Security and Privileges

NCC-UTM
Johor

96

 The above illustration describes the architecture of the pilot test plan. There are 3

substation will be monitored and each substation will monitor 4 feeder unit. Substation

Taman Universiti and Substation UTM will be registered under RCC UTM while

substation subang jaya will be monitored by RCC Subang Jaya. RCC Subang Jaya and

RCC UTM will be connected to a centralized server system in UTM.

5.2 Communication

The communication between the substation (FIU) and RCC will be established

using GSM modem utilizing Short Message Service (SMS) functionality. This mean,

both FIU and RCC need to have the GSM modem and sms decoding function. FIU will

monitor the feeder unit using Feeder Controller Unit (FCU).

Figure 5.2: FIU layout design

FCU has the capability of monitoring multiple inputs at the same time and

respond to RCC by sending the current situation at the substation. FCU will notify RCC

the current status of the substation when it receives a status query call from the gsm

modem. This feature is important when the RCC need to confirm the status which has

been reported earlier.

RCC consist of software on windows platform PC running a monitoring

application routine over the registered substation. It is designed with the latest interface

building standard scheme according to Microsoft Developers Guidelines. It guarantees

FCU Input from DSP board
Input from FCU

Input from Security
System

Forward notification to RCC

97

the most beautiful user interface and improves handling capability. It is designed using

Microsoft visual C++.NET environment utilizing various function and capability.

RCC handles communication between the substation and server. It receives

notification from substation and does some necessary decoding and submits the

notification to the server.

5.3 GSM Modem.

Interfacing of RCC and GSM modem is the most difficult part when designing

RCC. The design of communication protocol need to consider a lot of circumstances as

the gsm modem may be interfered with gsm networks message controlled by the service

provide or operator. Furthermore, the RCC need to have 100% control of the GSM

modem or the RCC system will crash if the gsm modem starts to behave strangely. All

the activities occur in the GSM modem need to be monitored and controlled to prevent

data loss and false alarm problem due to improper control of the GSM modem. RCC has

the capability of the following details in handling GSM modem.

• Read, write, send, delete and decode sms in the sim card memory.

• Make and receive Voice calls.

• Display manufacturer and model information.

• Display available and registered networks.

• Display signal strength.

• Read sim card buffer/memory status.

• GSM modem connectivity status.

98

Figure 5.3: GSM modem control panel

5.4 Client/Server Connectivity

RCC send information to server using instant messaging system utilizing TCP/IP

port called window socket. A socket is a data structure maintained by the system to

handle network connections. Socket is created for moving a stream of binary data across

machines with different platforms. Both client and server can run with any platforms,

such as Window, UNIX, Macintosh, Linux, and others. This messaging system is very

essential and popular in developing client and server system.

In order to establish connection, it requires a TCP/IP server and TCP/IP client. A

TCP/IP server socket can be referred as to a socket that can accept many connections.

99

And a TCP/IP client socket is a socket that is connected to server socket. Once the server

socket is turned on, the client can start to connect to the server by providing an

appropriate server IP and port number. When communication established, data can be

exchanged.

RCC reports the faults notification through TCP/IP socket communication. Once it gets

connected to he server, it will send the list of currently connected user to the server. If

any clients disconnected from the server, the server will inform everyone by sending

updated information about the list of connected users. In this case, user refers to RCC.

RCC is designed to view only the information related to its own region. There is

no possible access to the information in the other region. RCC only allowed accessing the

registered substation in the region and conducting necessary operation such as delete,

updating information and registering new substation. Once the RCC gets a fault

notification, it will check whether the fault belongs to the registered substation or not. If

yes, the notification will be processed and if not, the notification will be discarded and

ignored. The fault notification can be sent to server instantly or by scheduled submission

interval.

100

Figure 5.4: Client configuration utility

5.5 Server System/NCC.

NCC is a centre monitoring and control station. It can view all the connected RCC

and perform operation such delete and enroll RCC. NCC can perform an intensive data

analysis compared to RCC.

NCC starts by starting its TCP/IP socket server application and FTP server application.

The TCP/IP server socket is used to exchange data between server and the connected

clients while the ftp server is used as a file transfer utility.

101

Figure 5.5: Server socket starting interface

A socket server needs to be able to listen on a specific port, accept connections

and read and write data from the socket. A high performance and scaleable socket server

should use asynchronous socket IO and IO completion ports. Before we can start

accepting connections we need to have a socket to listen on. Once the server started, it

listens to the socket waiting for any connection by the client. Once a user request to

connect, it will accept and store information regarding to the client. Then the server will

return to its previous state which is listening to the socket.

102

Figure 5.6: Database and NCC software running on Dell Server

103

CHAPTER VI

CONCLUSION

The management of streetlights by the power utility company and local

authorities are typically faced with the problem of high operational expenditure, low

efficiency and increase customer complaint. They are also faced with increase customer

complaint due to unattended faulty streets lights and frequent power outages. There is a

significant pressure to reduce these operational expenses, improve efficiency and image.

By operational efficiency we meant how faulty street lights are managed effectively

through the use of a low cost automated system, thus improve efficiency and enhancing

customer services.

Operational cost reduction is achieved through accurately identification of faulty

lights and timely action taken to rectify such fault. Currently these maintenance routines

[i.e. random patrols around the street light zones] are conducted daily in parallel to

records of faulty lights reported by customers. These incurred substantially high

operational expenditure year to year. The objective of this project is to develop a low cost

SLM system with features suffice enough for the utility companies to effectively manage

and maintain street lights and also monitor power quality to ensure continuous and

uninterrupted supply to customers both residential and industries.

 SLMS consist of interface modules (FC-Feeder Controller, FIU-Feeder Interface

Units) installed at the substation or street lights panel to collect the status of power over

each feeder pillar. Information of faulty lights collected by the FIU (which will measure

the current/power on the feeder and record any changes e.g. a drop in power indicating a

faulty light in that feeder line) is passed back to FC using the PLC (Power line carrier)

104

technique. The FC manages several feeder pillars and relay back the information received

from FIU to a management system server located at the office (RCC-Regional Control

Center & NCC-National Control Center) using “SMS” GSM network. RCC then sends an

alert SMS to operational personnel to inform them of the faulty record. The management

system keeps records for management reporting and analysis.

106

APPENDIX A

FCU FIRMWARE SOURCE CODE

;assembly language for FCU.
;fcu0 for motherboard micon AA BB CC DD EE 1 sec feedback
;terima x atau X baru send status
;hantar DUA aksara sahaja (sama gsm modem)final selepas delay pada
BEGIN
;serial17 trial for three phase (wiring on PCB must change!)
;hantar double data dan ada pull up pada a4(final)
;tambah delay selepas dapat x
include 16f84.h

.osc hs
.wdt off
.pwrt off
.protect off

btime equ 33 ; 9600bps @4.0MHz33
;btime equ 83 ; 9600bps @10.0MHz

txd equ rb.6 ;ra.0 ok
rxd equ rb.7 ;ra.1
ra0 equ ra.0
ra1 equ ra.1
ra2 equ ra.2
ra3 equ ra.3
ra4 equ ra.4
ra5 equ ra.5

 org 0ch
ch ds 1
rs ds 1
rs1 ds 1
cn ds 1
tm1 ds 1
tm2 ds 1
tm3 ds 1
tmoff ds 1
tmleak ds 1
tmfault ds 1
tmok ds 1
tmover ds 1
buffer1 ds 1
ch1 ds 1

 org 0
 goto start
 org 4

107

start mov !ra,#11111b
 mov !rb,#10111111b

 clr tm1
 clr tm2
 clr w
 clr buffer1
;***********************************mula***************************
mula btfss rxd
 goto getgsm
 btfss ra0
 goto off
 btfss ra1
 goto leak
 btfss ra3
 goto over
 btfss ra2
 goto ok
 cje ra,#11111b,fault
 goto mula
;*********************************getgsm*************************
getgsm call terima
 mov buffer1,w
 cje buffer1,#'x',test ;receive data interupt X
 cje buffer1,#'X',test ;receive data interupt x
 goto mula
;********************************test*************************
test call wait5s ;feedback 1s

 clr tmoff
 clr tmleak
 clr tmfault
 clr tmok
 clr tmover
 cje ra,#11100b,off
 cje ra,#11101b,leak
 cje ra,#11111b,fault
 cje ra,#11011b,ok
 cje ra,#10011b,over
 goto test

;*****************************off*************************
off clr tm1
 clr tm2
 clr tm3
off1 add tm3,#1
off2 add tm2,#1
off3 add tm1,#1

 cje ra,#11101b,leak
 cje ra,#11111b,fault
 cje ra,#11011b,ok
 cje ra,#10011b,over

 cjne tm1,#255,off3
 cjne tm2,#255,off2
 cjne tm3,#2,off1

108

 cje tmoff,#1,stop1
off5 mov ch,#'A'
 call trans

 call wait1s
 call wait1s
 call wait1s
 call wait1s

 mov ch,#'A'
 call trans
 mov ch,#00001101b
 call trans

 mov tmoff,#1
 clr tmleak
 clr tmfault
 clr tmok
 clr tmover

stop1 btfss rxd
 goto getgsm
 cje ra,#11101b,leak
 cje ra,#11111b,fault
 cje ra,#11011b,ok
 cje ra,#10011b,over
 goto stop1
;*****************************leak*************************
leak clr tm1
 clr tm2
 clr tm3
leak1 add tm3,#1
leak2 add tm2,#1
leak3 add tm1,#1

 cje ra,#11100b,off
 cje ra,#11111b,fault
 cje ra,#11011b,ok
 cje ra,#10011b,over

 cjne tm1,#255,leak3
 cjne tm2,#255,leak2
 cjne tm3,#2,leak1

 cje tmleak,#1,stop2
leak5 mov ch,#'B'
 call trans

 call wait1s
 call wait1s
 call wait1s
 call wait1s

 mov ch,#'B'
 call trans
 mov ch,#00001101b

109

 call trans

 mov tmleak,#1
 clr tmoff
 clr tmfault
 clr tmok
 clr tmover

stop2 btfss rxd
 goto getgsm
 cje ra,#11100b,off
 cje ra,#11111b,fault
 cje ra,#11011b,ok
 cje ra,#10011b,over
 goto stop2
;*******************************fault*****************************
fault clr tm1
 clr tm2
 clr tm3
fault1 add tm3,#1
fault2 add tm2,#1
fault3 add tm1,#1

 cje ra,#11100b,off
 cje ra,#11101b,leak
 cje ra,#11011b,ok
 cje ra,#10011b,over

 cjne tm1,#255,fault3
 cjne tm2,#255,fault2
 cjne tm3,#2,fault1

 cje tmfault,#1,stop3
fault5 mov ch,#'C'
 call trans

 call wait1s
 call wait1s
 call wait1s
 call wait1s

 mov ch,#'C'
 call trans
 mov ch,#00001101b
 call trans

 mov tmfault,#1
 clr tmoff
 clr tmleak
 clr tmok
 clr tmover

stop3 btfss rxd
 goto getgsm
 cje ra,#11100b,off
 cje ra,#11101b,leak
 cje ra,#11011b,ok

110

 cje ra,#10011b,over
 goto stop3

;********************************ok*******************************
ok clr tm1
 clr tm2
 clr tm3
ok1 add tm3,#1
ok2 add tm2,#1
ok3 add tm1,#1

 cje ra,#11100b,off
 cje ra,#11101b,leak
 cje ra,#11111b,fault
 cje ra,#10011b,over

 cjne tm1,#255,ok3
 cjne tm2,#255,ok2
 cjne tm3,#2,ok1

 cje tmok,#1,stop4
ok5 mov ch,#'D'
 call trans

 call wait1s
 call wait1s
 call wait1s
 call wait1s

 mov ch,#'D'
 call trans
 mov ch,#00001101b
 call trans

 mov tmok,#1
 clr tmoff
 clr tmleak
 clr tmfault
 clr tmover

stop4 btfss rxd
 goto getgsm
 cje ra,#11100b,off
 cje ra,#11101b,leak
 cje ra,#11111b,fault
 cje ra,#10011b,over
 goto stop4

;********************************over****************************
over clr tm1
 clr tm2
 clr tm3

over1 add tm3,#1
over2 add tm2,#1
over3 add tm1,#1

111

 cje ra,#11100b,off
 cje ra,#11101b,leak
 cje ra,#11111b,fault
 cje ra,#11011b,ok

 cjne tm1,#255,over3
 cjne tm2,#255,over2
 cjne tm3,#2,over1

 cje tmover,#1,stop5
over5 mov ch,#'E'
 call trans

 call wait1s
 call wait1s
 call wait1s
 call wait1s

 mov ch,#'E'
 call trans
 mov ch,#00001101b
 call trans

 mov tmover,#1
 clr tmoff
 clr tmleak
 clr tmok
 clr tmfault

stop5 btfss rxd
 goto getgsm
 cje ra,#11100b,off
 cje ra,#11101b,leak
 cje ra,#11111b,fault
 cje ra,#11011b,ok
 goto stop5

;****************************transmit******************************
trans bcf txd ;txd rb6
 mov rs1,#20 ;300.55hz #20
 mov rs,#255 ;segment rs, #255
trans10 djnz rs,trans10 ;delay rasanya
ulang0 djnz rs1,ulang0
 mov cn,#8 ;segment cn, 8
 nop ;nop sekejap
trans0 rr ch ;rotate right segment ch
 nop ;nop sekejap
 movb txd,c ;
 mov rs1,#20 ;#20
 mov rs,#255 ;#255
trans11 djnz rs,trans11
ulang1 djnz rs1,ulang1
 djnz cn,trans0
 nop
 nop
 nop
 nop

112

 nop
 bsf txd
 mov rs1,#20 ;#20
 mov rs,#255 ;#255
trans12 djnz rs,trans12
ulang2 djnz rs1,ulang2
 ret
;**
;****************************receive*******************************
receive btfsc rxd ;test kalau rxd tak sama dengan bit mula
 goto receive ;if tak jumpa 1 ulang detect 1 "receive"
terima mov rs1,#10 ;300.55hz
 mov rs,#200 ;segment rs, 9600Mhz
recv10 djnz rs,recv10 ;delay rasanya, memang pun
recv20 djnz rs1,recv20 ;if tolak rs dgn 1 = 0 goto recv10
 mov cn,#8 ;segment cn = 8 bit
 nop
recv50 mov rs1,#20
 mov rs,#255
recv31 djnz rs,recv31
recv13 djnz rs1,recv13
 nop
 movb c,rxd ;bit c = bit rxd ; carry/borrow flag
 rr ch1 ;rotate right sekali pd segment ch
 mov w,ch1 ;ch1 dan w register only!
 djnz cn,recv50 ;if tolak cn dgn 1 = 0 goto recv0
 ret
;**
wa100m clr tm1 ;delay 100 milisecond
 clr tm2
 clr tm3
wait0 add tm1,#1
wait1 add tm2,#1
wait2 add tm3,#1
 cjne tm3,#239,wait2 ;239
 cjne tm2,#28,wait1 ;28
 cjne tm1,#1,wait0 ;1
 nop ;nop 1x
 ret

wa500m clr tm1 ;delay 100 milisecond
 clr tm2
 clr tm3
wait6 add tm1,#1
wait7 add tm2,#1
wait8 add tm3,#1
 cjne tm3,#255,wait8 ;239 tak betul lagi ni!
 cjne tm2,#60,wait7 ;28
 cjne tm1,#1,wait6 ;1
 nop ;nop 1x
 ret

wait1s clr tm1 ;delay 1 second
 clr tm2
 clr tm3
wait3 add tm1,#1
wait4 add tm2,#1

113

wait5 add tm3,#1
 cjne tm3,#105,wait5 ;105
 cjne tm2,#24,wait4 ;24
 cjne tm1,#2,wait3 ;2
 ret

wait5s clr tm1 ;delay 1 second
 clr tm2
 clr tm3
wait9 add tm1,#1
wait10 add tm2,#1
wait11 add tm3,#1
 cjne tm3,#255,wait11 ;105
 cjne tm2,#100,wait10 ;24
 cjne tm1,#8,wait9 ;2
 ret

114

APPENDIX B

FIU FIRMWARE SOURCE CODE

;assembly language for FCU.

 include 16f84.h

 .osc hs
 .wdt off
 .pwrt off
 .protect off

btime equ 33 ; 9600bps @4.0MHz33

txd1 equ rb.6 ;ra.0 ok
rxd1 equ rb.7 ;ra.1 ok
txd2 equ rb.4 ;ra.0 ok
rxd2 equ rb.5 ;ra.1 ok
sag equ rb.0
swell equ rb.1
power equ rb.2
motion equ rb.3

 org 0ch
cha ds 1
chb ds 1
ch1 ds 1
ch2 ds 1
ch3 ds 1
cn ds 1
tm0 ds 1
tm1 ds 1
tm2 ds 1
tm3 ds 1
tmoff ds 1
tmleak ds 1
tmfault ds 1
tmok ds 1
tmover ds 1
buffer1 ds 1
buffer2 ds 1
buffer3 ds 1
buffer4 ds 1
count ds 1
count0 ds 1
count1 ds 1
count2 ds 1
count3 ds 1
count4 ds 1
lambat ds 1

 org 0
 goto start

115

 org 4

start mov !ra,#0000b
 mov !rb,#10101111b
;********************************initial running
led**********************
 mov ra,#1110b ;1 led padam
 call wa500m
 mov ra,#1101b
 call wa500m
 mov ra,#1011b
 call wa500m
 mov ra,#0111b
 call wa500m
;********************************initial send
data************************
 clr lambat
 clr count0
 clr count1
 clr count2
 clr count3

delay0 add count0,#1 ;delay untuk gsm initialize

delay1 add count1,#1
delay2 add count2,#1
 cjne count2,#255,delay2 ;255
 cjne count1,#255,delay1 ;255
 cjne count0,#100,delay0 ;100

;***************************set text mode pada
gsm************************
;text mov ra,#1011b
; mov cha,#'A' ;set text mode pada gsm modem
; call transa
; mov cha,#'T'
; call transa
; mov cha,#'+'
; call transa
; mov cha,#'C'
; call transa
; mov cha,#'M'
; call transa
; mov cha,#'G'
; call transa
; mov cha,#'F'
; call transa
; mov cha,#'='
; call transa
; mov cha,#'1'
; call transa ;finish set text mode

; mov cha,#00001101b ;send enter
; call transa
 call wait1s

116

;************************************set
rts/dtr***************************
rtsdtr mov cha,#'A' ;set text mode pada gsm modem
 call transa
 mov cha,#'T'
 call transa
 mov cha,#'+'
 call transa
 mov cha,#'I'
 call transa
 mov cha,#'F'
 call transa
 mov cha,#'C'
 call transa
 mov cha,#'='
 call transa
 mov cha,#'0'
 call transa ;finish set rts/dtr

 mov cha,#00001101b ;send enter
 call transa
 call wait1s
 call wait1s
 call wait1s
 call wait1s

;********************************send start on
msg***********************
poweron mov ch2,#'9'
 mov ch3,#'9'
 goto sms

;*******************************mula***********************************
*
mula mov ra,#1110b ;1 led padam
 cje rb,#11011111b,getfcu
 cje rb,#01111111b,getgsm

 cje rb,#11111110b,sag0 ;detect sag dsp
 cje rb,#11111101b,swell0 ;detect swell dsp
 cje rb,#11111011b,power0 ;detect power shutdown
 cje rb,#11110111b,motion0 ;detect motion sensor

 cje rb,#11011111b,getfcu
 cje rb,#01111111b,getgsm
 goto mula

getgsm mov ra,#1001b
 call recva ;check serial data dari gsm
 call wa100m
 call recva1
 call wait1s

 cje cha,#00001101b,go1 ;on1
 goto mula
go1 cje ch1,#'G',miss ;detect miss call +CRING
 goto mula

117

miss clr count0
miss0 clr count1
 clr count2
 clr count3

 mov ra,#1101b ;1 led padam

 mov chb,#'X' ;send ! pada FCU utk interupt
 call transb ;ok
 mov chb,#'I' ;send ! pada FCU utk interupt
 call transb ;ok
 mov chb,#'C' ;send ! pada FCU utk interupt
 call transb ;ok
 mov chb,#'O' ;send ! pada FCU utk interupt
 call transb ;ok
 mov chb,#'N' ;send ! pada FCU utk interupt
 call transb ;ok
 mov chb,#'E' ;send ! pada FCU utk interupt
 call transb ;ok
 mov chb,#'R' ;send ! pada FCU utk interupt
 call transb ;ok
 mov chb,#'G' ;send ! pada FCU utk interupt
 call transb ;ok
 mov chb,#'Y' ;send ! pada FCU utk interupt
 call transb ;ok

scan0 add count0,#1
scan1 add count1,#1
scan2 add count2,#1
scan3 add count3,#1
 cje rb,#11011111b,getfcu
 cjne count3,#255,scan3 ;105
 cjne count2,#255,scan2 ;24
 cjne count1,#15,scan1 ;15
 cjb count0,#6,miss0 ;if6 = 5 kali
 goto mula

getfcu clr lambat
 mov ra,#0111b
 call recvb
dapat1 mov buffer1,w
 cje buffer1,#00100000b,on1 ;mainboard off
 cje buffer1,#00100001b,on2 ;mainboard leak
 cje buffer1,#00100010b,on3 ;mainboard fault
 cje buffer1,#00100011b,on4 ;mainboard good
 cje buffer1,#00100100b,on5 ;mainboard over

 cje buffer1,#00100101b,on6 ;card1 off
 cje buffer1,#00100110b,on7 ;card1 leak
 cje buffer1,#00100111b,on8 ;card1 fault
 cje buffer1,#00101000b,on9 ;card1 good
 cje buffer1,#00101001b,on10 ;card1 over

118

 cje buffer1,#00101010b,on11 ;card2 off
 cje buffer1,#00101011b,on12 ;card2 leak
 cje buffer1,#00101100b,on13 ;card2 fault
 cje buffer1,#00101101b,on14 ;card2 good
 cje buffer1,#00101110b,on15 ;card2 over

 cje buffer1,#00101111b,on16 ;card3 off
 cje buffer1,#00110000b,on17 ;card3 leak
 cje buffer1,#00110001b,on18 ;card3 fault
 cje buffer1,#00110010b,on19 ;card3 good
 cje buffer1,#00110011b,on20 ;card3 over
 goto mula

;**************************
on1 mov ch2,#'1'
 mov ch3,#'1'
 goto sms

on2 mov ch2,#'1'
 mov ch3,#'2'
 goto sms

on3 mov ch2,#'1'
 mov ch3,#'3'
 goto sms

on4 mov ch2,#'1'
 mov ch3,#'4'
 goto sms

on5 mov ch2,#'1'
 mov ch3,#'5'
 goto sms

;**************************
on6 mov ch2,#'2'
 mov ch3,#'1'
 goto sms

on7 mov ch2,#'2'
 mov ch3,#'2'
 goto sms

on8 mov ch2,#'2'
 mov ch3,#'3'
 goto sms

on9 mov ch2,#'2'
 mov ch3,#'4'
 goto sms

on10 mov ch2,#'2'
 mov ch3,#'5'
 goto sms

;**************************
on11 mov ch2,#'3'

119

 mov ch3,#'1'
 goto sms

on12 mov ch2,#'3'
 mov ch3,#'2'
 goto sms

on13 mov ch2,#'3'
 mov ch3,#'3'
 goto sms

on14 mov ch2,#'3'
 mov ch3,#'4'
 goto sms

on15 mov ch2,#'3'
 mov ch3,#'5'
 goto sms

;**************************
on16 mov ch2,#'4'
 mov ch3,#'1'
 goto sms

on17 mov ch2,#'4'
 mov ch3,#'2'
 goto sms

on18 mov ch2,#'4'
 mov ch3,#'3'
 goto sms

on19 mov ch2,#'4'
 mov ch3,#'4'
 goto sms

on20 mov ch2,#'4'
 mov ch3,#'5'
 goto sms
;**************************dsp analysis***************************

sag0 mov ch2,#'5' ;dsp sag
 mov ch3,#'1'
 goto sms

swell0 mov ch2,#'5' ;dsp swell
 mov ch3,#'2'
 goto sms

power0 mov ch2,#'9' ;240v shutdown
 mov ch3,#'7'
 mov lambat,#'1'
 goto sms

motion0 mov ch2,#'9' ;motion alert!
 mov ch3,#'8'
 mov lambat,#'2'

120

 goto sms

motion1 mov ch2,#'9' ;motion ok
 mov ch3,#'6'
 clr lambat
 goto sms
;**************************

sms mov cha,#'A' ;send sms
 call transa
 mov cha,#'T'
 call transa
 mov cha,#'+'
 call transa
 mov cha,#'C'
 call transa
 mov cha,#'M'
 call transa
 mov cha,#'G'
 call transa
 mov cha,#'S'
 call transa
 mov cha,#'=' ;send sms
 call transa

nohp mov cha,#'"' ;set phone no
 call transa
 mov cha,#'0' ;no kena tukar ler!
 call transa
 mov cha,#'1'
 call transa
 mov cha,#'3'
 call transa
 mov cha,#'7'
 call transa
 mov cha,#'9'
 call transa
 mov cha,#'9'
 call transa
 mov cha,#'8'
 call transa
 mov cha,#'3'
 call transa
 mov cha,#'2'
 call transa
 mov cha,#'9'
 call transa
 mov cha,#'"' ;set phone no
 call transa

 mov cha,#00001101b ;send enter
 call transa

 call wa500m

code mov cha,#'@' ;region code
 call transa

121

 mov cha,#'0'
 call transa
 mov cha,#'7'
 call transa

 mov cha,#'0' ;ID code
 call transa
 mov cha,#'0'
 call transa
 mov cha,#'0'
 call transa
 mov cha,#'0'
 call transa
 mov cha,#'0'
 call transa
 mov cha,#'0'
 call transa
 mov cha,#'1' ;taman u @07 0000001*00!
 call transa

 mov cha,#'*' ;FAULT code
 call transa

 call transa2 ;hantar FAULT code1 card
 call transa3 ;hantar FAULT code2

 mov cha,#'!'
 call transa
 call wait1s

 mov cha,#00011010b ;CNTRL+Z 1A HEX
 call transa

 mov ra,#0000b ;0 led on
 call wa500m
 mov ra,#1111b ;1 led padam
 call wa500m

enter mov cha,#00001101b ;enter
 call transa

 mov cha,#'A' ;delete all MESSAGE sms
 call transa
 mov cha,#'T'
 call transa
 mov cha,#'+'
 call transa
 mov cha,#'C'
 call transa
 mov cha,#'M'
 call transa
 mov cha,#'G'
 call transa
 mov cha,#'D'
 call transa

122

 mov cha,#'='
 call transa
 mov cha,#'1' ;delete all sms
 call transa
 mov cha,#','
 call transa
 mov cha,#'4'
 call transa

 cje lambat,#'1',lengaha ;card2 off
 cje lambat,#'2',lengahb ;card2 off

dlay clr count0
 clr count1
 clr count2

dlay0 add count0,#1
dlay1 add count1,#1
dlay2 add count2,#1
 cjne count2,#255,dlay2 ;255
 cjne count1,#255,dlay1 ;255
 cjne count0,#20,dlay0 ;20
 goto mula ;mula

lengaha clr count0 ;delay lambat sikit
 clr count1 ;untuk motion dengan power down
 clr count2 ;estimate
 clr count3

lengah0 add count0,#1
lengah1 add count1,#1
lengah2 add count2,#1
lengah3 add count3,#1
 cjne count3,#255,lengah3 ;255
 cjne count2,#255,lengah2 ;255
 cjne count1,#255,lengah1 ;255
 cjne count0,#3,lengah0 ;3= 5-6 minit
 clr lambat
 cje rb,#11111011b,power0 ;detect power shutdown
 cje rb,#11111111b,poweron ;detect power on
 goto mula ;mula

lengahb clr count0 ;delay lambat sikit
 clr count1 ;untuk motion dengan power down
 clr count2 ;estimate
 clr count3

lengah4 add count0,#1
lengah5 add count1,#1
lengah6 add count2,#1
lengah7 add count3,#1
 cjne count3,#255,lengah7 ;255
 cjne count2,#255,lengah6 ;255
 cjne count1,#255,lengah5 ;255
 cjne count0,#3,lengah4 ;3= 5-6 minit

123

 clr lambat
 cje rb,#11110111b,motion0 ;detect motion sensor alert
 cje rb,#11111111b,motion1 ;detect motion sensor ok
 goto mula ;mula

;**************************transmita******************************
transa bcf txd1 ;txd rb6

 mov tm1,#20 ;300.55hz
 mov tm0,#255 ;segment rs, 9600Mhz
ulanga djnz tm0,ulanga ;delay rasanya
ulanga1 djnz tm1,ulanga1

 mov cn,#8 ;segment cn, 8
 nop ;nop sekejap

transa1 rr cha ;rotate right segment ch
 nop ;nop sekejap
 movb txd1,c ;

 mov tm1,#20
 mov tm0,#255
ulanga2 djnz tm0,ulanga2
ulanga3 djnz tm1,ulanga3

 djnz cn,transa1

 nop
 nop
 nop
 nop
 nop
 bsf txd1

 mov tm1,#20
 mov tm0,#255
ulanga4 djnz tm0,ulanga4
ulanga5 djnz tm1,ulanga5
 ret
;**
;**************************transa2*********************************
transa2 bcf txd1 ;txd rb6

 mov tm1,#20 ;300.55hz
 mov tm0,#255 ;segment rs, 9600Mhz
lagi1 djnz tm0,lagi1 ;delay rasanya
lagi2 djnz tm1,lagi2

 mov cn,#8 ;segment cn, 8
 nop ;nop sekejap

lagi3 rr ch2 ;rotate right segment ch
 nop ;nop sekejap
 movb txd1,c ;

 mov tm1,#20
 mov tm0,#255

124

lagi4 djnz tm0,lagi4
lagi5 djnz tm1,lagi5

 djnz cn,lagi3

 nop
 nop
 nop
 nop
 nop
 bsf txd1

 mov tm1,#20
 mov tm0,#255
lagi6 djnz tm0,lagi6
lagi7 djnz tm1,lagi7
 ret
;**
;**************************transa2*********************************
transa3 bcf txd1 ;txd rb6

 mov tm1,#20 ;300.55hz
 mov tm0,#255 ;segment rs, 9600Mhz
lagi8 djnz tm0,lagi8 ;delay rasanya
lagi9 djnz tm1,lagi9

 mov cn,#8 ;segment cn, 8
 nop ;nop sekejap

lagi10 rr ch3 ;rotate right segment ch
 nop ;nop sekejap
 movb txd1,c ;

 mov tm1,#20
 mov tm0,#255
lagi11 djnz tm0,lagi11
lagi12 djnz tm1,lagi12

 djnz cn,lagi10

 nop
 nop
 nop
 nop
 nop
 bsf txd1

 mov tm1,#20
 mov tm0,#255
lagi13 djnz tm0,lagi13
lagi14 djnz tm1,lagi14
 ret
;**
;**************************transmitb******************************
transb bcf txd2 ;txd rb4

 mov tm1,#20 ;300.55hz

125

 mov tm0,#255 ;segment rs, 9600Mhz
ulangb djnz tm0,ulangb ;delay rasanya
ulangb1 djnz tm1,ulangb1

 mov cn,#8 ;segment cn, 8
 nop ;nop sekejap

transb1 rr chb ;rotate right segment ch
 nop ;nop sekejap
 movb txd2,c ;

 mov tm1,#20
 mov tm0,#255
ulangb2 djnz tm0,ulangb2
ulangb3 djnz tm1,ulangb3

 djnz cn,transb1

 nop
 nop
 nop
 nop
 nop
 bsf txd2

 mov tm1,#20
 mov tm0,#255
ulangb4 djnz tm0,ulangb4
ulangb5 djnz tm1,ulangb5
 ret
;**
;****************************receive1*******************************
recva btfsc rxd1 ;rxd rb7 detect start bit 0 btfsc default
 goto recva ;if jumpa 1 go to terus

terusa mov tm1,#10 ;300.55hz
 mov tm0,#200 ;segment rs, 9600Mhz
recv1a djnz tm0,recv1a ;delay rasanya, memang pun
recv2a djnz tm1,recv2a ;if tolak rs dgn 1 = 0 goto recv10
 mov cn,#8 ;segment cn = 8 bit
 nop
recv3a mov tm1,#20
 mov tm0,#255
recv4a djnz tm0,recv4a
recv5a djnz tm1,recv5a
 nop
 movb c,rxd1 ;bit c = bit rxd ; carry/borrow flag

 rr cha ;rotate right sekali pd segment ch
; mov w,cha ;cha dan w register only!
 djnz cn,recv3a ;if tolak cn dgn 1 = 0 goto recv0
 ret
;**
;****************************receive1a*******************************
recva1 btfsc rxd1 ;rxd rb7 detect start bit 0 btfsc default
 goto recva1 ;if jumpa 1 go to terus gsm modem

126

terusa1 mov tm1,#10 ;300.55hz
 mov tm0,#200 ;segment rs, 9600Mhz
recv1a1 djnz tm0,recv1a1 ;delay rasanya, memang pun
recv2a1 djnz tm1,recv2a1 ;if tolak rs dgn 1 = 0 goto recv10
 mov cn,#8 ;segment cn = 8 bit
 nop
recv3a1 mov tm1,#20
 mov tm0,#255
recv4a1 djnz tm0,recv4a1
recv5a1 djnz tm1,recv5a1
 nop
 movb c,rxd1 ;bit c = bit rxd ; carry/borrow flag

 rr ch1 ;rotate right sekali pd segment ch
 djnz cn,recv3a1 ;if tolak cn dgn 1 = 0 goto recv0
 ret
;**

;****************************receive2*******************************
recvb btfsc rxd2 ;rxd rb7 detect start bit 1
 goto recvb ;stabil la sikit.....:) 16 kali jer

terusb mov tm1,#10 ;300.55hz
 mov tm0,#200 ;segment rs, 9600Mhz
recv1b djnz tm0,recv1b ;delay rasanya, memang pun
recv2b djnz tm1,recv2b ;if tolak rs dgn 1 = 0 goto recv10
 mov cn,#8 ;segment cn = 8 bit
 nop
recv3b mov tm1,#20
 mov tm0,#255
recv4b djnz tm0,recv4b
recv5b djnz tm1,recv5b
 nop
 movb c,rxd2 ;bit c = bit rxd ; carry/borrow flag

 rr chb ;rotate right sekali pd segment ch
 mov w,chb ;cha dan w register only!
 djnz cn,recv3b ;if tolak cn dgn 1 = 0 goto recv0
 ret
;**
;**

wa100m clr tm1 ;delay 100 milisecond
 clr tm2
 clr tm3
wait0 add tm1,#1
wait1 add tm2,#1
wait2 add tm3,#1
 cjne tm3,#239,wait2 ;239
 cjne tm2,#28,wait1 ;28
 cjne tm1,#1,wait0 ;1
 nop ;nop 1x
 ret

wa500m clr tm1 ;delay 100 milisecond
 clr tm2

127

 clr tm3
wait6 add tm1,#1
wait7 add tm2,#1
wait8 add tm3,#1
 cjne tm3,#255,wait8 ;239 tak betul lagi ni!
 cjne tm2,#60,wait7 ;28
 cjne tm1,#1,wait6 ;1
 nop ;nop 1x
 ret

wait1s clr tm1 ;delay 1 second
 clr tm2
 clr tm3
wait3 add tm1,#1
wait4 add tm2,#1
wait5 add tm3,#1
 cjne tm3,#105,wait5 ;105
 cjne tm2,#24,wait4 ;24
 cjne tm1,#2,wait3 ;2
 ret

128

APPENDIX C

CLIENT SOFTWARE SOURCE CODE

Networking

void CSBClientConfigDlg::AddText(const CString& strText)
{
 LOG(CXListBox::Blue, CXListBox::White, 0,strText);
 SaveLog(strText);
}

void CSBClientConfigDlg::AddSystemText(const CString& strText)
{
 AddText(_T("* ") + strText + _T(" *"));
}

void CSBClientConfigDlg::OnMessage(CNDKMessage& message)
{
 CTime m_Time;
 m_Time = CTime::GetCurrentTime();
 CString strTime;
 strTime= m_Time.Format("[%a %d %b %Y %I:%M:%S %p]");

 switch (message.GetId())
 {
 case ChatUserJoin:
 {
 CString strNickname;

 message.GetAt(0, strNickname);

 CString strUserJoin;
 strUserJoin.Format(IDS_USER_JOIN, strNickname);

 AddSystemText(strUserJoin);
 LOGCON(CXListBox::Green, CXListBox::White,
0,strNickname);
 m_SvrCtrlPanel.AddNewNCCRCC(strNickname);
 }
 break;

 case SQLSyntax:
 {

 }
 break;

 case MobileRemoteCommand:
 {

129

 CString strNickname;
 CString strCommand;
 message.GetAt(0, strNickname);
 message.GetAt(1,strCommand);

 //calling parent to provide status
 if(strCommand=="#@&")
 {
 ::SendMessage(GetParent()->GetSafeHwnd(),
GSM_TERMINATE, GetDlgCtrlID(), 0);
 AddSystemText(strNickname+ " is sending command
to terminate the GSM Communication ");
 }
 if(strCommand=="*#%")
 {
 ::SendMessage(GetParent()->GetSafeHwnd(),
GSM_START, GetDlgCtrlID(), 0);
 AddSystemText(strNickname+ " is sending command
to initiate the GSM Communication ");
 }

 }
 break;

 case RequestStatusInitServer://receiving request frm server<<<---

 {
 CString strNickname;
 CString strSBName;
 message.GetAt(0, strNickname);
 message.GetAt(1,strSBName);
 m_strPopSB = strSBName;
 AddSystemText(strNickname+ " is requesting status for
"+ strSBName);

 //calling parent to provide status
 ::SendMessage(GetParent()->GetSafeHwnd(),
REQUEST_NOW, GetDlgCtrlID(), 0);

 }
 break;

 case RequestStatusInitClient://Receiving status reply from server
<<<<-----
 {
 CString strNickname;
 CString strSBName;
 message.GetAt(0, strNickname);
 message.GetAt(1,strSBName);
 CString strRegion = m_SvrCtrlPanel.m_strParentSelect;
 CString strRcc = m_SvrCtrlPanel.m_strCurrentSelect;
 m_strPopSB = strRcc+">"+strRegion;
 AddSystemText(strSBName);

 m_SvrCtrlPanel.PushToTreeList(m_strPopSB,strSBName);

130

 SaveLog(strSBName);

 }
 break;
 case ChatText:
 {
 CString strNickname;
 CString strText;
 message.GetAt(0, strNickname);
 message.GetAt(1, strText);
 LOG(CXListBox::White, CXListBox::Navy, 0,strTime +" :
" + strNickname + _T(" : ") + strText);
 SaveLog(strNickname+" : "+strText);
 }
 break;

 case ChatUserQuit:
 {
 CString strNickname;
 message.GetAt(0, strNickname);
 CString strUserQuit;
 strUserQuit.Format(IDS_USER_QUIT, strNickname);

 RemoveUser(strNickname);
 m_SvrCtrlPanel.RemoveNCCRCC(strNickname);
 LOG(CXListBox::Red, CXListBox::White, 0,strTime +" :
"+ strUserQuit);
 SaveLog(strUserQuit);
 }
 break;
 }
}

// Called whenever an unexpected disconnection occurs. The only case
when
// this method isn't call is when CloseConnection is used.
CloseConnection
// don't need to be called when when OnDisconnect is called. The
derived
// class must override this method.
void CSBClientConfigDlg::OnDisconnect(NDKClientDisconnection
disconnectionType)
{
 //clear data..
 m_XListConnUser.ResetContent();
 m_SvrCtrlPanel.ResetListTree();

 UINT unResId = 0;

 switch (disconnectionType)
 {
 case NDKClient_NormalDisconnection:
 unResId = IDS_DISCONNECTED;
 break;

 case NDKClient_ServerCloseConnection:
 unResId = IDS_SERVER_CLOSE_CONNECTION;

131

 nReconnectAttemp=0;//reconnect flag counter
 SetTimer(501,60000,NULL);//negotiate connection
 break;

 case NDKClient_ServerStop:
 {
 unResId = IDS_SERVER_STOPPED;
 nReconnectAttemp=0;//reconnect flag counter
 SetTimer(501,60000,NULL);//negotiate connection
 break;
 }

 case NDKClient_ErrorSendingMessage:
 unResId = IDS_ERROR_SENDING_MESSAGE;
 nReconnectAttemp=0;//reconnect flag counter
 SetTimer(501,60000,NULL);//negotiate connection
 break;

 case NDKClient_ErrorReceivingMessage:
 unResId = IDS_ERROR_RECEIVING_MESSAGE;
 nReconnectAttemp=0;//reconnect flag counter
 SetTimer(501,60000,NULL);//negotiate connection
 break;

 default:
 break;
 }

 AddSystemText((LPCSTR)unResId);
 bIsConnected = false;

 UpdateUI();
}

// Called when the ping from the server is received. The number of
// milliseconds is returned since PingServer was called.
void CSBClientConfigDlg::OnPing(long lNbMilliseconds)
{
 CString strPing;
 strPing.Format(IDS_PING_RECEIVED, lNbMilliseconds);
 if(!m_bSessionKeepAlive)
 {
 AddSystemText(strPing);
 SaveLog(strPing);
 }
 m_bSessionKeepAlive = false;
}

void CSBClientConfigDlg::OnButtonConnect()
{//*
 CString strLocalIP;
 long lPort;
 SaveLog("Connecting to server.....");
 if (UpdateData(TRUE))
 {

132

 if (IsConnected())
 {
 SetWindowText("Disconnected..");
 SaveLog("Disconnected");
 CloseConnection();
 m_SvrCtrlPanel.ResetListTree();
 m_XListConnUser.ResetContent();
 KillTimer(502);
 m_bSessionKeepAlive=false;
 bIsConnected = false;

 }
 else
 {
 if (OpenConnection(m_strIp, m_lPort))
 {
 GetIpAndPort(strLocalIP,lPort);
 CString strLocalInfo;
 strLocalInfo.Format("%s:%d",strLocalIP,lPort);
 CTime m_Time;
 m_Time = CTime::GetCurrentTime();
 CString strTime;
 strTime= m_Time.Format("[%a %d %b %Y %I:%M:%S
%p]");

 SetWindowText("Connected as " +m_strNickname +"
["+strLocalInfo+ "] since "+ strTime);
 AddSystemText((LPCSTR)IDS_CONNECTED);
 SaveLog("Connected as "+m_strNickname +"
["+strLocalInfo+"] ");

 CNDKMessage message(ChatUserJoin);
 message.Add(m_strNickname);
 message.Add(strLocalInfo);

 SendMessageToServer(message);
 LOGCON(CXListBox::Blue, CXListBox::White,
0,"Server");
 SetTimer(502,600000,NULL);//ping every 10
mins....1000ms*60sec*10min
 KillTimer(501);//reconnect timer
 bIsConnected=true;
 PurgePendingMessage();

 //AfxMessageBox(strLocalIP);

 }
 else
 {
 CString str;
 str.Format(IDS_CANNOT_CONNECT);
 LOG(CXListBox::Red, CXListBox::Navy, 0,str);
 SaveLog(str);
 bIsConnected = false;
 if(m_bReconnect)

133

 SetTimer(501,60000,NULL);//negotiate
connection
 }
 }

 UpdateUI();
 }//*/

 // AfxMessageBox(m_strPathName);

}

void CSBClientConfigDlg::OnButtonPingServer()
{
 PingServer();
 AddSystemText((LPCSTR)IDS_PING_SERVER);
 //++
 //simulate send request
 /*
 CNDKMessage message(RequestStatus);
 message.SetAt(0,"Bahaya");
 //getting target from UI
 message.SetAt(1,m_strNDKTarget);

 SendMessageToServer(message);
 //*/
}

void CSBClientConfigDlg::OnButtonSend()
{ //*

 if(!m_strChatInput.IsEmpty())
 {
 if (UpdateData(TRUE))
 {
 CTime m_Time;
 m_Time = CTime::GetCurrentTime();
 CString strTime;
 strTime= m_Time.Format("[%a %d %b %Y %I:%M:%S %p]");

 CNDKMessage message(ChatText);
 message.SetAt(0,m_strChatInput);
 //getting target from UI
 message.SetAt(1,m_strNDKTarget);

 SendMessageToServer(message);
 LOG(CXListBox::Red, CXListBox::White, 0,strTime +" :
"+ m_strChatInput);
 SaveLog(m_strChatInput);
 m_strChatInput.Empty();
 UpdateData(FALSE);
 }
 }
 else
 AfxMessageBox("Message Empty");

}

134

void CSBClientConfigDlg::SendNotification(CString strMessage,CString
strID)
{
 // CStringArray strArrayLog;
 if (UpdateData(TRUE))
 {
 CString strTime;
 CTime m_Time;
 CString strLog=strMessage;
 CString strServerMessage;
 m_Time = CTime::GetCurrentTime();
 strTime= m_Time.Format("[%a %d %b %Y %I:%M:%S %p] ");
 if(bInstantUpdate)//update instantly
 {
 strServerMessage = strMessage;
 if(bIsConnected)
 {
 CNDKMessage message(NotifyFault);
 message.Add(strServerMessage);
 SendMessageToServer(message);
 LOG(CXListBox::White, CXListBox::Red, 0,strTime
+" : " + strMessage);
 SaveLog(strMessage);
 UpdateData(FALSE);
 strArrayLog.RemoveAll();
 }
 if(!bIsConnected)
 {
 //CStringArray strFaultPending;
 strFaultPending.Add(strServerMessage);
 }
 }
 else
 {
 strArrayLog.Add(strMessage);
 }

 //save to log//
 if(m_bRecord=="true")
 {
 FILE *fPtr;
 fPtr = fopen(m_strPathName,"a");
 if(fPtr==NULL)
 {
 m_strPathName="MyLog.txt";
 fPtr = fopen(m_strPathName,"a");
 }

 fprintf(fPtr,"%s\n",strTime+"\t"+ m_strNickname+"\t"
+strLog);
 fclose(fPtr);
 }
 }

135

}

void CSBClientConfigDlg::SendRequest(CString strFirst)
{
 //simulate replying status
 CNDKMessage message(RequestStatusInitServer);
 message.SetAt(0,strFirst);
 message.SetAt(1,"Server");

 //AddSystemText(" Sending status for "+ m_strPopSB);
 SendMessageToServer(message);
 SaveLog(strFirst);
}

void CSBClientConfigDlg::OnClntcfgQuerystat()
{
 // TODO: Add your command handler code here
 //AfxMessageBox("success");
}

void CSBClientConfigDlg::ShowServer()
{
 m_SvrCtrlPanel.ShowWindow(SW_SHOW);
}

LRESULT CSBClientConfigDlg::OnRequestUpdate(WPARAM wParam, LPARAM
lParam)
{
 //CSVRControlDlg m_SvrCtrlPanel;
 CString strRegion = m_SvrCtrlPanel.m_strParentSelect;
 CString strRcc = m_SvrCtrlPanel.m_strCurrentSelect;

 CNDKMessage message(RequestStatusInitClient);
 message.SetAt(0,strRcc+">"+strRegion);

 message.SetAt(1,"Server");

 SendMessageToServer(message);
 AddSystemText(" Requesting status of "+strRcc+" at "+ strRegion);
 SaveLog(" Requesting status of "+strRcc+" at "+ strRegion);

 return 0;
}

void CSBClientConfigDlg::SendOnlyToServer(CString strMessage)
{

 CTime m_Time;

136

 m_Time = CTime::GetCurrentTime();
 CString strTime;
 strTime= m_Time.Format("[%a %d %b %Y %I:%M:%S %p]");

 CNDKMessage message(ChatText);
 message.SetAt(0,strMessage);
 //getting target from UI
 message.SetAt(1,"Server");

 SendMessageToServer(message);
 LOG(CXListBox::Red, CXListBox::White, 0,strTime +" : "+
strMessage);
 SaveLog(strMessage);

}

void CSBClientConfigDlg::SendSQLString(CString strSQL)
{
 CTime m_Time;
 m_Time = CTime::GetCurrentTime();
 CString strTime;
 strTime= m_Time.Format("[%a %d %b %Y %I:%M:%S %p]");

 CNDKMessage message(SQLSyntax);
 message.SetAt(0,strSQL);
 //getting target from UI
 message.SetAt(1,"Server");

 if(bIsConnected)
 {
 SendMessageToServer(message);
 LOG(CXListBox::Red, CXListBox::White, 0,strTime +" : "+
"SQL database string sent");
 SaveLog("SQL syntax has been sent to server");
 }
// CStringArray strSQLPending;
 if(!bIsConnected)
 strSQLPending.Add(strSQL);

}

void CSBClientConfigDlg::PurgePendingMessage()
{
 //send the stored data
 CTime m_Time;
 m_Time = CTime::GetCurrentTime();
 CString strTime;
 strTime= m_Time.Format("[%a %d %b %Y %I:%M:%S %p]");

 //POSTING SQL SYNTAX----------------------------
 CNDKMessage message(SQLSyntax);
 for(int i=0;i<strSQLPending.GetSize();i++)
 {

137

 if(!(strSQLPending.GetAt(i).IsEmpty()))
 {
 message.SetAt(0,strSQLPending.GetAt(i));
 message.SetAt(1,"Server");

 SendMessageToServer(message);
 LOG(CXListBox::Red, CXListBox::White, 0,strTime +" :
"+ "SQL database string sent");
 SaveLog("SQL syntax has been sent to server");
 }
 }
 strSQLPending.RemoveAll();

 //--
 //POSTING PENDING FAULT MESSAGES...
 CNDKMessage FaultMessage(NotifyFault);
 for(int j=0;j<strFaultPending.GetSize();j++)
 {
 if(!(strFaultPending.GetAt(j).IsEmpty()))
 {
 FaultMessage.Add(strFaultPending.GetAt(j));
 SendMessageToServer(FaultMessage);
 LOG(CXListBox::White, CXListBox::Red, 0,strTime +" :
" + strFaultPending.GetAt(j));
 SaveLog(strFaultPending.GetAt(j));
 }
 }
 strFaultPending.RemoveAll();

}

Main Program

void CSubStationMonitorDlg::OnTimer(UINT nIDEvent)
{

 if(nIDEvent == 1)
 {
 nCounterDelay++;
 len = m_commctrl.ReadRs232Input(&ptr1, nComPorts-1);

 if(len > 0)
 {
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 str1.Empty();
 while(len--)
 {
 //*
 if((*ptr1 == 0x0D))
 {

 }

138

 else
 {
 str1 += *ptr1;
 m_strGSMRecieve = str1;
 }
 ptr1++;
 }

 OnGSMFilter(m_strGSMRecieve);
 }
 }
 CDialog::OnTimer(nIDEvent);
}

LRESULT CSubStationMonitorDlg::OnSendSMS(WPARAM ch, LPARAM port)
{
 CString strNo;
 CString strText;

 //CGSM_SMS_Send m_SendSMS;
 strNo = m_SendSMS.m_strDestNumber;
 strText = m_SendSMS.m_strSMSBody;
 bSendSMS = true;
 CString str1,str2;
 str1.Format("at+cmgs=%c%s%c",34,strNo,34);
 str1 += 0x0d;
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 m_commctrl.SendCString(str1,nComPorts-1); // set port

 //CString str1,str2;
 str1.Format("%s%c",strText,26); // 26 = CTRL_Z
 str1 += 0x0d;

 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 m_commctrl.SendCString(str1,nComPorts-1); // set port

 return 0;
}

LRESULT CSubStationMonitorDlg::OnHangUp(WPARAM ch, LPARAM port)
{
 CString strNo;
 //CGSM_SMS_Send m_SendSMS;
 strNo = m_SendSMS.m_strDestNumber;
 CString str;
 str.Format("ATH%c",0x0D);
 m_commctrl.SendCString(str,nComPorts-1);
 Sleep(100);//resend to confirm
 m_commctrl.SendCString(str,nComPorts-1); // set port
 return 0;
}
LRESULT CSubStationMonitorDlg::OnDial(WPARAM ch, LPARAM port)
{
 CString strNo;
 //CGSM_SMS_Send m_SendSMS;
 strNo = m_SendSMS.m_strDestNumber;

139

 CString str;
 str.Format("ATD%s;%c",strNo,0x0D);
 m_commctrl.SendCString(str,nComPorts-1);
 return 0;
}

void CSubStationMonitorDlg::ProcessMessages(CString strMessage)
{
 //some init.
 CString strSendSMSUser1;
 CString strSendSMSUser2;
 CString strSendSMSUser3;
 CString strSendSMSUser4;
 CString strSendSMSUser5;

 CString tmpMessage = strMessage;

 int SbIDLength = 0;
 int SbCodeLength = 0;
 int nMessageLength = tmpMessage.GetLength(); //get the whole
message length
 int HatchPos = tmpMessage.Find("*",0);
 //--
 //Message Segemntation
 //--
 //Header identifier
 CString strHeader = tmpMessage.Left(1);
 //if(strHeader =="@")
 //{
 //substation ID and error code extraction
 CString SBID,SBFault,SBFault1,SBFault2;

 SbCodeLength = nMessageLength-HatchPos-1;

 SBID = tmpMessage.Left(HatchPos);
 SBFault1 = tmpMessage.Right(SbCodeLength); //dummy code for
processing card
 SBFault2 = SBFault1.Left(2);
 int nFaultCodeMessage;
 nFaultCodeMessage = atoi(SBFault2);

 //get card number for substation fault
 CString strActiveCard;
 CString strCardIndex="";
 CString strCardCode="";

 if(nFaultCodeMessage<50)
 {
//-------retrieve card name*********
 //renew faultcode
 SBFault = SBFault2.Right(1); //take code for street light
problem...
 CString sbCode = SBID.Right(9);
 CString sbNami = GetSubstationName(sbCode);
 //get card id.
 strCardIndex = SBFault2.Left(1);
 CString Data;

140

 CString openformat;
 //DWORD Index,iCode;
 CString SQLString;

 SQLString.Format("Select * FROM substationprofile WHERE
((UniqueID= '%s') AND "
 "(Name = '%s'))",sbCode+"@"+m_strRegionCode,sbNami);

 openformat.Format("%s",SQLString);
 Connection con(use_exceptions);
 try {
 ostrstream strbuf;

 con.real_connect(m_strDatabaseName,m_strHostName,m_strClientUsern
ame,

 m_strClientPassword,atoi(m_strPortNum),(int)0,60,NULL);
 Query query = con.query();
 query << openformat;
 Result res = query.store();
 Row row;
 Result::iterator i;

 for (i = res.begin(); i != res.end(); i++)
 {
 row = *i;
 CString strTmp;
 if(strCardIndex=="1")
 {

 strCardCode ="Card1";
 strTmp.Format("%s",row["Card1"]);
 strActiveCard = strTmp;
 }
 if(strCardIndex=="2")
 {
 strCardCode ="Card2" ;
 strTmp.Format("%s",row["Card2"]);
 strActiveCard = strTmp;
 }

 if(strCardIndex=="3")
 {
 strCardCode ="Card3" ;
 strTmp.Format("%s",row["Card3"]);
 strActiveCard = strTmp;
 }
 if(strCardIndex=="4")
 {
 strCardCode ="Card4" ;
 strTmp.Format("%s",row["Card3"]);
 strActiveCard = strTmp;
 }
 //reload sms tag..to send sms purpose

 strSendSMSUser1.Format("%s",row["Contact1Enable"]);

141

 strSendSMSUser2.Format("%s",row["Contact2Enable"]);

 strSendSMSUser3.Format("%s",row["Contact3Enable"]);

 strSendSMSUser4.Format("%s",row["Contact4Enable"]);

 strSendSMSUser5.Format("%s",row["Contact5Enable"]);

 }

 } catch (BadQuery er)
 {
 cerr << "Error: " << er.error << " " << con.errnum()
<< endl;
 return ;
 }
 }
 else
 {
 SBFault = SBFault2;

 }
 CString FaultType = m_SBSetting.GetFaultType(SBFault);

 int ctlColor;
 if(FaultType!="")
 {
 CString sbNameBaru = SBID.Right(9);
 CString sbName = GetSubstationName(sbNameBaru);
 //look for the cell color
 COLORREF ColorLines;
 if(nSBHit+1%2==0)
 ColorLines = RGB(245,245,245);
 if(nSBHit+1%2==1)
 ColorLines = RGB(230,230,230);
 if(!sbName.IsEmpty())
 {
 CString fmt;
 if(strCardCode =="")
 {
 if((nFaultCodeMessage==99) ||
(nFaultCodeMessage==97))
 {
 fmt.Format("UPDATE substationprofile SET
Status= '%s' WHERE ((UniqueID= '%s') AND "
 "(Name =
'%s'))",FaultType,sbNameBaru+"@"+m_strRegionCode,sbName);
 ctlColor =
GetColorByFaultName(FaultType);

 m_ListView.SetItemText(nSBHit,3,FaultType,ctlColor,ColorLines);

 if(CheckBlinkFlag(FaultType))
 SetCellBlink(FaultType, nSBHit, 3);
 }

142

 if((nFaultCodeMessage==98) ||
(nFaultCodeMessage==95))
 {
 fmt.Format("UPDATE substationprofile SET
SecurityStat= '%s' WHERE ((UniqueID= '%s') AND "
 "(Name =
'%s'))",FaultType,sbNameBaru+"@"+m_strRegionCode,sbName);
 ctlColor =
GetColorByFaultName(FaultType);

 m_ListView.SetItemText(nSBHit,9,FaultType,ctlColor,ColorLines);

 if(CheckBlinkFlag(FaultType))
 SetCellBlink(FaultType, nSBHit, 9);
 }
 if((nFaultCodeMessage>=50) &&
(nFaultCodeMessage<=60))
 {
 fmt.Format("UPDATE substationprofile SET
DSPStat= '%s' WHERE ((UniqueID= '%s') AND "
 "(Name =
'%s'))",FaultType,sbNameBaru+"@"+m_strRegionCode,sbName);
 ctlColor =
GetColorByFaultName(FaultType);

 m_ListView.SetItemText(nSBHit,8,FaultType,ctlColor,ColorLines);

 if(CheckBlinkFlag(FaultType))
 SetCellBlink(FaultType, nSBHit, 8);
 }

 }
 if(strCardCode =="Card1")
 {
 fmt.Format("UPDATE substationprofile SET
Card1Stat= '%s' WHERE ((UniqueID= '%s') AND "
 "(Name =
'%s'))",FaultType,sbNameBaru+"@"+m_strRegionCode,sbName);

 ctlColor = GetColorByFaultName(FaultType);

 m_ListView.SetItemText(nSBHit,4,FaultType,ctlColor,ColorLines);

 if(CheckBlinkFlag(FaultType))
 SetCellBlink(FaultType, nSBHit, 4);

 }
 if(strCardCode =="Card2")
 {
 //CString fmt;
 fmt.Format("UPDATE substationprofile SET
Card2Stat= '%s' WHERE ((UniqueID= '%s') AND "
 "(Name =
'%s'))",FaultType,sbNameBaru+"@"+m_strRegionCode,sbName);

 ctlColor = GetColorByFaultName(FaultType);

143

 m_ListView.SetItemText(nSBHit,5,FaultType,ctlColor,ColorLines);

 if(CheckBlinkFlag(FaultType))
 SetCellBlink(FaultType, nSBHit, 5);
 }

 if(strCardCode =="Card3")
 {
 //CString fmt;
 fmt.Format("UPDATE substationprofile SET
Card3Stat= '%s' WHERE ((UniqueID= '%s') AND "
 "(Name =
'%s'))",FaultType,sbNameBaru+"@"+m_strRegionCode,sbName);
 //save data to log

 ctlColor = GetColorByFaultName(FaultType);

 m_ListView.SetItemText(nSBHit,6,FaultType,ctlColor,ColorLines);

 if(CheckBlinkFlag(FaultType))
 SetCellBlink(FaultType, nSBHit, 6);
 }

 if(strCardCode =="Card4")
 {
 //CString fmt;
 fmt.Format("UPDATE substationprofile SET
Card4Stat= '%s' WHERE ((UniqueID= '%s') AND "
 "(Name =
'%s'))",FaultType,sbNameBaru+"@"+m_strRegionCode,sbName);
 //save data to log
 ctlColor = GetColorByFaultName(FaultType);

 m_ListView.SetItemText(nSBHit,7,FaultType,ctlColor,ColorLines);

 if(CheckBlinkFlag(FaultType))
 SetCellBlink(FaultType, nSBHit, 7);
 }

 ViewDefaultDatabase(fmt);
 //----------------------------
 //***************************
 CString faultMessage;
 faultMessage.Format("%s\n*%s*",sbName,FaultType);
 //send message through TCP/IP network
 CString strTCPIPMessage;

 strTCPIPMessage.Format("%s@%s*%s*%s",sbNameBaru,sbName,FaultType,
strCardCode);

 m_ClientConfig.SendNotification(strTCPIPMessage,sbNameBaru);
 //get phone number to alert..

 //check alert send SMS Flag
 if(CheckSendSMSFlag(FaultType) &&
strSendSMSUser1=="Yes")

144

 {
 m_strSMSAlertPhoneNo =
GetPhoneNumber(sbNameBaru,11);

 SendAlertViaSMS(m_strSMSAlertPhoneNo,strTCPIPMessage+ "-
>"+strActiveCard);
 strSendSMSUser1 = "No";//reset value
 }

 //===
 m_AlertMsg.Alert(faultMessage,FaultType);
 m_AlertMsg.ShowWindow(SW_SHOW);
 //sending message to be save into database..........
 CString strTmpLog;

 strTmpLog.Format("%s/%s",m_strOperatorRole,m_strCurrentOperator);

 m_SBLog.SetAlertLog(sbName,FaultType,strTmpLog,strCardCode,sbName
Baru+"@"+m_strRegionCode);
 //Sleep(500);
 //m_strSMSAlertPhoneNo =
GetPhoneNumber(sbNameBaru,12);

 //SendAlertViaSMS(m_strSMSAlertPhoneNo,strTCPIPMessage+ " at
"+strActiveCard);
 //---
-
 }
 }

}

void CSubStationMonitorDlg::OnGSMNotify(CString strNotify)//first time
is alert..second query sms
{
// m_wndTaskbarNotifier.Show(strNotify);

 nCounterDelay = 0;
 CString str;
 str = strNotify;
 CString strTmp,strTmp2="";
 CString strMessageIndex;
 strMessageIndex = strNotify;
 //int nLength;

 //finding message header..get notification type
 int nstart = strNotify.Find('+',0);
 int nend = strNotify.Find(':');

 if(strNotify.GetLength()>4)
 {
 if((nstart>0)&& (nstart<strNotify.GetLength()))
 for(int u=nstart; u<nend;u++)
 strTmp2+=strNotify.GetAt(u);

145

 }
 //nGSMNotify++;
 //strDummyBuffer+=strNotify;
// strDummyBuffer+=strTmp2;
 //TRACE("\n%s-->%d",strNotify,nGSMNotify);
 //+++++++++++++++++++++++++
 if(strTmp2=="+CMGL")//list message
 { //strDummyBuffer+=strNotify;
 //***********RECORD TYPE**************
 //*
 CString strRecNum="";
 int nStart00 = strNotify.Find(':',0);
 int nEnd00 = strNotify.Find(',',nStart00);
 for(int u=nStart00+1; u<nEnd00;u++)
 strRecNum+=strNotify.GetAt(u);

 m_wndTaskbarNotifier.Show("Negotiating Transfer....\nPlease
Wait..");
 nSimcardIndex = atoi(strRecNum);
 if(nSimcardIndex==0)
 nSimcardIndex=1;
 CString str;
 str.Format("AT+CMGR=%d%c",nSimcardIndex,0x0D);
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 m_commctrl.SendCString(str,nComPorts-1); //rileks dulu
 //*/
 //strDummyBuffer+=strNotify;
 return;
 }

 if(strTmp2=="+COPS")//network setting
 {
 if(m_bAvailableNetwork)
 {
 m_wndTaskbarNotifier.Show(strNotify);

 m_strAvailableNetwork;
 m_bAvailableNetwork = false;
 KillTimer(9);
 KillTimer(8);
 KillTimer(7);
 m_wndTaskbarNotifier.Show("Information
Transferred!");
 //SetTimer(10,1000,NULL);
 }
 if(m_bRegisterNetwork)
 {
 m_wndTaskbarNotifier.Show(strNotify);
 m_strRegisterNetwork;
 m_bRegisterNetwork= false;
 KillTimer(8);
 SetTimer(9,10000,NULL);
 }
 return;

 }
 if(strTmp2=="+CPIN")//pin number

146

 {
 CString strMode;
 int nStart = strNotify.Find(':',0);
 int nEnd = strNotify.GetLength();
 for(int u=nStart+2; u<nEnd;u++)
 strMode+=strNotify.GetAt(u);
 m_wndTaskbarNotifier.Show("Simcard Status\n"+strMode);
 strMode.TrimRight('\n');
 if(strMode=="READY")
 {
 //return;
 }
 if(strMode=="SIM PUK")
 {
 CMeterDecDlg dlg ;
 CString strPinNo="";
 dlg.m_Edit1.Format("");
 dlg.m_Title.Format("Enter SIM Card PUK Number.") ;

 if (dlg.DoModal() == IDOK)
 {
 strPinNo = dlg.m_Edit1;
 CString str;
 str.Format("AT+CPIN=%s%c",strPinNo,0x0D);
 m_commctrl.SendCString(str,nComPorts-1);
 return;
 }
 return;
 }
 if(strMode=="SIM PIN")
 {
 CMeterDecDlg dlg ;
 CString strPinNo="";
 dlg.m_Edit1.Format("");
 dlg.m_Title.Format("Enter SIM Card Pin Number.") ;

 if (dlg.DoModal() == IDOK)
 {
 strPinNo = dlg.m_Edit1;
 CString str;
 str.Format("AT+CPIN=%s%c",strPinNo,0x0D);
 m_commctrl.SendCString(str,nComPorts-1);
 return;
 }
 }

 Sleep(500);
 CString str;
 str.Format("AT+CREG?%c",0x0D);
 m_commctrl.SendCString(str,0);
 //DisplaySignalQualityMeter(nSignalQualityIndex);

 return;
 }
 if(strTmp2=="+WIND")//sim card status
 {
 CString strStatus="";

147

 int nStart = strNotify.Find(':',0);
 int nEnd = strNotify.GetLength();//Find(',',nStart);
 for(int u=nStart+1; u<nEnd;u++)
 strStatus+=strNotify.GetAt(u);

 int nstatus = atoi(strStatus);
 m_BtnMonMode.SetIcon(IDI_GSM);
 if(nstatus== 1)
 {
 m_wndTaskbarNotifier.Show("Sim Card Detected");
 CString str;
 str.Format("AT%c",0x0D);
 m_commctrl.SendCString(str,nComPorts-1);

 Sleep(1000);
 str.Format("AT+CPIN?%c",0x0D);
 m_commctrl.SendCString(str,nComPorts-1);
 return;
 }
 if(nstatus== 0)
 {
 m_wndTaskbarNotifier.Show("Sim Card Not Available");
 return;
 }
 }

 if(strTmp2=="+CREG")//registration of simcard
 {
 CString strStatus="";
 CString strReport="Unknown Network";
 int nStart = strNotify.Find(':',0);
 int nEnd = strNotify.GetLength();//Find(',',nStart);
 for(int u=nStart+1; u<nEnd;u++)
 strStatus+=strNotify.GetAt(u);

 int nstatus = atoi(strStatus);
 if((nstatus== 1)||(nstatus==5))
 {
 strReport = "Logged On to Mobile Netwok";
 DisplaySignalQualityMeter(nSignalQualityIndex);
 }
 else
 {
 strReport = "Searching for Network..registering";
 m_BtnMonMode.SetIcon(IDI_GSM);
 }
 m_wndTaskbarNotifier.Show(strReport);
 return;
 }
 if(strTmp2=="+CME ERROR")//simcard error handling
 {
 //AfxMessageBox("CME Error");
 CString strStatus="";
 int nStart = strNotify.Find(':',0);
 int nEnd = strNotify.GetLength();
 for(int u=nStart+1; u<nEnd;u++)
 strStatus+=strNotify.GetAt(u);

148

 int nstatus = atoi(strStatus);
 m_BtnMonMode.SetIcon(IDI_GSM);
 if(nstatus== 10)
 {
 m_wndTaskbarNotifier.Show("Sim Card not present..CME
ERROR 10");
 }
 if(nstatus== 13)
 {
 m_wndTaskbarNotifier.Show("Sim Card failure, insert
new one..CME ERROR 13");
 }
 if(nstatus== 14)
 {
 m_wndTaskbarNotifier.Show("Sim Card busy..CME ERROR
14");
 }
 if(nstatus== 15)
 {
 m_wndTaskbarNotifier.Show("Sim Card wrong..CME ERROR
15");
 }
 if(nstatus== 16)
 {
 m_wndTaskbarNotifier.Show("Incorrect Pin
Number..Please retry..");
 CString str;
 str.Format("AT%c",0x0D);
 m_commctrl.SendCString(str,nComPorts-1);

 Sleep(1000);
 str.Format("AT+CPIN?%c",0x0D);
 m_commctrl.SendCString(str,nComPorts-1);
 return;
 }
 if(nstatus== 20)
 {
 m_wndTaskbarNotifier.Show("Sim Card memory full..CME
ERROR 20");
 }
 if(nstatus== 20)
 {
 m_wndTaskbarNotifier.Show("No Network Service..CME
ERROR 30");
 }

 bSendSMS= false;
 return;
 }

 if(strTmp2=="+CMS ERROR")
 {
 m_wndTaskbarNotifier.Show("Negotiating Transfer....\nPlease
Wait..");
 bSendSMS= false;
 m_BtnMonMode.SetIcon(IDI_GSM0);

149

 Sleep(1000);
 OnMonmode();
 return;
 }

 if(strTmp2=="+CMTI")
 {

 CString strIndex="0";
 CString ss;
 //get message index;
 int nIndex = strMessageIndex.ReverseFind(',');
 int nLength = strMessageIndex.GetLength();
 if((nIndex>0) && (nIndex<50))
 for(int y=nIndex+1;y<nLength-1;y++)//find messae
index..not more than 10
 strIndex += strNotify.GetAt(y);
 nSimcardIndex = atoi(strIndex);
 CString str;
 str.Format("AT+CMGR=%d%c",nSimcardIndex,0x0D);
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 m_commctrl.SendCString(str,nComPorts-1);
 return;
 }
 if(strTmp2=="+CRING")
 {
 //Start SMS query
 CString str,strNum;
 str = strNotify;
 int nStartS = strNotify.Find('"',0);
 int nFinishS = strNotify.ReverseFind('"');
 for(int u=nStartS+1; u<nFinishS;u++)
 strNum+=strNotify.GetAt(u);

 m_wndTaskbarNotifier.Show("Voice Call Received\n"+strNum);

 m_ClientConfig.SendOnlyToServer("Voice Call Received from -
-- "+strNum);
 strNum.Empty();
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 return;
 }
 if(strTmp2=="+CSQ")//signal quality Check
 {
 CString str,strStrength;
 str = strNotify;

 int nStart = strNotify.Find(':',0);
 int nEnd = strNotify.Find(',',nStart);

 for(int t=nStart+1;t<nEnd;t++)
 strStrength +=strNotify.GetAt(t);
 if((strStrength.IsEmpty()) || (strStrength=="99"))
 {
 m_wndTaskbarNotifier.Show("Negotiating
Transfer....\nPlease Wait..");
 CString str;

150

 str.Format("AT+CSQ%c",0x0D);
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 m_commctrl.SendCString(str,nComPorts-1);
 //Sleep(100);
 return;
 }
 //m_BtnMonMode.SetIcon(IDI_GSM0);
 int nQuality = atoi(strStrength);
 if((nQuality>0) && (nQuality<99))
 {
 nSignalQualityIndex=nQuality;
 m_SendSMS.SetSignalQualityScale(nQuality);
 DisplaySignalQualityMeter(nQuality);
 }

 CString sglQty;
 if(nQuality==0) sglQty="BAD";
 if((nQuality>0)&& (nQuality<=5)) sglQty="POOR";
 if((nQuality>5)&& (nQuality<=9)) sglQty="MEDIUM";
 if((nQuality>9)&& (nQuality<=14)) sglQty="GOOD";
 if((nQuality>14)&& (nQuality<=98)) sglQty="EXCELLENT";

 m_wndTaskbarNotifier.Show("Signal Quality\n" + sglQty);
 return;
 }
 if(strTmp2=="+CMT")
 {
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 CString m_str,strTmp3;
 m_str = strNotify;
 int nLengthAll= strNotify.GetLength();;

 int nStart= -1,nStart1=-1,nStart2=-1;
 int nStart3=-1,nStart4=-1,nStart5=-1,nStart6=-1,nStart7=-
1,nStart8=-1;

 //***
 //***********Source Address**************

 CString SourceID;
 nStart = strNotify.Find('"',0);
 nStart2 = strNotify.Find('"',nStart+1);
 for(int s=nStart+1;s<nStart2;s++)
 SourceID += strNotify.GetAt(s);

 //**********TIMESTAMP***************************
 CString TimeStamp;
 nStart3 = strNotify.Find('"',nStart2+1);
 nStart4 = strNotify.Find('"',nStart3+1);

 for(int q=nStart3+1;q<nStart4;q++)
 TimeStamp += strNotify.GetAt(q);
 //**********MESSAGE BODY*****************
 nStart7 = nStart4;
 nStart8 = nStart7;

 CString MessageBody;

151

 nStart7 = strNotify.Find('@',nStart4);
 nStart8 = strNotify.Find('!',nStart7+1);
 CString strq;

 //checking message body structure
 if((nStart7>nStart4) && (nStart8>nStart7))//correct message
body found
 {
 for(int w=nStart7;w<=nStart8;w++)//reading message
 MessageBody += strNotify.GetAt(w);
 int nSMSBodyLength = MessageBody.GetLength();
 if(nSMSBodyLength==14)
 {
 ProcessMessages(MessageBody);//main validation
selection

 nResendCntr = 0;//reset counter if message
valid
 //m_BtnMonMode.SetIcon(IDI_GSM0);
 DisplaySignalQualityMeter(nSignalQualityIndex);
 return;
 }
 else//request to read from simcard because data is
invalid
 {
 m_wndTaskbarNotifier.Show("Unknown
Message!!\n"+ MessageBody);
 //m_BtnMonMode.SetIcon(IDI_GSM0);
 DisplaySignalQualityMeter(nSignalQualityIndex);
 return;
 }
 }
 }
 if(strTmp2=="+CMGR")//sms is read
 {
 //m_wndTaskbarNotifier.Show("CMGR Detected!!");
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 CString m_str,strTmp3;
 m_str = strNotify;
 int nLengthAll= strNotify.GetLength();

 //***********RECORD TYPE**************
 CString RecType;
 int nStart= -1,nStart1=-1,nStart2=-1;
 int nStart3=-1,nStart4=-1,nStart5=-1,nStart6=-1,nStart7=-
1,nStart8=-1;

 nStart = strNotify.Find('"',0);
 nStart2 = strNotify.Find('"',nStart+1);

 for(int r=nStart+1;r<nStart2;r++)
 RecType+= strNotify.GetAt(r);
 //***********Source Address**************
 CString SourceID;
 nStart3 = strNotify.Find('"',nStart2+1);
 nStart4 = strNotify.Find('"',nStart3+1);

152

 for(int s=nStart3+1;s<nStart4;s++)
 SourceID += strNotify.GetAt(s);
 //**********TIMESTAMP***************************
 CString TimeStamp;
 nStart5 = strNotify.Find('"',nStart4+1);
 nStart6 = strNotify.Find('"',nStart5+1);

 for(int q=nStart5+1;q<nStart6;q++)
 TimeStamp += strNotify.GetAt(q);

 //**********MESSAGE BODY*****************
 CString MessageBody;
 for(q=nStart6+2;q<nLengthAll;q++)
 MessageBody += strNotify.GetAt(q);

 nStart7 = nStart6;
 nStart8 = nStart7;
 nStart7 = strNotify.Find('@',nStart6);
 nStart8 = strNotify.Find('!',nStart7+1);
 if((nStart7>nStart6) && (nStart8>nStart7))//correct message
body found
 {
 MessageBody="";

 for(int w=nStart7;w<=nStart8;w++)//reading message
 MessageBody += strNotify.GetAt(w);
 int nSMSBodyLength = MessageBody.GetLength();

 m_SMSBuffer.PustSMStoBuffer(SourceID,TimeStamp,MessageBody);
 if(nSMSBodyLength==14)
 {
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 CString str;

 str.Format("AT+CMGD=%d,3%c",nSimcardIndex,0x0D);
 m_commctrl.SendCString(str,nComPorts-1);
 Sleep(500);
 CString dat;
 dat.Format("SMS %d deleted",nSimcardIndex);
 m_wndTaskbarNotifier.Show(dat);
 //after delete then process
 ProcessMessages(MessageBody);//main validation
selection
 nResendCntr = 0;//reset counter if message
valid
 DisplaySignalQualityMeter(nSignalQualityIndex);
 return;
 }
 else//request to read from simcard because data is
invalid
 {
 m_wndTaskbarNotifier.Show("Unable to
decode...Unknown Message!!\n"+ MessageBody);
 DisplaySignalQualityMeter(nSignalQualityIndex);
 return;

153

 }

 //**
 }
 else//look like message incomplete..request for re-send
 {
 nResendCntr++;//increase counter as resend is being
called
 if(nSimcardIndex==0)
 nSimcardIndex=1;//correct unexpected error of
accessing invalid sms memory
 CString str;
 str.Format("AT+CMGR=%d%c",nSimcardIndex,0x0D);
 if(nResendCntr<=3)
 {
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 m_commctrl.SendCString(str,nComPorts-1);
 m_wndTaskbarNotifier.Show("Negotiating
Transfer....\nPlease Wait..");
 Sleep(100);
 return;
 }
 else
 {

 m_SMSBuffer.PustSMStoBuffer(SourceID,TimeStamp,MessageBody);
 m_wndTaskbarNotifier.Show("Request
timeout\nUnable to decode message");
 CString str;
 str.Format("AT%c",0x0D); //ping
 m_bPing= true;
 m_commctrl.SendCString(str,nComPorts-1);

 //DisplaySignalQualityMeter(nSignalQualityIndex);
 nResendCntr = 0;
 return;
 }
 }
 return;

 }

 if(strTmp2=="+CDSI")//Status delivery message
 {
 m_wndTaskbarNotifier.Show("Status delivery report!!");
 return;

 }
 if(strTmp2=="+CPMS")//Simcard memory summary
 {
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 int Comma1,Comma2,Comma3;
 Comma1 = strNotify.Find(',',0);
 Comma2 = strNotify.Find(',',Comma1+1);
 Comma3 = strNotify.Find(',',Comma2+1);

 CString strCurrentBuffer;

154

 CString strTotalBuffer;
 if((Comma1>=0)&&(Comma2>Comma1)&&(Comma3>Comma2))
 {
 //get current buffer
 for(int z=Comma1+1;z<Comma2;z++)
 strCurrentBuffer+=strNotify.GetAt(z);

 //get Total buffer
 for(int d=Comma2+1;d<Comma3;d++)
 strTotalBuffer+=strNotify.GetAt(d);
 m_wndTaskbarNotifier.Show("Simcard Memory\nUsed
Buffer :"+strCurrentBuffer+
 "\nTotal Buffer: "+ strTotalBuffer);
 nSimCurrentMemory =atoi(strCurrentBuffer);
 nSimTotalMemory = atoi(strTotalBuffer);
 //requesting unread sms
 Sleep(100);
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 CString str;
 str.Format("AT+CMGL=%cREC
UNREAD%c%c",0x22,0x22,0x0D);
 m_commctrl.SendCString(str,nComPorts-1);
 return;
 }
 else
 {
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 m_wndTaskbarNotifier.Show("Fail to
deliver...\nRequesting!!");
 CString str;
 str.Format("AT+CPMS?%c",0x0D);
 m_commctrl.SendCString(str,nComPorts-1);
 Sleep(100);
 return;
 }

 }
 strNotify="";
 m_strGSMRecieve.Empty();
}

void CSubStationMonitorDlg::OnGsmPing()
{
 // TODO: Add your command handler code here
 CString str;
 m_bPing = true;

 str.Format("AT%c",0x0D);
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 m_commctrl.SendCString(str,nComPorts-1);

}

void CSubStationMonitorDlg::OnGsmFlush()
{
 // TODO: Add your command handler code here

155

 if(AfxMessageBox("This will delete all old sms in the sim card.
Proceed?",MB_YESNO)==IDYES)
 {
 CString str;
 str.Format("AT+CMGD=1,3%c",0x0D);
 m_commctrl.SendCString(str,nComPorts-1);

 m_wndTaskbarNotifier.Show("SIM Card\nSMS Buffer Cleared");
 }
 else
 AfxMessageBox("Operation aborted");
}

void CSubStationMonitorDlg::OnSimMem() //check sim card sms buffer
{
 // TODO: Add your command handler code here
 CString str;
 str.Format("AT+CPMS?%c",0x0D);
 m_commctrl.SendCString(str,nComPorts-1);
 //delete rec_read....promt for read the rec_unread..ok

}

void CSubStationMonitorDlg::SendAlertViaSMS(CString strNo, CString
strMsg)
{
 bSendSMS = true;
 CString str1,str2;
 str1.Format("at+cmgs=%c%s%c",34,strNo,34);
 str1 += 0x0d;

 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 m_commctrl.SendCString(str1,nComPorts-1); // set port

 //CString str1,str2;
 str1.Format("%s%c",strMsg,26); // 26 = CTRL_Z
 str1 += 0x0d;
 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 m_commctrl.SendCString(str1,nComPorts-1); // set port

}

void CSubStationMonitorDlg::DisplaySignalQualityMeter(int nQual)
{
 int nScale = nQual;
 if(nScale==0)
 {
 m_BtnMonMode.SetIcon(IDI_GSM0);
 }
 if((nScale>0)&& (nScale<=5))
 {

156

 m_BtnMonMode.SetIcon(IDI_GSM1);
 }
 if((nScale>5)&& (nScale<=9))
 {
 m_BtnMonMode.SetIcon(IDI_GSM2);
 }
 if((nScale>9)&& (nScale<=14))
 {
 m_BtnMonMode.SetIcon(IDI_GSM3);
 }
 if((nScale>14)&& (nScale<=25))
 {
 m_BtnMonMode.SetIcon(IDI_GSM4);
 }
 if((nScale>25)&& (nScale<=98))
 {
 m_BtnMonMode.SetIcon(IDI_GSM5);
 }
}

void CSubStationMonitorDlg::SendToGSMModem(CString strSms)
{
 int nLength = strSms.GetLength();
 char *m;
 m = new char[nLength];
 //= strTmp;
 for(int i=0;i<nLength;i++)
 {
 m[i] = strSms.GetAt(i);
 }
 m_SerialComm.WriteToPort(m);
 delete []m;
}

void CSubStationMonitorDlg::OnGSMFilter(CString strMessage)
{

 m_BtnMonMode.SetIcon(IDI_GSMBUSY);
 int nOkLength = strMessage.GetLength();

 CString strGoodMessage;
 strGoodMessage = strMessage;
 int nStartOK = strGoodMessage.Find('O',0);
 CString strOK;

 if(nStartOK>=0)//look for word OK....but check ok alone or ok
with message
 {
 strOK = strGoodMessage.GetAt(nStartOK);
 strOK += strGoodMessage.GetAt(nStartOK+1);
 if(strOK=="OK")
 {
 if(m_bPing)
 {
 m_bPing= false;
 DisplaySignalQualityMeter(nSignalQualityIndex);
 return;

157

 }
 if(bSendSMS)
 {
 m_wndTaskbarNotifier.Show("Message Sent");
 bSendSMS= false;
 CString str;
 m_bPing = true;
 str.Format("AT%c",0x0D);
 DisplaySignalQualityMeter(nSignalQualityIndex);
 m_commctrl.SendCString(str,nComPorts-1);//ping
modem to clear connection

 return;
 }
 if(nOkLength<=4)
 {
 DisplaySignalQualityMeter(nSignalQualityIndex);
 CString str;
 m_bPing = true;
 str.Format("AT%c",0x0D);
 m_commctrl.SendCString(str,nComPorts-1);//ping
modem to clear connection
 return;
 }
 }
 }
 if(bSMSList)
 {

 }

 OnGSMNotify(strGoodMessage);
}

