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ABSTRACT

The use of measurements as the source of data for creating digital cadastral
database supplemented by the adjustment of the measurements by the least squares
method, undoubtedly results in accurate and up-to-date metric information. However
the approach involves solving an extremely large system of linear equations, and
subsequently increases the computing time and also requires large amount of
computer processing storage. The problems are solved by applying an iterative
conjugate gradient method (CGM). The proposed method reduces the storage by at
least 70% compared to the prevailing usage of the banded storage scheme and
significantly speed up processing time as compared to the usﬁal Cholesky

Decomposition method.
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ABSTRAK

Penggunaan data ukur sebagai sumber asal untuk membina pengkalan data
kadaster diukuti dengan pelarasan data ukur tersebut dengan kaedah ganda dua
terdikit mampu mengeluarkan informasi paling tepat dan paling terki'ni. Namun
demikian pendekatan ini melibatkan penyelesaian satu sistem persamaan linear yang
amat besar, justeru itu melambatkan proses hitungan serta memerlukan terlalu banyak
ruang komputer sewaktu menyelesaikan persamaan tersebut. Masalah ini diatasi
dengan pengunaan kaedah lelaran kecerunan konjugat (CGM). Kaedah ini berjaya
mengurangkan storan komputer sehingga 70% daripada kaedah skema berjalur dan
juga berupaya mempercepatkan masa hitungan berbanding déngan kaedah yang kerap

digunakan iaitu kaedah penghuraian Cholesky.
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CHAPTERII

INTRODUCTION

1.1  Problem statement and motivation

A geographic information system (GIS) can be described as an organized
collection of computer hardwares, softwares, procedures, and personnel designed to
efficiently capture, store, update, manipulate, analyze and display all forms of
geographically referenced data/information. The system is designed to manage
voluminous, varied and complex geographic data for solving problems that beset the

earth and its inhabitant.

The power of GIS basically lies in its ability to integrate spatial and non-spatial
components. This data integration opens the way for powerful and varied ways of
looking and analyzing the data. The spatial component of a GIS data is often
described as a series of layers, each of which contains map features that are related

functionally (see Figure 1). Each layer is a set of homogeneous features that is
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Figure 1: The layering concept in a GIS system

- registered in term of position to the other data-base layers through a common

coordinate system.

The base layer for most GIS applications throughout the word is the
cadastral data layer (Dale & Mclaughlin, 1988; NRC, 1983). In the present super
information infrastructure, which pools together various government agencies and

private sectors, the cadastral data layer plays a wider role. For example, the study



carried out by Renong (1995) indicated that cadastral data is the most important data

set for most users of the proposed National Land Information Infrastructure of

Malaysia (NALIS).

1.1.1 Types of cadastral record

Cadastral information are the representation of land subdivided into units of
ownership or parcels or sometimes known as lots. The cadastral record however can
be described in three ways (Dale, 1976):

(1) verbal,
(2) numerical, and

(3) graphical.

Verbal description 1s a textual data that describes spatial information. It is
significantly inferior to the numerical and graphical representation and produces
little information of value for other applications. The numerical and graphical

cadastral record systems are the basic resources for building up modern GIS.

The numerical record system is based on cadastral surveying and it involves
measuring ground geometric values, i.e., the measurements. The measurements
define the geometry of parcels. The most common measurements are distances and

bearings or angles. They are measured accurately using instruments like theodolites



and steel tapes. The steel tapes are only effectives for short distances (say up to 50
meters). Nowadays, the use of modern surveying equipment incorporating
electronic processors such as total stations are not only capable of delivering precise
distance measurements, butalso fast and reliable angular measurements. Typical
accuracy for distance is several millimeters and the accuracy for angular
measurement reaches seconds of arc. The process of acquiring such survey
measurements can be much easier and faster when using satellite-based systems

such as the Global Positioning System (GPS).

The third type of cadastral record is the graphical map or known as the
cadastral map or cadastral plan. Maps are the end product of survey measurements.
Maps are designed for displaying spatial information visually. During their
production, measurements will undergo various processing stages, which includes
computation reductions and adjustments, generalization, scale reduction,
symbolization and other carthographic production processes. Each process degrades
certain proportion of the contents and the quality of the measurements.
Consequently, the derived graphical maps are far too inferior as compared to their

original sources, i.e., the measurements.



1.4.2 Creation of digital cadastral database

An immediate action taken by most users in carrying out a GIS project 1s
directed toward purchasing computer hardware and software. Lengthy discussions
with vendors on the merits of various GIS components have been a standard
practice. Yet, less attention has been given to the core of the system i.e. the data that
goes into it. Although cadastral data can be found in three ways (i.e., verbal,
numerical and graphical) the most popular source of data for creating spatial
databases has been the graphical maps ( Burrough, 1986 ; Aronof, 1989). A database

created from graphical map is referred to asa map-based database.

The use of the graphical maps as a source data for building spatial databases
has been adopted for two main reasons (Elfick, 1989). Firstly, GIS technology was
developed in countries where cadastral is mostly based on maps. The technology
has been mainly designed with the understanding that the spatial information comes
from maps. Secondly, the users are subjected to the marketing forces of the computer
industry that already investing heavily in developing CAD/CAM systems and the

associated hardware.

Maps or plans are captured into computer systems either using keyboard
entry, manual digitization or automatic scanning. The most reliable and popular
method of data entry is by manual digitizing using digitizers. The digitized

coordinate values, which may be of different scale, orientation and projection, are



later transformed to a common base with the help of control points coordinates.

Latter, the captured data are stored in the system (Dangermond, 1989).

Although GIS is a sophisticated computer system and uses the latest
technology in data capture, its graphical database which was derived from maps is
essentially analogue in nature. Although the system permits users to bring together
information from numerous spatial data sets into a composite form without the
laborious manual processing, the derived information is still based on analogue

maps. Therefore, such a system which uses maps as its source data is called map-

based GIS system.

1.1.3 Weaknesses of the map-based database

Currently, many map-based databases have been successfully set up and
applied in variety of GIS applications. However, they suffer several limitations, and
some even fail to achieve the objectives for which they were designed, especially in
parcel level implementations. The general concern of the problems is to maintain

the integrity and accuracy of the spatial dataset ( Shane, 1996 ; Taher 1992;

Doytser & Eytan, 1995).

Metric information obtained from any map-based system is usually not up-

to-date. Hard copy maps simply are unable to provide up-to-date information. Even



the latest map edition is in fact many years behind time. Inevitably, cadastral maps
which usually serves as the base layer are subjected to upgrading and maintenance,
as cadastral itself is a dynamic activity (Dale & McLaughlin, 1988 ; Hunter, 1991).
Maintaining and upgrading of the graphical information within the database
are critical because the information which were initially obtained from maps is
inherently of low quality. As new cadastral measurements become available, new

measurements which are of higher quality must be used to update the database.

Integrating new measurements to the existing database is a challenge. Old
measurements which is in the form of coordinates cannot be adjusted
simultaneously with the new measurements. Coordinates are point value information
which refer to the origin of a coordinate system. They are only functionally related
to the origin and therefore have no ability to propagate information and cannot
assimilate higher quality measurements available around them. To resolve these
problems, a procedure that begins to gain acceptance, loosely known as rubber-
sheeting, alters the existing coordinates to fit the new accurate measurements.
Different authors came up with different methods to implement the concept of
rubber-sheeting. For example, Crook (1990) described an implementation of the

concept to update the New Zealand cadastral database.

The constant updating of the cadastral layers due to subdivision of parcels
and other land developments leads to an apparent shift of a parcel layer with respect

to other layers within a GIS (Figure 2). The shift introduces systematic errors.



Updating digitized coordinates of the parcel corners causes confusion among users.
Such problems already occurred in utility data, and have been reported by several

researchers (Hebblethwaite, 1989 ; Hadjiraftis and Jones, 1990).

Maps convey geometric information graphically. In practice, even the best
drawn maps with infinitely sharp boundaries are far from perfect. Consider a Imm-
thick line on a 1:1000 map will represent a width of I meter on the ground. The
error grows rapidly as map scale becomes smaller. Extra errors are introduced
during digitizing process, as pointed out by Burrough (1986), Doytser &
Eytan(1995). The errors that accumulate during the process include the digitizing
errors, media stability (warping, stretching, folding and wrinkling of maps) and
digitizer resolution errors. The magnitude of the digitizing error alone is in the order
of meters (Masry and Lee, 1988; Henderson, 1989). It should be noted that besides
these errors, another major source of error which makes the problems even worse is
the inherent inaccuracy of the coordinate system itself. The resulting error may be
up to tenths of meters depending on the quality of measurements and the adopted

processing method (Vanicek & Krakiwsky, 1986 ; Schwarz, 1989).

The map-based approach which revolves around capturing graphical maps
and storing them in databases for answering metric query is in fact an outdated
methodology. The methodology was originally adopted due to the limitations of

computing power and lack of efficient processing algorithms.



Change in relative

position between

utility line and

parcel in revised coordinate
values

utility line and
parcel in old coordinate
77 values

Utility line

Figure 2: The effect of shifting a cadastral layer with respect to a utility layer.

1.1.4 A new methodology for creating cadastral database

The root of the database problems is attributed to the analogue nature of the
source data within the map-based cadastral system. Thus, in order to overcome
these problems, the following approaches are introduced.

1. Using measurements or derived coordinates for building graphical database

2. Processing the measurements using least squares method.

Many researchers during the last several years favours these approaches
(Durgin, 1993; Weitzman, 1989). The new approach considers measurements
instead of the hardcopy maps as source data for creating database. This idea has
been proposed earlier by several researchers (Hintz et al, 1988; Clark, 1987; Kjerne,

1987 ; Taher, 1992). The rationale behind the concept is that measurement is the
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most refined data that describes spatial information and it is the first data that records
any changes to the spatial information. All other spatial information are derived
products of measurements and therefore, measurements should be the basic entity
of a graphical database. There are two main approaches that can be adopted to

implement the database:

(a) the first approach stores measurements within the system. The system
computes spatial information directly from the measurements. The user
interacts with the measurements within the database and they are processed
whenever an information is required. Since this approach produces
information  directly from the measurements, it is called a measurement-

based cadastral database.

(b) The second approach stores the coordinates (instead of measurements)
within the system. The system computes coordinates from the measurements
but the measurements are kept outside the system. The measurements are
brought to the system only for maintaining and updating the coordinates.
Users interact with the coordinates and information is derived from the
stored coordinates. The system is referred to as coordinated-cadastral

database.

The measurement-based of the coordinated-based database possesses several
advantages and benefits over the familiar map-based system. Updating the system

is achieved by simply adding new measurements into the database. The system is



not dictated by the limitations and errors inherent in maps. Some of the main
advantages of the approach are listed as fo]lows:

L. Metric information derived directly from the measurements is
obviously accurate (depending on the accuracy of the measurements) since
field measurements are the most accurate spatial information. Accurate
information has always been the ultimate aim of any digital database
implementations. In fact, the validity and the integrity of any information
from the database depends entirely on the validity of its source data. GIS is
a powerful tool. However, if the data input is inaccurate, the end product of
the system will be useless. Furthermore, metric information derived from
measurements is up-to-date information since measurements are truly the
most up-to-date data. Meaningful analysis depends entirely on the up-to-
date information.

2. Other advantages of the approach are attributed to the inherent
potentials in the measurements and the flexibility of handling measurements
within a database. The database is almost free from errors being
accumulated in the hard copy maps and it is also free from the introduction
of new errors that are built up during the process of converting analogue
maps to digital maps.

3. The introduction of this new approach has several other advantages
unchallenged by the map-based system: the employment of measurements
within the system allows ease of updating, incremental implementations,
systems as by-product of standard activities, improvement of accuracy over

time, correct integration of different layers, preservation of background



information, as well as several economic benefits. These advantages had

been described in detail by Taher (1992).

This promising approach has attracted many researchers to further develop
the concept. Many aspects of the methodolo gy have been studied and proposed.
Jacobi (1988) for instance, dealt with the updating of maps using photogrammetric
methods. The work was extended to include ground measurements as the basis for
land and geographic information system (Kjellberg, 1990). A system that retains the
source elements within the system was proposed by Clark (1987). Kjerne(1987)

presented object oriented paradigm to secure the measurements.

A system for effective management of large cadastral measurement has
been studied by many researchers (Hintz et al, 1988; Hintz and Onsrud, 1990;
Elfick, 1989). A comprehensive study of the measurements concept, including a clear
and precise methods of introduction of the system has been studied by Taher (1992).
The central idea of the above research revolves around the new role measurements
within the GIS. Conceptually, the new system has the necessary potentials to

overcome the problems faced in the old map-based system.



1.1.5 Challenges in implementing numerical database.

The main constraint for implementing the cadastral database based on
measurements (either the measurement-based system or the coordinated system) is
the problem of processing huge amount of measurements usually found in a

cadastral system. A typical cadastral system may have several millions

measurements and they are to be processed within a reasonably short span of time.

The universally accepted method for adjusting survey measurements is the
least squares method. The method produces homogeneous coordinates needed for
GIS implementations. The method generates a system of linear equations from the
cadastral measurements which mu.st be solved to produce the coordinates. Since a
cadastral system involves a large volume of measurements, the number of derived
equations 1s also very large. However, these cadastral equations possess certain
properties which can be exploited to optimize the computation process. The
coefficient matrix of the equations are sparse and they are positive definite and
symmetric. Therefore, the main challenge lies in the approach that can optimize the
cadastral computation and it can be divided into four interrelated parts:

1. selecting a suitable algorithm for solving the large system of equations

derived from the measurements,

12

minimizing computer storage for large volume of measurements,

optimizing processing speed, and

(U8

4. designing computer program specifically for the unique nature of

cadastral data processing.
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This research employs an iterative conjugate gradient method (CGM) to
solve the problems. The method is implemented in a computer program which is
specially designed to take full advantage of the greatly sparse nature of the

coefﬁcjent matrix created from the cadastal measurements.

1.2 Potentials of the CGM

The least squares method involves the creation and solution of systems of
linear equations. There are many methods for finding solutions of a linear equation
and there is no single method that can be considered best for all situations
(Landesman & Hestenes,1991). The most widely used method for surveying and
geodetic computations is the Cholesky Decomposition method ( Cross, 1983).
However, there are situations when it is useful to use the CGM ( Hestenes, 1980,
Landerman & Hestenes 1991). For example, the method has the advantage that in
certain circumstances, as in the case of a sparse, symmetric and positive definite
matrix, a good estimate of the solution is obtained early in the computation. The
method is not only capable of solving the equations, but it can reduce the storage
and the time of processing the equations generated by the least squares process. It is
the most efficient method among the gradient methods (Press et al, 1987).
Furthermore, the method is expected to have several practical advantages when
dealing with cadastral networks namely:

(1) optimizing a sparse system of equations,



(2) minimizing the storage requirement,
(3) solving the parameters directly from the observation equation, and

(4) solving the standard normal equation.

The CGM is” known to be very efficient in handling a sparse system of
equations. This method can produce parameters from the equations without using
the zero elements at all. It only deals with the small proportion of nonzero terms
found in the coefficient matrix. The patterns of cadastral networks generate the
most sparse system among surveying networks and this unique feature is exploited

in this research using the CGM.

The amount of computer storage for solving such a system of equations
depends on the storage scheme used for storing and manipulating the elements of the
equations. A sparse system organized by an efficient storage scheme can minimize

computer storage and therefore more measurements can be processed simultaneously

in any given time.

The least squares process begins with the creation of a system of linear
equations called observation equations. The standard parameter estimation process
requires the equations to be transformed into another system of equations known as
normal equations, before they are solved for the unknowns. However, the CGM is
able to solve the unknowns directly from the observation equations. The solution of

the observation equations is expected to save tremendous amount of arithmetic

operations.



Besides solving the observation equation, the CGM is also capable of
obtaining the unknowns in the usual way, 1.e. solving the normal equations. The
coefficient matrix of the normal equations is symmetric and positive definite. These
features can be used to simplify the CGM arithmetic process and therefore has

potential to speed up the estimation time.

1.3 Research aim and objectives

The main aim of this research is to optimize least squares computations in
cadastral systems using CGM. The investigation includes the implementation of a
computer program designed to take the advantage of the sparse nature of linear
equations derived from cadastral measurements. To achieve the goal the following

objectives have been set:

1. to evaluate the validity ( correctness of the results) of the CGM in solving

cadastral survey network,

[S)

to estimate the magnitude of rounding off error in the iterative CGM,

to develop storage schemes that minimizes of computer storage,

[#5]

4. to further develop the CGM for minimizing the processing time,

5. toimplement a non-hierarchical adjustment concept needed in cadastral

systems.



Since the research concentrates on the applications of the CGM to solve
cadastral processing problems, detailed t.heoretical and mathematical derivations of
the method is beyond the scope of this research. The subject is thoroughly described
in many mathematical text books on numerical methods (Hageman & Young, 1981;
Landesman & Hestenes, 1991; Hestenes, 1980) and research journals (Shariff,
1995; Psimarni, 1994). A brief mathematical derivation of the method is only

presented in this report where necessary.

This research concentrates on the computation of the basic network
parameters, i.e. station coordinates, measurement residuals and the network unit
variance. These parameters provide sufficient information for evaluating validity and
performance of the CGM which is also the main aim of this research. Rigorous tests
were carried to ensure the results of the method are valid. These issues are
fundamental since the CGM is new to cadastral applications. As such, the
computation of other derived parameters such as error ellipses and statistical
information, are beyond the scope of this thesis. These additional information can
be obtained by several approaches for example by a method called “kerplunking”
developed by Hintz (1994). The approach uses only small subsets of the large data
set in a sequential fashion in the effort to resolve the problem of handling massive

computation of the variance-covariance parameters.
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1.4 Research significance

The significance of this research is the realization of a precise and up-to-
date cadastral database system. Many countries have moved towards implementing
the measurement-based database concept, either in the form of coordinated-cadastral
system or a fully measurement-based cadastral system. The success of both systems
depends fundamentally on the efficiency of their measurement processing
component. The main contribution of this research is the development of such
processing component, which is badly needed for implementing the measurement-

based cadastral database for GIS applications.

The Malaysian Surveying and Mapping department is considering, in
principle, to adopt the coordinated cadastral system (JUPM, 1995). Under the
system, a parcel corners will be defined rigidly by a pair of easting and northing
coordinates. These values are processed by the least squares method using
measurements obtained from the existing bearings and distances of the boundaries
together with newly observed GPS coordinates as control points. The coordinated
cadastral system does not only benefits cadastral activities, but also the database
which will be incorporated in GIS system that permits diverse applications.
Although there are several issues that need to be resolved, the fundamental and the

one immediate issue that must be solved is the processing of huge measurements

from the existing system.
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A coordinated cadastral system has been introduced in New South Wales
Australia (Cart, 1990). This system offe.rs the potential to significantly improves the
State’s cadastral survey system. Furthermore, it forms part of the New South Wales
Land Information System. A similar coordinate system has been implemented in

South Australia (Smith, 1988).

The purely measurement-based concept is also gaining acceptance and
some jurisdictions in United States are beginning to adopt the system (Kopak,
1993; Durgin, 1993). The approach reduces the size of the simultaneous equations
within the system by adjusting a block at a time and then combining together the

individual adjusted blocks,

CGM s a new tool in cadastral network adjustment. Nearly all computations
dealing with least squares problems utilised Cholesky Decomposition method
through the solution of the derived normal equations. The present research is the first
known attempt at solving the observation equations generated by cadastral

measurements using CGM.

The developed computer program based on the CGM is expected to serve as
a foundation for creating digital database. The database has several advantages over
the map-based implementations. The data within the system is up-to-date and
accurate. Furthermore, the system also allows ease of updating and maintaining the
database. The task becomes simple and a routine process of entering new

measurements into the system.



1.5 Expected findings

The CGM is expected to be an efficient method for solving least squares
problem in cadastral surveying due to the inherent potentials of the method described
in Section 1.2. The obtimization strategies to be developed in this research will
resolve the processing problems related to large cadastral networks. The storage of
the equations derived from the measurements will be minimized by only storing the
nonzero elements. Consequently, the arithmetic operations will only referred to the

stored nonzero elements.

This implementation of the CGM will serve as a basis for setting up
cadastral database based on the measurements as the source data. The updating of a
database is accomplished simply by adding new measurements into the system. The
continuous addition of measurements that will be used to update the coordinates will

result in an enhancement of the overall quality of the system.

In the present work, the CGM will be rigorously tested using several real and
simulated networks. These tests should reveal the correctness of the method. CGM
solves least squares equation in two ways. One way is to solve the observation
equations and secondly is to solve normal equations. The results obtained from the
two approaches are expected to be similar and of correct values. The CGM results
will be compared to the Cholesky Decomposition method and also to the standard
trigonometric formula. The doubt about the effects of rounding off error inherent in

most iterative methods is expected to be invalid for CGM.
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The method for setting the observation equations is expected to save
substantial computer storage by storing only the nonzero elements found in the
coefficient matrix in a vector. The locations in the vector is determined from the
geometry of the survey network. This information allows the necessary storage

schemes to be allocatéd in advance prior to the actual least squares computation.

1.6 Organization of report

Chapter IT highlights the needs for a specialized least squares adjustment for
the unique cadastral networks. This chapter presents the overview of current
strategies for optimizing least squares computation and discusses the deficiencies of
the approaches in relation to cadastral applications in GIS. This is followed by the
introduction of the CGM to solve the cadastral adjustment in GIS. This chapter
shows that CGM has the potentials needed by cadastral system for its current

adjustment work.

Chapter III presents a method that can optimize the creation and storage of
the basic observation equations generated by the measurements. The development
of the method is described in details beginning with the computation of the
contributions of a single measurement into the coefficient matrix of the equations.

This is followed by the arrangement of the combined contributions of all the
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measurement within a network. This chapter then describes the optimized structure
to store the coefficients in a vector. Finally, this chapter presents the CGM
algorithm to solve the equations for the parameters.

Chapter IV p?esents the method for optimizing the construction of normal
equations. The development of this method begins with the computation of the
contribution of a single measurement into the symmetric coefficient matrix of the
normal equations. This is followed by the arrangement of the combined
contributions of all the measureinents within a network, using graph theory. The
resulting coefficients within the upper triangle of the matrix are stored in a vector.

Finally this chapter presents the CGM algorithm for solving the equations.

Chapter V' focuses on the development of a computer program to implement
the methods presented in chapters ITT and IV. This chapter begins with the
description of the designed strategy and continues with the translation of the desi en

into a source code. This chapter finally describes the compiled program.

Chapter VI describes three methods for testing the validity of the CGM in
solving cadastral data. This chapter continues with the evaluation of the performance
of CGM in terms of the utilization of computer storage and also the speed of
execution. Finally, Chapter VII provides summary of the research and highlights

major findings. This chapter also includes recommendations for future research

directions.



CHAPTER I

REVIEW OF ADJUSTMENTS IN CADASTRAL SURVEYING

2.1 Introduction

Survey points are classified according to their purposes and the information
they represent, namely: geodetic points, engineering points and cadastral points
(Hamilton, 1982). The use of geodetic points is to provide control coordinates for
mapping programme, whilst the use of engineering point is to provide control for
monitoring physical development. The primary information contained in these two
classes of points 1s position information which forms the basic data for various
users. Research activities on these types of control points have always been directed

towards improving their respective position information to the highest level of

accuracy.

The uses of the cadastral points are not only confined to the provision of
position information as the geodetic and engineering control points, but also they
provide a variety of other information which include boundary information,

bearings, distances, utility services, legal rights and other cadastral information. The



information have always been part of a cadastral system since the beginning of

cadastre (Dale, 1976; Dale and Maclauglin, 1988).

,The basic data collected from any survey network is the measurements. These
measurements undergo several processing steps before they can be represented as a
useful information. The measurements must be calibrated, validated, and adjusted.
Calibrations and validations involve procedures for removing of systematic errors
and blunders which contaminate the measurements. Finally, these measurements are

combined in an adjustment process to produce the desired parameters.

The methods for adjusting survey measurements can be divided into two
groups namely rigorous and non-rigorous. The most popular rigorous method is the
least squares method. It is a powerful method and it allows various types of
measurements with different qualities combined in a simultaneous adjustment
computation. Although the method involves massive computations, it produces
homogeneous and unique results (Krakwisky, 1985; Cross, 1983). Furthermore,
the results can be used to compute statistical information. Non-rigorous methods on
the other hand, involve simple adjustment procedures and the results are not unique

and statistically incorrect. Two most popular methods of non rigorous adjustment

are Bowditch and Transit rule.

Traditionally, the rigorous least squares method has been used mainly in
geodetic and precise engineering survey computation and analysis. Many computer

rograms have been developed specifically for these networks. Simple non-rieorous
prog ] g
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methods can be considered as sufficient for adjusting cadastral networks, since the
computation are concerned with re[ative.ly small area as compared to the coverage
of the geodetic networks. Consequently, adjustment methods such as Bowditch and
Transit rule have been used as the standard methods in cadastral applications.
However, current developments in cadastral system and its role in GIS
requires a new way in dealing with the processing of the cadastral measurements.
The simple non-rigorous methods are no longer considered satisfactory for
processing cadastral measurements. It is necessary to use the rigorous least squares
method to obtain homogenous coordinates within a cadastral region. The roles and
advantages of the least squares method in cadastral computation are many, and they
are described in Section (2.3). Although the least squares method has been
extensively applied in geodetic surveying and precise engineering surveying, their

implementations are not directly applicable to current cadastral systems.

This chapter reviews the related works and the features of cadastral
network adjustments. The chapter begins with a description of the current least
squares implementations and points out various reasons why the approach is
considered inefficient for a cadastral system. Next, the current implementations of
the conjugate gradient method (CGM) are presented. This is followed by the

description of the unique cadastral network and its adjustment requirements.



2.2 Review of related works.

Many aspects of the least squares computations have been studied, but they
were mainly concerned either with geodetic networks or engineering surveying
networks. The system of linear equations derived in least squares process are
invariably solved by Cholesky decomposition method. Thus, most researches in
the least squares method were directed mainly towards optimizing the process
related to Cholesky decomposition method. CGM has never been applied in

cadastral computations although the method has been successfully used in many

engineering applications.

In this section an overview of the related works is presented. The discussion
includes significant findings, status, and relationships of the work to this thesis. In
addition, the deficiencies of the methods related to cadastral computation will be
highlighted. The review is presented according to the following topics:

(1) coordinates upgrading,

(2) least squares implementation,

(3) least squares optimization strategies,
(4) hierarchical adjustment strategy, and

(5) CGM and its applications.



2.2.1 Coordinate upgrading

Network upgrading is an improvement process with respect to new
technology which permits massive data acquisition. There has been an increasing
interest in upgrading “national control networks to keep pace with new developments
in technology. Many countries throughout the world have carried out the upgrading

programmes to improve the overall consistency of geodetic networks.

The National Geodetic Survey of United States for instance has completed the
readjustment of the National Geodetic Reference System (NGRS) to the North
American Datum of 1983 ( Schwarz, 1989). The overall relative accuracy was more
than 1:200,000. However some areas experienced relatively poor accuracy of less
than 1:100,000. The NGRS must be consistent for the whole nation because the
primary purpose of the network is to provide a geodetic reference frame for various
uses covering large parts of the nation. This requires readjustments of the entire

NGRS network in order to improve the overall coverage.

The Malaysian geodetic network has evolved through several stages and
readjustments. The geodetic network at the national level was started in 1948 with
the combination of three old triangulation schemes known as the Perak system, Asa
system and Repsold triangulation. The network consisted of 77 geodetic, 240
primary, 837 secondary and 51 tertiary stations. To cater for a new map projection
for the mapping program, the geodetic network was revised and was renamed as

Malaysia Revised Triangulation (MRT).



The networks were later strengthened by remeasuring three baselines using
the Satellite Doppler observations. The process of readjustment was repeated
several times in various scientific studies. The computation reduced the distortion
and improved the overall accuracy, with distortions on average of 4 meters on

northern region and 2 meters in southern region.

As the GPS technology develops and is applied to surveying and mapping,
there has been an increasing interest in upgrading the geodetic networks. Similar
scientific computations were carried out using the latest GPS technology (Abd Majid
et al, 1993). The final accuracy of baselines is in the order of 1 to 2 ppm for two-
dimensional, while 3-4 ppm for three-dimensional information. Although the

geodetic system has improved tremendously, the cadastral system is still based on

the 1948 MRT framework.

The concept of geodetic upgrading for improving the accuracy of positional
information is in line with the present research. Whilst geodetic computations
focus on the overall improvement and consistency over a nation, this research seeks
to improve the quality of cadastral networks which in turn concerns primarily to
providing consistency of a particular area of cadastral interest. The detailed nature

of this localised adjustment is described in Section (2.5.2).

Besides the upgrading programmes, geodetic networks are also revised
periodically. The system requires a revision after a suitable interval of time has

elapsed (Bomford, 1980; Ethridge, 1989). On the face of it, this appears methodical.
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Its main drawback, however, is that the final coordinate is not current. Furthermore,
in practice the cyclic interval is always too long since the updating cost is
prohibitively high, especially for poor countries. In fact, it has been very hard to
persuade policy makers to provide the necessary fund, since the immediate
economic benefit of {he upgrading and maintenance programs of the geodetic
network is not very clear to them (Ethridge,1989). Thus, if the cycle is a 10-year

one, it would be anything up to 10 years before important changes are incorporated.

The geodetic concept of cyclic updating is simply not applicable to cadastral
applications. In practice, the geodetic updating cycle is too long for cadastral
activities. Present cadastral information in GIS applications and analysis requires
up-to-date positional information. The present research aims at a continuous
updating of cadastral coordinates. Cadastre is truly a continuous system as it

involves day-to-day activities (see Section 2.5).

2.2.2 Least squares implementation

Many sophisticated computer programs based on the least squares
method have been developed and implemented for various surveying organizations
(Abdullah, 1990; Cross, 1981; Mepham & Krakiwsky, 1984). These
implementations adopted specialised strategies in their effort to optimize the specific

nature of geodetic or engineering networks.
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The main objective of the engineering monitoring computer program is to
detect movement of points or a group of points of interest. The technique is used for
monitoring large structures such as dams and tall buildings. A few examples of such
dedicated programs are the OPTUN, a program for extended pre-analysis and
adjustment (Grundig‘& Bahndorf, 1985), and CANDSN, the Computer Aided
network analysis and adjustment system (Mepham & Krakiwsky, 1984). DETECT is
another example of such applications (Halim, 1995). Although these programs
utilize the least squares method, their emphasis is mainly for engineering

applications, thus may not be suitable to cadastral applications.

Several governments and private commercial organizations possess highly
sophisticated geodetic network adjustment programs. Such programs are highly
suitable for adjusting different types of national, continental triangulation control
networks and spatial networks obtained from observations to artificial satellites.
Few examples of the computer programs are the TRAV10 Horizontal Network
Adjustment Program (Schwarz, 1978), the HAVAGO Three-dimensional
Adjustment Program (Vincenty, 1979), and the 3DSUITE Combined terrestrial and

satellite adjustment program (Abdullah, 1993).

The above geodetic least squares programs have been developed in line
with the functions of geodetic networks. A geodetic network is in a form of a
framework of points known as geodetic control points. These control points are
designed to serve many users and uses, ranging from reconnaissance surveying,

through small and large scale mappings, engineering surveying to scientific
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research as for example in geophysics, and the study of plate tectonics. To fulfill
these diverse applications, geodetic computational modeling involves not only
geometrical parameters, but also includes parameters for monitoring physical
phenomena such as earth gravity fields and geoidal surfaces.

A cadastral network on the other hand, is a specialized network which is
concerned with parcels and their relative locations. As such, cadastral systems use
simple coordinate systems and computation models. For instance, Malaysia is using
Cassini Soldner projection for its cadastral system. The main parameters in this
model are the coordinates defined in two-dimensional plane. Therefore, the concept

of geodetic model and its adjustment program is considered not suitable to cadastral

applications.

Currently, the least squares adjustment pro grams' are designed mainly to
provide solutions to GPS survey networks combined with existing conventional
measurements. STAR*NET computer program developed by Starplus Software
Inc. and GeoLab developed by BitWise Ideas Inc. are two examples of dedicated
programs for such applications. Besides coordinate computations and analyses, the
programs also produce other information including coordinate transformations
parameters, geoidal undulation contours and parameters for linking satellite-based
information to local networks. Although these parameters provide useful inputs
into cadastral network computations, these programs themselves are not sufficient in

fulfilling the roles and functions of cadastral systems.
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2.2.3 Least squares optimization strategies

The routine steps in implementing the least squares adjustment are:
1. forming observation equations from measurements,

transforming observation equations into normal equations,

N

(U8 ]

solving the normal equations, and

4. updating the parameters and repeating step 1 to 3 until the corrections converged

to insignificant values.

The bulk of the time in least squares process lies in the solution of the normal
equations. Research in this area has been concentrated mainly on the optimization
of the solution of the equation using the well-known Cholesky Decomposition
method. The optimization strategies are:

(1) Cholesky decomposition method,
(2) Restructuring normal equation, and

(3) Minimizing fill-in effect.

2.2.3.1 Cholesky decomposition method

There are two general classes of numerical methods for solving systems of
equations: direct or iterative methods. A typical iterative method involves the initial

selection of an approximation x"'to x, and the determination of a sequence x® , x®



such that limit X% =x. On the other hand, direct methods provide the solution
directly after a finite number of arithmetic operations have been performed.
Cholesky decomposition method for instance, is a direct method. The method aims
at factoring or decomposing the given symmetric, no-singular coefficient matrix N
of the normal equatiohs. The decomposition process express N as a product of two
factors, a lower triangular matrix L multiplied by the upper triangular matrix L.
Each factor is the transposed of the other, so that N=L LT ( see Figure 3).

A brief outline for solving the system of normal linear equations is as

follows:

Consider the system of linear normal equations N x = d.

Substituting . N=LLT
one gets LL"x=d
Letting y =L"x
then one gets Ly =d

The forward solution determines the value of y which is then used in backward
substitution to obtain the parameter x. Detailed explanation of the method can be
found in most textbooks on numerical methods and matrix analysis; for examples

Pissanetzky (1984) and Landesman & Hestenes(1991).

N " Lr

Figure 3: Cholesky decomposition of matrix N.



34

The method is considered as the most efficient method for solving positive
definite symmetric coefficient matrix which occurs in least squares surveying
problems (Krakiwsky, 1982). However, in practical implementations involving
huge and sparse matrices, the method fails to completely eliminate the zeros terms.
This is because the process of elimination within the method can make the zero
elements nonzero. Hence, the arithmetic and storage operations are not strictly
limited to nonzero terms only. This phenomenon is prohibitive for large matrices
and in those cases, it may be worthwhile to consider “ iterative” methods

(Hageman and Young, 1981).

By adopting the iterative CGM, the zero elements of the coefficient matrix
are totally eliminated from the system. In addition the method does not change the
sparsity pattern during the process of obtaining the parameters. The ability to

operate only on the nonzero elements is obviously a niajor advantage of the CGM.

2.2.3.2 Restructuring the normal equations

The coefficient matrix of an equation is classified as dense or sparse,
depending on the percentage of the nonzero elements in the matrix. If most
elements of the matrix are nonzero then the matrix is said to be dense, while if most
of the elements are zero, then the matrix is said to be sparse. It is difficult to give a

precise value of the fraction of the nonzeros below which, the matrix can be



considered to be sparse. Generally, a matrix is said to be sparse if it is worthwhile
to take explicit advantage of the existence of many zeros which depend on several
interrelated factors such as the nature of the coefficient matrix, the algorithm and the
computer being used (Pissanetsky, 1984). Accordingly geodetic networks can be
categorized as sparse systems. Interestingly, cadastral networks are even more

sparse than the geodetic networks (see Section 2.5.2).

As the performance of a solution depends heavily on the way nonzero terms
are stored and processed, a number of storage schemes have been developed. These
efforts are basically aimed at trying to structure the random nonzero terms into a
well-defined pattern. The pattern is then linked to their original matrix locations by

some indexing method. The nonzero terms are normally stored in a vector.

The most common and simplest storage scheme .for exploiting the zeros of a
matrix is the banded matrices scheme, see Figure 4. The scheme arranges all its
nonzeros elements into a band formed by diagonals. When the matrix is symmetrical
as in the case of survey networks, a semi-band can be used to further reduce the
storage. The upper semi-band consists of all the elements in the upper portion of the

band and the lower semi-band consists of all the elements in the lower portion of the

band.

The total elements in the banded scheme depend on the width of the band. A
large bandwidth stores greater number of elements than a small bandwidth. The

dimension of the width depends on the order in which the rows and the columns are
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arranged. One may thus seek a permutation of the rows and a permutation of the
columns to make the resulting bandwidth small. The goal of the strategy is towards
reducing the size of the band, but generally, the effort achieves little progress as the

so called narrow band turns out to be not so narrow, after all.

[+ + + ] [+ + +
+ + + + 4+ o+ + +
+ + + + + + +
+ + + + + + + + + +
+ o+ ok o+ + + + -
+ + 4+ + + + 4+ + o+ +
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+ + + + 4+ + o+ +
+ 4+ + + + +
i # + % i + |
Banded storage scheme Enveloped storage scheme

Figure 4: The banded and enveloped storage schemes

A band of high order may still have a large quantity of zeros. The banded
storage of such a matrix is wasteful. Jennings (1966) proposed an alternative
scheme known as the envelope or variable band scheme (see Figure 4). All the
elements which belong to an envelope are stored in an orderly fashion (row by row)

in a one- dimensional array.

Although the bandwidth scheme and the envelope scheme manage to reduce
the storage allocations and hence reducing the number of arithmetic operations, zero

elements are still present within both schemes. The number of zero elements present
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within the system depends on the size of the band for banded scheme or the length of

the elements in each row for the envelope scheme.

2.2.3.3 The fill-in effect

The zero elements existed within the band or within the envelope may turn
into nonzero values during the elimination process. The changing of zeros into
nonzero values is called “fill-in”. To keep the fill-in to a minimum level the
technique of “nested dissection” was developed by George & Joseph ( 1981).
Although the method manages to reduce the effect of the fill-in, it then relies on a
peculiar ordering scheme of ‘blocking’ the unknowns, which in turn requires a

complicated indexing system, and thus creates large overhead.

Another method called optimal ordering has been developed to reduce the
fill-in effect ( George & Joseph, 1981). The method is capable of reducing the
effect of the fill-in. However, the strategy still requires elaborate storage and
addressing techniques, which also requires large programming overhead on its own.
What is gained by the strategy, eventually, is used up by the overhead. Such a

complicated scheme may reduce the efficiency in handling large volumes of cadastral

measuremnients.
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On the other hand, the arithmetic operations in the iterative CGM allows a
simple and efficient storage scheme. The scheme can be easily designed so that the
effects of the fill-in phenomena are eliminated. This is because the CGM does not
involve forward and backward substitutions as in the case of the direct Cholesky
method. Furthermore, the CGM retains the pattern of nonzero elements throughout

the computation process.

2.2.4 Hierarchical adjustment strategy

In practice, geodetic framework divides the survey network in several ranks
or hierarchy to reduce the computational load (Vanicek & Krakiwsky, 1986). Each
rank has its own groups of stations and measurements. In view of the ranking, a

hierarchical adjustment strategy has been adopted in most geodetic computations.

Hierarchical adjustment is a kind of step by step adjustment ( Figure 5).
Points are grouped into several ranks such as primary, secondary, tertiary, or
sometimes known as first order, second order and so on, and they are adjusted
separately within respective groups. Points included in the first step adjustment are
considered as the most accurate ones although they are seldom true in practice
(Hintz et al, 1988). The proceeding adjustment with a different set of points must
adopt the previously adjusted points as controls with fixed coordinates. The

adjustment steps are repeated until all points within the network are adjusted.
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The ranking system seems to be based on sound principle of the "whole to
part’. However, new development in data acquisition equipments challenges this
principle. In fact, there are valid reasons to propose a reverse principle of ‘part to
whole’, Measurements obtained within the *part’ may be as precise as or better than
the measurements obtained around the “whole’. Nowadays, devices like total stations
for measuring distances and angles, GPS for measuring relative positions are not
only employed for primary control survey, but they are used within the ‘part’ zone as
a day-to-day devices. In the past the classical hierarchical adjustment strategy is
partly due to lacking of computational tools which make impossible for handling
large amount of equations. Current advances in computer technology is questioning
the continued use of this concept, particularly those concerning cadastral system
(Hintz et al, 1988). Today, network adjustment need not labeled their points with

hierarchical order.

The notion of networks of control points and hierarchical adjustments
contributes a fair share to the problems inherent in the present implementation of
cadastral system. The criteria for classifying points are not based on mathematical
principle. They are normally classified according to the spacing between points and
their locations within the network. Points situated around the perimeter are
considered strategic and are considered as high order points compared to points
inside the network. Points situated within the networks are not considered strategic

points. This principle was valid during the pre-GPS and EDM era, where the entire
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Figure 5: Hierarchical adjustment.

network 1s filled up with angular observations. Angular observations seemed to give
better results for longer lines, though no evidence was actually found that this would

hold in general.

Under the criteria, cadastral networks will always fall under lower order
points. It is ironic that cadastral lines are all short lines and are mostly situated within
the interior of a geodetic network. Forcing cadastral measurements to fit within a set
of control points, which may not be of higher accuracy, is a direct conflict with the
principle of adjustment. Good quality measurements should not be downgraded to

fit into existing coordinate values (White & Griffin, 1985). If points need to be
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classified, they must be made according to their accuracy. Although cadastral lines
are short, they are accurate as they are measured according to strict observation
procedures and using modern devices like EDM or by precisely-calibrated steel

tapes. |

2.2.5 Development of the CGM

The CGM was first proposed by Hestenes and Steifel (1952) as an algorithm
for solving large systems of linear equations. The method becomes quite popular
because empirically it was found to have a much faster rate of convergence than the

gradient methods (Polak, 1973).

In 1969, a slightly different adaptation of the Hestenes & Steifel method was
introduced (Polak, 1973). The latter contained proofs of convergence for convex
functions. Klessig & Polak (1972) showed that the Polak’s version of the method
converges in a finite steps. It converges when the number of iterations reaches the

number of the unknowns. For this reason, the method is considered as semi-iterative

method.

The CGM algorithm is short and simple (Press et al, 1987) . It demands only

two subsidiary calculations: (a) calculating the gradient of the function dF (x) at an
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arbitrary point, and (b) minimizing the F along a specified ray, that is, find the value

L that minimizes the expression F(x+Lu) for a specified x and u (Press et al,1987).

Now lets consider the function
‘ 1 2
f(x)= 2|A.x—b! eq (2.1)

The above function has only a single minimum, that is at a value x that
satisfies the linear set of equation A x=b. A CGM gradient minimization will
therefore solves that set of equations.

The two subsidiary calculations involved are:

vi(x)=AT.(A.x-b) eq.(2.2)
_-UW.vf 5
€= A.u eq.(2.3)

What has this to do with sparse matrices? Equations (2.2) and (2.3) make
only two kinds of references to matrix A, namely multiplying the matrix by a vector
and multiplying its transpose by a vector. For sparse matrix, this multiplication can
be reduced substantially. Since the coefficient matrix A for a cadastral application is
extremely sparse, the arithmetic operations can be minimized by excluding all the

operations involving zero elements.

The CGM is applied in many applications particularly for systems which
require high speed computations. The method is found to be very efficient in term of
storage and speed. The method has been used in finite elements computations in

frequency domains for three-dimensional problems (Gijzen, 1995). The method is
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also used for testing carried out in varying performance of supercomputer

(Dongarra et al, 1992).

The CGM has been found to be very efficient in solving linear equations
related to structural engineering analysis (Suarjana & Lau, 1994). The method
improves the computing time and the solution is more stable compared to direct
methods. Similar works have been carried for solving system of linear equations

with multiple right-hand side using block CGM (Schemit & Lai, 1994).

The CGM has also been used for solving system of linear equations found in
the studies related to fluid flows and thermal convection ( Psimarni, 1994; Tang,
1995). The elements of the coefficient matrix of the equation are symmetric and
positive definite. This is similar to normal equations found in a cadastral network
problem. Other applications of CGM include solving pfoblems in electronics signal
processing (Bose & Chen, 1995; Fu & Dowling, 1994), acrodynamic studies
(Burgreen & Baysal, 1994) and other scientific studies such as reactor kinetic (Yang
etal, 1993) involving nonsymmetric linear equations. It is reported that the
performance of the CGM is remarkable compared to direct methods. Although the
CGM has been found to be efficient in many engineering and scientific researches,
applications in cadastral computations have yet to be developed, and forms the main

aim of the present work.
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2.3  Roles of least squares adjustment

Adjustment is usually applied for computing the ‘best’ position of points
within a survey network involving redundant measurements, according to a specified
criterion. The most widely used method is the least squares method. The method is
based on the criterion that the best parameters are obtained when the sum of squares
of the resulting residuals is minimum. The residual is the difference between the
adjusted measurements and the original observed measurements.The parameters of
the adjustment are mainly the position information, i.e., the coordinates. The
mathematical proof of the principle can be found in many surveying adjustment text

books such as Mikhail & Gracie (1981) and Vanicek & Krakiwsky (1986).

The theoretical justifications of the least squares method which yield
optimum results has been described by several authors (Cross, 1983; Mikhail, 1976).
There are also a number of practical reasons why the method has been universally
accepted:

(1) The method is extremely easy to apply because it yields a linear set of
equations.

(2) Itisunique, i.e. there is only one solution to a given problem. The so-called
non-rigorous methods yield a number of solutions depending on the
subjective choice of computation.

(3) The method leads to an easy quantitative assessment of quality, i.e. via the

residuals and the covariance matrix of parameters.



The adjustment is necessary because the number of measurements within a
network is purposely acquired more than the minimum required for the unique
determination of the parameters. The extra measurements which are called
redundancy can be used to detect the existence of blunders and also provide
statistical information about the adjusted parameters. The least squares adjustment

method is able to deal with such redundant set of measurements efficiently.

The least squares computation produces homogenous and. unique coordinates.
The usage of homogeneous coordinates is a pre-requisite for GIS data analysis, since
the system combines various data layers obtained from a myriad of sources. The
overlay operations are only valid if the layers are of the same coordinate system and

the coordinates of objects are homogeneous.

Data quality assessment is a major concern in a cladastral system (Chrisman,
1989; Hunter & Goodchild, 1995; Hunter, 1991). Several studies on error
modeling in spatial databases over the past few years have been performed. The
communication of spatial data errors may take many forms, ranging from the use of
epsilon bands (Chrisman, 1984) and other descriptors of errors such as map
reliability diagrams and fuzzy logic (Leung et al, 1992), probability surfaces
(Lowell, 1992), variability diagrams (MacLean, 1992) simulation techniques
(Fisher, 1991; Goodchild,1991) and advanced computer graphics animation and
audio effects (Fisher, 1993). Such approaches, however, often fail to offer
convenient means of keeping track of the effects of error propagation and also fail

to establish estimates of the accuracy and reliability of their information products
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(Gregory et al, 1995). A major obstacle is the absence of error estimates in cadastral
data within the system. Only least squares estimation method together with the
measurements and their accuracy can truly support statistical quality assessment.
The propagation of errors in the measurements is based on the well known Gauss

variance-covariance propagation (Cross,1983).

Above all, the main advantage of the least squares method is the ease of
updating and maintaining a spatial database. The method allows the use of all
measurements with different qualities to be processed simultaneously. New
measurements can be easily entered into the system and their incorporation into the
existing measurements improves the quality of the information. Thus, the difficult
task of database upgrading and updating is only a matter of entering new

measurements and re-computing the coordinates.

2.4 Nature of cadastral measurements.

Before going into the optimization aspects in cadastral least squares
adjustment, first consider the nature and characteristics of these cadastral
measurements. The characteristics of the measurements influence the strategy and the
process of the adjustment. This factor is critical to the success of any computation,

particularly when a large volume of data is involved.
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A cadastral parcel is a unit of land ownership. Each parcel is made up of
several sides which form the boundaries of a parcel. The number of sides in a parcel
depends upon the shape and the size of the parcel. The surveys are mostly traversed
along the parcel boundaries. The most common types of measurements are bearings,
angles and distances. These angles and bearings are obtained by using theodolites,
while distances are normally obtained by using EDM instruments. Steel tape is still
widely used for measuring distances especially for short lines. The angular
accuracy is better than ten seconds for modern theodolites. The accuracy of distance
measurements is better than one centimeter for EDM and steel tapes. Nowadays, the
Global positioning system (GPS) is becoming a standard tool for cadastral contro]

networks. Relative accuracy of GPS is around one centimeter.

The role and nature of a cadastral network system is unique in comparison to
geodetic and engineering networks. The main differenceé are:

(1) amount of measurements,

(2) geometry of networks, and

(3) redundant measurements.

2.4.1 Amount of cadastral measurements

Land is the source of all material wealth. Cadastral parcels are created

through the legal process which is related to several other factors such as social,
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cultural, and historical backgrounds. To cope with these human and physical

developments a very large number of parcels are normally created.

, The number of parcels or lots in an average-sized jurisdiction may be up to
several hundred thousands. Each lot must be surveyed and recorded. Since each
lot is made up of several sides, the number of measurements are several times
greater than the number of lots in a jurisdiction. A typical cadastral jurisdiction may

contain up to two million measurements (Taher, 1992).

The field data acquisition in a cadastral system is a day-to-day activity. This
is because cadastre deals with a dynamic system interrelation: government, people
and law (Dale, 1976). Cadastral survey activities include subdivision, partitioning,
amalgamation, public utilities and all kind of land reserves: road, forest, etc. These

activities produce a continuous flow of new measurements that must be added into

the system.

The cadastral survey activity does not only generate a continuous flow of new
measurements but it also deals with deleting old measurements, as old parcels may
be replaced by new ones (e.g. amalgamation). The very dynamic nature of dealing

with cadastral measurements creates a special problem of updating and maintenance.
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2.4.2 Geometry of cadastral survey networks

The geometry of a cadastral network is unique. Geometrically, a parcel is a
polygon with several sides, and the most common shape is a four-sided figure. The
lengths of the sides are usually short, that is, in the range of 10 meters to 100 meters.
As the objective of the survey is to obtain measurements of the parcel boundaries,
the survey is carried out mostly by traversing along these boundary lines. The
measurements across the parcel are not observed except for isolated checking. This
pattern of observation scheme creates a unique geometry where cadastral networks

appear as rectangular blocks with measurements mainly along the sides.

This is in contrast to geodetic and engineering survey network, where the
scheme is designed in such as way that they contain many interconnections between
points. These connections are purposely created to attailn the highest level of
accuracy. Thus, it is why geodetic and engineering networks are mainly made up of
overlapping triangles. A dense observation scheme is the unique feature of geodetic
and engineering survey networks. Observation schemes for cadastral networks are
not as dense as those of the geodetic and engineering networks, but they are very

large.



2.4.3 Redundant measurements and sparse system

Although a cadastral network comprises of a very large volume of
measurements, their observation scheme is not as compact as in the geodetic or
engineering networks. Compact observation schemes represent the existence of large
number of redundant measurements. On the other hand, loose observation schemes
represent the existence of smaller number of redundant measurements. The
redundant measurements in geodetic network can be as high as 60 percent of the total
measurements (Bomford, 1980). The redundant measurements in precise

engineering networks are usually greater than the geodetic networks.

Since a cadastral network is far less compact than the geodetic and
engineering networks, it has a very small proportion of redundant measurements. A
compact observation scheme with large redundant meaétll'ements leads to a very
dense system of equations, and vice versa. In this respect, a cadastral network with a
small proportion of redundant measurements generates a very sparse system of

equations.

2.5 Cadastral survey network adjustment for GIS

As pointed out earlier, the method of adjustment in cadastral survey

networks should be designed in view of the role of a cadastral system. A cadastral
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network system not only required positional information as in the case of geodetic
networks, but also concerns with legal matters. The validity of cadastral information
is fundamental in a spatial analysis and the decision making process.

The advent of powerful and sophisticated GIS has changed the traditional
role of cadastre. Nowadays, it becomes part of the sophisticated GIS system. To
fulfill the new role, the cadastral processing requires new approaches as follows:

o anon-hierarchical adjustments,
e local adjustments, and

e global adjustments.

2.5.1 Non-hierarchical adjustment

Cadastral measurements should be treated using a non-hierarchical
adjustment. In contrast to a hierarchical adjustment, a non-hierarchical adjustment is
a simultaneous adjustment that treats all measurements according to their respective
accuracy. A non-hierarchical adjustment categorizes points according to their
respective levels of accuracy. High-quality points are points with more accurate
position values, i.e. with small variances. Altermatively low-quality points are those
with less accurate position values, i.e. with large variances. The measurements are

not distinguished by their lengths or their historical system of adjustments. This
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approach benefits cadastral networks greatly because cadastral measurenients are all

short lines measured between parcel corners.

/The cadastral survey which includes subdivision, partitioning, party wall,
road reserves and other land development projects are essentially a kind of fill-in
survey, where new boundaries are created within the existing parcels . The newly
subdivided parcels have to fit within the old survey although their accuracy may be
lower than the new ones. Only a non- hierarchical adjustment allows a simple and

practical introduction of new measurements into the existing system.

2.5.2 Local adjustment

The model for metric information in a measurement-based cadastral system is
based on the notion that the processing of surveying measurements is no longer
expensive and difficult. Therefore the task should be easy and can be repeated
frequently. In other words, the adjustment should be carried out with high efficiency

when an information is required.

The total number of measurements in a typical cadastral database may be in
the order of millions (see section 2.4.1). It is impractical to adjust all the

measurements in the database each time new measurements are incorporated into
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the database. One of the strategies to handle the problem is by introducing two-phase

adjustments: local adjustment and global adjustment.

The local adjustment is the adjustment using measurements around the
neighbourhood of the interested area that significantly influence the desired results
(Taher & Kuhn, 1990). Users can decide on the level of accuracy they need for their
applications. Although this strategy seems to break the network into small
manageable blocks, the blocks are not fixed and depend on the location of the area
of interest. Therefore local adjustment is a dynamic strategy for selecting the
relevant measurements for a localized computation. This sort of computation is

particularly useful in cadastral applications where relative accuracy is important.

2.5.3 Global adjustment

The global adjustment is a periodic adjustment of all measurements in a
database. This is necessary to create consistency between the coordinate copy and
the stored measurements. The coordinate copy constitutes another view of a metric
information. This coordinate provides an instant information for query which does
not require the most up-to-date information. As new measurements are added to the
database, inconsistency may be significant. When this happens, a re-computation is

necessary to bring back the view coordinates to their up-to-date base coordinates.
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One of the methods for constant coordinate updating seeks adjustment using
the method of sequential adjustments (Krakiwsky, 1982). However, the adjustment
requires storage of the covariance of the coordinates, which will then be very large.
The method has another problem in that the resulting coordinates may deviate from
the true least squares coordinates over time, due to rounding off errors (Mikhail and
Helmering, 1973). Although researches to improve the situation in a specific case
have been promising (Veres and Youcai, 1987), a general formulation that would
work for all practical cases has not been created. Even if the method of sequential
adjustment 1s adopted, a periodic adjustment of the entire measurements in a database

will be necessary to bring the coordinate back to their ‘‘correct ” values,

The strategy that allows the consistency between coordinate copy and the
base measurement to relax is known as quasi-copy. In a quasi-copy, derived values
are allowed to deviate from their true values in a controlied manner (Alonso et al,
1988). Thus, coordinate copies are allowed to differ from their true values within a
specific condition or period, for example, until one hundred measurements have been
added or until a period of one week is reached. So, it is unnecessary to update the
coordinate every single time a measurement is added or deleted. When the limit of
inconsistency is intolerable for a particular purpose, a single global readjustment of

the entire measurements in a database will bring the coordinate’s copy up-to-date.



CHAPTER 1lI

THE SOLUTION OF THE OBSERVATION EQUATIONS BY CGM

3.1 Introduction

In cadastral surveys, the parameters to be estimated are coordinates of
boundary points, usually defined in a plane rectangular éoordinates system. The
estimated coordinates serve as basic data for displaying graphical information, for
computing other parameters such as adjusted measurements and areas of parcels as

well as for other cadastral geometric information and analysis.

The normal practice in the cadastral survey is measuring and recording the
measurements and then correcting them for physical effects such as atmospheric
refraction and instrumental error. The resulting numerical values represent the
elements in a selected plane projection system. These corrected measurements are

passed on to an adjustment process to produce the required parameters.



The least squares adjustment process begins with the creatic
linear equations called observation equations. Each measurement w
equation and it relates measurement to its respective parameters. T
over- determined because the number of measurements is always g
parameters. The coefficient matrix of the system is then transform

positive-symmetric coefficient matrix of the normal equation.

As mentioned in Section 1.2 the CGM is a method that solves least squares
equations in two ways. The first approach is the solution of observation equations
and the second approach is the solution of normal equations. The present work
investigates both approaches of the CGM for the following reasons:

e To verify the validity of results obtained from both approaches. This is crucial
because to-date the CGM has not yet been applied especially in cadastral
applications. |

® To determine the most efficient approach for CGM in cadastral applications.

® To determine which approach requires the least computer storage.

This chapter concentrates on the optimization and the solution of the
observation equations while the optimization of the normal equations and its
solution will be described in the next chapter. This chapter begins with the
development of observation equations in the least squares method. Next, the
chapter describes the locations in the coefficient A matrix affected by the
contribution of a measurement. The subsequent section develops a method to

organize the nonzero elements in the coefficient matrix into a vector. The indexing
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information specifies for each element in the vector its original location in A matrix.

Finally, the chapter presents the CGM for solving the observation equations.

3.2 Linear equations in least squares method

Since measurements are the basic data, hence we begin by defining a vector
L containing several types of measured quantities. The most common cadastral
measurements are grid bearings, horizontal angles and horizontal distances. GPS
measurements and other satellite-based coordinates may be used as part of
measurements. However the three-dimensional coordinates of the satellite-based
system should be reduced to horizontal angles and distances, or in terms of plane
projection coordinate, like Cassini projection system, before the coordinates are

introduced to least squares adjustment.

Let the true value of measurements L be contained in a vector L.
Ly =L+v eq (3.1)

where v is a vector containing residuals.

It is required to estimate a set of parameters, x, from the measurements.
There must always be a known mathematical relationship between the measurements
and the parameters. This relationship constitutes the basic mathematical model and

is expressed as a general vector equation:



eq(3.2)

which is,
Fi(x,[)=0
F2(x2,2)=0
Fi3(x3,13)=0
Prlxrdry=0
Some examples of the common function Fi(x7,/i)=0 for a cadastral measurement

are as follows.

(a) For an observed bearing, a, from stationj to station k in a plane coordinate

model,
E -E,
Tan(a) _(—‘—’) s
(N;.- - Nj)

where £, N, £; and N, would be parameters

(b) For an observed distance, d, from station j to station k in a plane coordinates

model,

d-J(E,~E,) +(N,-N,)? =0

where £, N, E, and N, would be parameters.



3.2.1 Linearization of the mathematical model

The basic equations (3.1) are non-linear. The practical approach to solve these
non-linear equations is by linearizing them into a system of linear equations. The
linearization process always requires estimation of the provisional (or approximate)
values of the quantities involved. In a cadastral computation, these quantities are
obtained from simple coordinate computation methods, such as the Bowditch or
transit rule. Let these provisional values be x, and let x; be the true coordinates and
the relationship between these two quantities is

Xr = X, + X, eq (3.3)

where it is necessary to estimate the small quantities x. Hence, upon substituting

(3.3) and (3.1) in (3.2) , one can write

F(x - L) =F(x, +x,/+v)=0

and, applying the Taylor series expansion to first differentials, we obtain

~

Hxe iy )=F(x0,l)+f£x+f£v=0
= =R k fdl

and can be written in matrix notation
-b+Ax +Cv=0 eq (3.4)
Equation (3.4) is a system of linear equations, where b is coefficient vector, and A

and C are coefficient matrix and they are described in the following sections:



(1) The vector -b is denoted by F(x,,L). It contains the values of F(x,L)
computed at the known points x,,L. The negative sign being introduced merely for
convenience.

Hence, the vector -b is :

FACEN
JACH))
£ (50r1)

WA

(2) 4F_is a matrix of order (r x m) and is denoted by the letter A. Each row will
ol

simply be the partial differentials of F(x,l) with respect to x,,X,.....X,,.

&F  F ar,
é:] 0"\".’. Z n
i cr, aF,
ml mz &‘m
4= :
a & .
L ml 0.".72 (Z\.’m |

-

(3) %ﬁ; 1s a matrix or order (r x n) and is denoted by the latter C. Each row will
é

simply be the partial differentiation of F (x,1) with respect to L, ,L,...L..

and hence,
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[&F, & o ]
a a, - a
F, F - i,
a, a, 0 a
c=| . .
. "
a, a0 a,

Matrices A and C are often referred to as design matrices, while b the right-hand

side vector.

3.2.2 The observation equations

The system of equation Ax + Cv - b =0  is a general linearized
version of the basic model (3.2). A special case of the system occurs when the
model contains one observed quantity for each equation. This type of system of
equations is called observation equation and is commonly used for cadastral
networks. In this case, the equation (3.2) can be written as F(x)-1=0. Clearly, if we

differentiate the matrix C with respect to 1, we will get C=-I.
Thus the final linearised set of observation equations is written as

A Y(n) = b(:n] + v (m) eq (35)

{m,n)



where;
A is the rectangular matrix of. coefficient, also known as design matrix,
x is the vector of correction to unknowns,
b is the vector of (observed-computed) values, and

v is the vector of residuals.

This equation is the initial linear equation of the least squares method.
Standard least squares process requires this equation to be transformed into a new

system of equations called normal equations before it can be solved for unknowns.

3.2.3 The normal equations

The least squares method is a mathematical optimization to find the
expressions for x and v which make
v'Wyv=minimum eq (3.6)
subject to constraints of the eq (3.5 )
Ax+v-b=0
where W 1s the inverse of the covariance matrix of the observations, and A, b are

also known values.

The optimization process produces a new system of linear equations (Cross, 1983):

ATWAx = A"Wh
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Nx =d eq(3.7)
where
N=ATW A,
d = A"Wh.

Equation (3.7) is called normal equations The mathematical proof of
equation (3.7) is a standard optimization process and can be referred in many
survey text books such as Mikhail and Gracie (1981), Vanicek and Krakiwky
(1986) and Mikhail (1976). The coefficient matrix N is always symmetrical and
positive- definite. These special properties of matrix N allows further reduction of

storage requirement. The setting up of the normal equations will be described in

Chapter IV.

3.3 Creating the coefficient matrix of observation equations

It is clear from the previous section that matrix A represents the partial
derivatives of the functional model of each observation with respect to the
parameters. The functional model relates a measurement to its respective
parameters (i.e. the coordinates of the stations from which the measurements were
measured). Therefore, coefficient matrix A is a measurement-parameter incident

matrix, see Table 1.



Table 1: Coefficient matrix A
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PARAMETERS
X X2 X5 X,
Measurement ,, 7 cF, &F, cF,
%, k5 ciy &,
Measurement, , aF, aF, éF; cF,
a, 7 8 éx, e,
Measurement .
Measurement, . | &F, ar, ar, ar,
ok, éx, Cy éx,

3.3.1 Locations contributed by a single measurement

Measurements are relative geometrical values between stations. The stations
are points which are either occupied or targeted by a survey instrument during the
acquisition of the measurements. A row in matrix A represents a measurement and
the columns along the row represents the unknowns associated with that
measurement. The number of coefficients contributed by a measurement is twice the

number of stations from which the measurement was observed. For example, a



bearing which involves two stations will have 4 contributions. The number of
contributions generated by common cadastral measurements are

shown in Table 2.

After knowing the number of contributions from a measurement, the next
important question is where these contributions fit into matrix A. The locations
effected by a measurement are the locations (along the row assigned for the

measurement) which are incidented with the parameters associated with that

measurement.

Table 2: Number of contributions from measurements into matrix A

Type of number of stations | number of
measurements occupied coefficients
distance 2 4

bearing 2 4

angle 3 6

northing 1 1

easting 1 1

This can be further explained by the following example. An observation (say
the qth observation) is related to station j and station k. For each station there are

two unknowns (i.e. easting and northing). Let ‘a’ and ‘b’ be the unknown
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locations  for easting and northing, respectively, of station j. Similarly let ‘c’ and

"d’ be the respective locations for easting and northing of station k (see Figure 6).

(c,d)
: ®
k

brg
distance

i O
(a,b)

Figure 6: A measurement between station j to station k.

The locations of the unknown (i.e. the column number) is derived from
station number for the measurement, and they are as follows:
a= jx2-1
b= jx2 for station]j.
and c= kx2-1 eq (3.8)
d= kx2 forstationk
For the bearing measurement, it occupies locations at columns a,b,c and d in
the g™ row. The rest of the column along the row are not effected and therefore
< th s

remain zero. The position of coefficients for a measurement, say the q".

measurement are shown in Table 3.



Table 3: Locations in matrix A contributed by the q™ measurement.
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station | station .j station " station k station .
alh b th ”lll ‘lll C"' dll)
T
measurement |
&

measurement 2

measurement 3

measurement q ™. A Ay A g A
measurement ..™ |

3.3.2 Structure of elements in matrix A

The design matrix is formed when the coefficients for all measurements are

assembled in their respective positions in the matrix. Each measurement contributes

their coefficients to specific locations in the design matrix as described in the

previous section. A location receives a contribution only once. Once the location is

filled, it will not receive any more contribution from any measurement. There is no

overlapping of contributions from the measurements. Therefore, the total elements

in matrix A is simply the sum of contributions from all measurements of a network.

For common cadastral measurements listed in Table 4, the total elements in a

network, T, are given by,

TA:4X(Nb+Nd)+6(Nnug)+NE+NN

eq (3.9)
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where T, is the total elements in matrix A,
N,  is the total number of bearing,
N, isthe total number distances,

, N, is the total number of angles
Ng isthe fotal number of eastings

Ny is the total number of northings

A typical cadastral network survey consists of mainly bearings and
distances. Other types of measurements, such as coordinates and angles are rarely
used. Therefore the total number of elements T, is about four times the total
number of bearings and distances. The detailed discussion on amount of

computer storage saving based on (Eq 3.9) are found in Section 6.4.1.

The construction process of matrix A is complet.ed when all the
measurements in a network update their respective contributions into the matrix.
The process is illustrated by an example using a simple cadastral network. The
network consists of four stations with ten measurements (see Figure 7). The

measurements are listed in Table 4.
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Figure 7: A cadastral network.

Table 4. Measurements of the network in Figure 7

No measurement type Occupied Forward
station station

1 Coordinate Easting 1
2 Coordinate Northing |

3 distance 1 2

4 bearing 1 2

5 distance 2 A

6 bearing 2 4

7 distance 4 3

8 bearing 4 3

9 distance 3 1

10 bearing 3 1

69
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Following the method described earlier in this section, the measurements for

the above network fill up their respective locations in matrix A as shown in Table

5.

It is clear that each measurement will occupy a row, and the locations of the

parameters associated with the measurement will fill up their respective locations

along its designated row. Note that the number of rows of matrix A is equal to the

number of measurements in the network, i.e., 10 rows.

G.

The total number of elements in matrix A is obtained by applying equation

9). Using the equation (3.9) the total elements in matrix A of the network

which made up of one easting, one northing, four distances and four bearings

will contain 34 nonzero elements (T,) i.e.

To=4x(4+4)+ 6x(0)+ (1)+ (D)

=34

Table 5: The locations of nonzero elements in matrix A.

Station 1 station 2 |station 3 station 4
1 2 3 4 |5 6] 7 8
1. Easting stn 1 1,1 . . . . s :
2. Northing stn 1 2.2
3. Distance 1-2 3,1 3.2 33 134
4. Bearing 1-2 4,1 |42 |43 |44
5. Distance 2-4 . ; 53 154 |. . 5,7 15,8
6. Bearing 2-4 . ; 6,3 |64 |. ¥ 0,7 16,8
7. Distance 4-3 . . . : 7o) 7,6 7,7 17,8
8. Bearing 4-3 . ) . ; 8,5 8,0 8,7 18,8
9. Distance 3-1 9,1 9,2 . : 9,5 9,6
10. Bearing 3-1 1o,1 16,2 |, ; 10,5 (10,6
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contributions of the whole set of measurements, the next step is to re-organize the
elements into a structure so that only non-zero elements are stored and referenced.

This is done by ordering the elements row by row in an ascending order. The scheme

Storing nonzero elements in vector a

Having established the locations of the elements in matrix A effected by the

reduces the matrix size into a vector containing only non-zero elements. The

resulting ordering of the 34 non-zero elements of matrix A is shown in Table 6.

Table 6: Nonzero elements arranged in ascending order row by row

Station 1 | station 2 |station3 |station 4
1 2 3 4 15 6 17 8
1. Easting stn 1 1 .
2. Northing stn 1 2
3. Distance 1-2 3 4 5 6
4. Bearing 1-2 7 8 9 10
5. Distance 2-4 11 12 13 |14
6. Bearing 2-4 15 16 17 |18
7. Distance 4-3 19 |20 |21 |22
8. Bearing 4-3 23 124 |25 |26
9. Distance 3-1 27 |28 29 |30
10. Bearing 3-1 3l {32 33 |34
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3.5 Linking nonzero elements to original matrix A

Storing exclusively the nonzero terms in a vector undoubtedly leads to a
scheme with minimum storage locations. However, these elements must be linked
to their respective locations in the original matrix. The linking is established by
an indexing system. The indexing system for the matrix A consists of two pointers.
(a) a pointer telling the column number for each non-zero elements, and

(b) a pointer telling the total number of the nonzero terms for each row.

By adopting the above indexing system, the matrix A is truly represented by
a vector which holds all the nonzero element of matrix A. To preserve the standard
notation, the array is denoted by vector a. All arithmetic operations involving
matrix A can be replaced by its representative vector a. It should be noted that
without the use of the indexing information, the arithmeﬁc operation is meaningless.
The elements and indexing values of vector A is shown in Table 7. The pointer
telling the column number for each element is ICOL, and the pointer telling the sum

of nonzero elements in each row is IROW.

3.6 Solving observation equations by CGM

The residual (v) of the observation equations is

v =Ax-b eq (3.10)



The residual ( v) from the normal equations is
v=Nx-Ab : eq (3.11)
From equation (3.10 and 3.11) the relation between vector v’ and vector v is

Fmi eq (3.12)

Table 7: Storing and indexing vector 2

Pointer Coefficient Column Number Total elements in each
number of matrix A ICOL row JROW.
I A(l) 1 1

2 A(2) 2 1

3 A(3) 1 4

4 A(4) 2 4

5 A(S) 3 4

6 A(6) 4 4

7 A(7) 1 4

8 A(B) 2 4

9 A(9) 3 4

10 A(10) 4 4

11

30 A(30) 6

31 A(31) 1

32 A(32) 2

33 A(33) 5

34 A(34) 6
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The CGM s able to solve least squares equation without having to compute

coefficient matrix N (Dragomir et al, 1982 ) by means of a recurrence relation

: w :
) = -0 +f(Nh(J)) eq (3.13)

where [ s

LG-DT .(j-1)
o _ ! /

(AR ARy

and /1 is

Y = —p
h) = — U0 U= g G-1
r(j*')],(J—l)

(-0 _
c = =y .
r(f—l)Tr(J—Z)

One eliminates N=ATA for unweighted measurement by equation 3.12 in
equation (3.13.)
ATVO=ATY0D) 4+ F(ATARY)  or

vO = v+ £ (AR

The algorithms for solving the residuals by CGM begin with the starting
values of parameters x and the residuals being computed. The general algorithm for

implementing the CGM is as follows.



For the first iteration, since x = 0 then equation becomes v=b.

L) = 4T (D)
LT )

‘W= G-0T,G-1

Iy = -AD

WG+ 1)y = =) 4 D)
- . T .

£0) - ,(‘J)T,(J) ‘

(AT qplD)y
NGNS
o) 2 0= 4 )y

Eq (3.14)

Based on the above CGM equations, the step-by-step algorithm for computer

programming has been developed in this research as outlined in Table 8.

Table 8: CGM for solving observation equations

No ALGORITHM

REMARK

NOTE

1 Let x=0 and v=l Initialize vectors

2 r=A'vy start iteration Matrix by vector
3 a=r' I Vector by vector
4 b=r'r Vector by vector
5 =a/b Scalar

6 h=-r first iteration only

scalar by vector

7 d=Ah Matrix by vector
8 e=d'd Vector by vector
g f=ale Scalar

10 x=x +fh Update vector x scalar by vector
1 v=v+ fd Update vector v scalar by vector
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The CGM algorithm for solving observations is found to be simple and short.
Among the eleven steps, there are only two major operations (i.e. step 2 and 7). The

two steps involve multiplication to matrix A by a vector. However, since matrix A

is reduged to vector @ whose length is about four times the number of

-

measurements, the matrix operations are thus reduced to only the multiplication of

four vectors by a vector.

The above operations consider each measurement as having equal weights

of value one. For weighted measurements, the values of A matrix and vector L

must be premultipled by weight (W), i.e.

A Ax W
L =LxW

and the rest of the computation follows exactly the above algorithm.

3.7 Summary

The method of setting up the observation equations developed in this chapter
has achieved the goal of identifying and storing only the nonzero elements.
These elements are stored ina vector. The method also manages to relate the

elements in the vector with their true locations in the regular matrix A using a simple

indexing scheme. The indexing scheme replaces matrix A with vector a and it
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permits all arithmetic manipulation and operation involving matrix A replaced by

the vector a without any lost of information.

The CGM solves the observation equations for the least squares parameters
and residuals. The algorithm is short and it involves simple vector operations except
for the two matrix operations involving the multiplication of matrix A by a vector.

However, the method minimizes these operations by using vector a instead of

matrix A.

The CGM uses vector a without altering the structure of the elements in

vector @ throughout the whole least squares estimation process. This means that the

operations do not require new elements to be allocated to the vector. The vector is
free from the complicated fill-in effect. Therefore, the method of setting up the
observation equations developed in this chapter achieves three leading advantages,
1.e. storing only the minimum nonzero terms, operate only on the stored nonzero

terms, and always preserve the sparsity pattern.
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CHAPTER IV

THE SOLUTION OF THE NORMAL EQUATIONS BY CGM

4.1 Introduction

To recapitulate, the least squares estimation method begins with the creation
of observation equations in the form of Ax =b. The equlation is transformed into a
new system of linear equations called the normal equations. The system is in the
form of Nx =d, where N is the coefficient matrix, x = unknown vector and d is
the right-hand vector. Matrix N is derived from design matrix A and weight matrix

W, i.e. N=A"WA while vector d is obtained by d = A"™Wh.

Chapter 3 focused on the optimization of observation equations, while the
present chapter focuses on the normal equations. Both system of equations created
from a cadastral network are very sparse. However the two system of equations have
several distinct features, particularly, in the sparsity pattern and process of

constructing the coefficient matrix. The pattern of coefficients in matrix A is
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random, while the pattern of coefficients in matrix N is always symmetric. The
features of coefficient matrix N are explored in this chapter with the effort to

optimize the solution of the normal equations.

This chapter begins with the description of the relationship between a
measurement and their locations in regular matrix N. Next the problem of building
up the nonzero terms in matrix N is discussed. Graph theory is introduced to resolve
the problem of arranging the locations within matrix N. Next, the chapter describes
the development of a mathematical formula to directly relate the measurements to
the locations in a vector which is designed to store only the nonzero elements
found in the upper triangle of matrix N. The subsequent section presents the CGM
algorithm for solving the normal equations. The last section summarizes a few

important observations.

4,2 Characteristics of matrix N

Before presenting the optimization method for solving normal equations,
consider the characteristics of matrix N and the relationship between a measurement
and the effected locations in matrix N. The difference between matrix N and matrix
A is also described to clarify the nature of matrix N. Understanding the structure and
the nature of elements in a matrix is necessary in order to develop the most effective

approach for solving the equations.



80

Matrix N is a parameter-parameter incident matrix. This is in contrast to
matrix A, which is a measurement -parameter matrix. On the other hand matrix N is
square matrix whose dimension is the total number of unknowns, i.e. N(n,n), where

‘n’ is the total number of unknowns.

The process of building matrix N is different to that of matrix A. In matrix
A, the elements of a measurement occupy at the locations in a row designated to that
measurement, whereas in matrix N, the elements of a measurement occupy
at the locations scattered at several rows and columns depending on the stations

associated with that measurement.

In matrix A, a location receives a coefficient only once. This means that once
a location has received a contribution, the location will not receive any more
contributions from any measurement. Thus a location cﬁn be reserved for one
contribution. This is in contrast to matrix N where a location may receive several

overlapping contributions from several measurements.

Since a measurement is referred to a row in matrix A, the pattern of the
elements entering the matrix depends upon the sequence of measurements entered
into the system. The elements in matrix N is symmetrical and sparse ( Cross, 1983),
The distribution of elements in the matrix N depends upon the structure of
observation scheme. The following sub-sections further describe the process for

constructing matrix N.
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4.2.1 Number of contributions to matrix N

A station carries two coordinate parameters, i.e. easting and northing values.
Stations are connected by measurements. There always exist a mathematical
relationship between measurements and the parameters. Since matrix N is a
parameter-parameter matrix, the number of coefficients contributed by a
measurement is equal to the squares of parameters associated with the measurement.
For example, a bearing which is a two-station measurement will have four
parameters and the total number of locations that will contribute to matrix N will be
16 (4x4) elements. Similarly, a distance which is also a two-station measurement,

will contribute 16 elements.

Based on the above relationship, the number of contributions to matrix N

generated by common cadastral measurements are summarized in the Table 9.

Table 9: Number of contributions to N for standard cadastral measurements

Type of Number of Number of Number of
measurements stations parameters contributions
Northing 1 1 1

Easting 1 1 1

bearing 2 4 16

distance 2 4 16

angle 3 6 36
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4.2.2  Locations in N effected by a measurement.

After knowing the number of contributions of the cadastral measurements to
matrix N, the next question is where those contributions go into the matrix. The
affected locations are’the intersection of the unknowns generated by the individual

measurements. The following discussions will further illustrate the point.

The relationship between a measurement and its parameters was described
in Section 3.3.1. Following the same notation as in Figure 6 and using eq (3.8), the
parameter numbers (a, b, ¢ and d) for a measurement measured between two

stations j and k are:

a=jx2-1 (easting station i)
b= jx2 (northing station i)
c= kx2-1 (easting station k)
d= kx2 (northing station k)

The four parameter numbers will generate 16 elements (i.e. 4 x4 parameter)
in matrix N. The positions of those contributions in matrix N are depicted in the
Table 10. The intersections of these four parameters provide the information about
the locations of the contributions.

for row a News: No Noos N

for row b Mis Nigs Ny Wi



for row ¢

for row d

N,

Ny N

ce?

ch

Nd.v Ndbs Ndr:’ Ndd
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Table 10: Locations in N effected by measurements between station J and station k

a b c d
a Nau Nab N:lc N:ld
b Nl:a Nhh Nbc th
c Nc:l Ncb Ncc ch
d Nda Ndb Ndc Ndd

The above example shows the effected locations in matrix N from a distance

measurement. Note that the locations are directly related to the stations from which
the measurement was captured. The elements in matrix are built up as more

measurements update their respective locations in matrix N. The resulting pattern

of matrix N is obtained when the contributions from the whole set of measurements

is incorporated.

The pattern of elements in matrix N describes distribution of measurements
within a network, that is the observation scheme. The scheme shows where the

stations are to be occupied and where the station to be targeted. In addition, the
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scheme also shows the type of measurement and what level of accuracy to be
achieved. Therefore, the observation scheme can be used to determine the structure
of matrix N. By knowing the structure of matrix N, one can prepare an optimized

storage scheme that will only receive the nonzero coefficients contributed by a

measurement,

4.2.3 Overlapping of contributions

Note that the locations in matrix N are directly related to the stations from
which the measurements were captured. Therefore, if more than one measurements
occupy a particular station, which normally occurs in a cadastral network, the
contributions of these measurements will be overlapping. For example, any new
measurements observed between station j to k> will occupy the same locations

as shown in Table 10.

for row a Now Naps Dy N
for row b Nias Nop Ny Nig
for row ¢ Na Ny N, Ny
for row d Ny Niw Ny N

The number of overlappings in a location depends upon the frequency of the
point being occupied or targeted during the data acquisition process. Therefore, if

some points were visited or targeted k times during the data acquisition process,



the related location in matrix N will receive k overlapping contributions from

those measurements.

4.2.4 Symmetric coefficient matrix N

The coefficient matrix N is symmetric and therefore their values of
coefficients are symmetrical about the diagonal. Thus N(a,b)=N(b,a), N(a,c)=N(c,a)
for all locations in N. The symmetrical pattern of the coefficients provides an
opportunity to reduce computer storage by nearly half and consequently minimize
computer arithmetic. This is because the matrix can be sufficiently represented either
by elements in the upper triangle or in the lower triangle. In this thesis, the upper

triangle of the matrix is used to represent the matrix.

Table 11: Locations in upper triangle effected by a measurement

between stations j and k.

a b . ; ¢ d
a Nda ab Nﬂc Nad
b Nl)h Nbc Nbal
c Ncc ch
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The upper triangle is made up of elements above the diagonal and also the
diagonal elements themselves. The corresponding elements in upper triangular of

matrix N of the above example are shown in Table 11.

4.2.5 Computation of coefficient values

The coefficient values of N are obtained by applying the equation N=ATWA.
Using this formula a single location N(i,j) as presented by (Cross, 1983) is given as
Niig= N T Ay X Ay X Wigg €q (4.1)
where 1 and j are the parameters numbers and q is the measurement number,
A the partial differential of the measurement with respect to i,

A, the partial differential of the measurement with respect to j, and

W0 the weight of the measurement.

As an example, the value of all the coefficients in the upper triangle of matrix N
affected by the qth measurement measured between stations Jand k are computed
using the following relationship:

The diagonal elements are

N(aa) = (ﬂu)+A A W

(q) < *qa) "7 {q.9),

—_ +
N(bb} N(bb] ! A(q.h) A(q.b)w

(4.9) .

Ny =N tAgq Aga W

(9.4,



87

N(cc) = N(cc)+A{||.c} A(q.c) W(q.ll) .

and the off-diagonal elements are

Ny = Nyt A gy Ay W

{q.2) (9.

a

Neety= N Aoy Ay W

q.q) .

Nioy = No A Ay W

(ac) (g.2) < *q.c) @.q).

Ny = NoatA gy Aga W

(qq).

Niey = Nopo A Agee W,

q(q.c) (9.9},

Neay =Ny Ay Ay W

q.b) (a.9).

4.2.6 Locations of coefficient in vector d

The right-hand side of the normal equation is a vector, denoted by d.Itisa
filled vector and its dimension is equal to the total number of unknowns in the
network. The locations of element in vector d are directly related to the locations of
unknowns. Thus the effected locations due to contributions of a measurement are the

locations of unknowns associated with that measurement. A coordinate measurement

at station 1 will have two elements at locations d(zj) and d,5;. ;. For a measurement
between two stations i and j, the effected locations in d are d(2;), dyiiys dzj and
d(y;.q)- For an angle observation observed at i, reference target j and final target k, the

effected locations in d are di5i), dgi ), di2j), dpaj.), diaiy and digy gy
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As an example, a bearing measurement between stations j and k is concermed with

locations d(a), d(b), d(c) and d(d), such as . are depicted in Table 12.

‘The values of elements in vector d are obtained by applying equation (3.7)

d=ATWb. Using this equation a single location d,; is given by

d(i)= d(i) + A(q,i) x W(q,q) x b(q) eq (4.2)

where 1 the parameters number and q is the measurement number,
A(q,i) the partial differential of the measurement with respect to i,
W(q,q) the weight of the measurement,

b(q) the ( measurement - computed) value.

Table 12: Locations in vector d

d(a)

d(b)

d(c)

d{d)

Based on the eq(4.2), the four coefficient values in vector d effected by the qth

measurement whose parameter unknowns are a, b, ¢ and d are as given by:

Aoy = dy + Ao x W

(@a) X b

(q.a
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dgy = iy + Ay X Wi X by,
dg,= dy, + A(q.c) X vV(q.q) X b(q‘)

Ay =dg+ Ay x W x by,

(a.q

4.3 Structure of elements in matrix N

From the previous sections, it was clear that the location of contributions of a
measurement to matrix N follows a different pattern from that of matrix A. Thus,
the storage scheme which was designed for the observation equation is not
applicable for storing the normal equations. In matrix A , a measurement will

occupy only a row, whereas in matrix N, a measurement will fill up several rows

In matrix A, a contribution will occupy a unique location and this location will
not receive any other contributions from any other measurement. This is in contrast
to matrix N where a location cannot be reserved for a single contribution. A location
may receive several overlapping contributions from several measurements. Since
stations are points occupied or targeted during the acquisition of measurements, the
frequency of visiting a point depends on the observations scheme. Thus, certain
points may be occupied several times with several types of measurements. Similarly,

somie points may be targeted several times during the data acquisition. This causes
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overlapping of contributions over the locations in matrix N from several types of

measurements.

To solve the above problems, a technique is therefore developed in this thesis
to identify, organize and arrange the nonzero locations row-by-row in ascending
order which existed in the upper triangular of matrix N, and store them in a vector
called coefficient vector N. The method introduces a mathematical function relating
the locations in the vector n to any measurements before the contributions of the

measurements are passed into the predefined locations in the vector.

The basic tool behind the above steps is graph theory. The following sections
introduce some terminology of the graph theory and its relationship to sparse matrix
problems. A sparse matrix can be thought of as a matrix at all, but rather as a graph
(Pissanetsky, 1984). This is why graph theory plays such an important role in
problems which involve sparse matrix such as the cadastral least squares

computation.

4.4 Introduction to graph theory

There has been a wide divergence in graph terminology (Harary, 1969). The
terminology presented in this thesis is a selection of what is considered to be

relevant to cadastral applications. Thus, the introduction of the graph theory is
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directed towards handling sparse systems of equations found in cadastral
application. For this purpose, the relevant principles of the graph theory and the

cadastral surveying are established.

A graph G is a collection of points or vertices XppXaseeoo X, (denoted by the set
X), and a collection of edges e,,¢,,.... ¢, (denoted by the set E) joining all or some of
these points. Synonyms for ‘vertex’ are point, node, junction, and station; while
synonyms for edges are line, arc, branch, link, and measurement. The graph G is
then fully described and denoted by the doublet G(X,E). We say edge ¢,(; ;) is
connected between the vertices i and j, and that (;;) is incident with the vertex i and ]

or conversely that 1 and j are incident with (;j).

The graph is conveniently represented by a geometric diagram in which the
vertices are indicated by small circles or dots, while any fwo of them, i and j, are
joined by a continuous curve, or even a straight line, between i and j if and only if
(i,j) 1s in E. As an illustration, consider the graph G(X,E) in which

A= R Ka , Ko, X A0 %)

E = {e,e, e, 5,605,658 and ey}

If the edges in E have a direction which is usually shown by an arrow, then the
resulting graph is called a directed graph (see Figure 8). If the edges have no

directions, then the graph is called nondirected or undirected graph (see Figure 9).



When an edge 1s denoted by the pair of its initial and final vertices (i.e, by
its two terminal vertices), its direction will assume to be from the first vertex to the

second. Thus, in Figure 8, (x,,x,) refers to arc e,, and (x, x,) to arc &y

Edges with a common terminal vertex are called adjacent edges. Also, two
vertices x1 and xj are called adjacent if either edge (xi,xj) or edge(xj,xi) or both exist
in the graph. Thus in Figure 9 edges ¢1,e9,e10,e3 and e4 are adjacent and so are the
vertices x1 and x2, x4 and x5 ; on the other hand edges e5 and e8 or vertices x1 and
x3 are not adjacent. A loop is an arc whose initial and final vertices are the same, for

example edge e2 form a loop (see Figure 8).

Figure 8: A directed graph.
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Figure 9: An undirected graph

The number of edges which have a vertex x; as their initial vertex is called
the outdegree of vertex x;, and sin-lilarly the number of edges which have x; as their
final vertex is called the indegree of vertex x. Thus referring to Figure 8 the
outdegree of x4, denoted by do,,,=3, and the indegree of x5 denoted by dt,5,=3.

It is obvious that the sum of the outdegrees or indegrees of all the vertices in a
directed graph is equal to the total number of edges of G. For an undirected graph,
the degree of a vertex x; is defined by the number of edges connected to vertex X;

either as their initial vertex or as their final vertex.

Graph theory also includes the existence of several distinct edges for a given
pair of nodes. These edges are indicated by the symbols (.%),,3,k),.....(G,k);, and they

are called parallel edges of G. In Figure 9 edges e5 and e6 are parallel edges.
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A graph is said to be symmetric if, for every edge (j,k) of G, it is matched by
an edge (k,j) of G. This would imply that, in G, if there are m edges directed from j

to k then there are also m edges directed from k to j.

The above concepts and terminology of graph theory is considered as
sulficient for use in the creation of coefficient matrix of the normal equations. The

following sections concerns with the application of the graph theory in cadastral

network computation.

4.4.1 Graph and matrices

Matrix is a convenient way of representing a gréph algebraically ( Harary,
1969). This is because computers are more efficient at manipulating numbers than at
recognizing pictures. Thus, it is a standard practice to communicate the specification
of a graph to a computer in matrix form. The use of matrices provides a far more
efficient way of representing a large or complicated graph than a pictorial

representation.

There are a number of matrices which can be associated with a graph. The
most relevant matrix for this research is the adjacency matrix, denoted by matrix G.
The matrix G is a vertex to vertex incident matrix, in which all pairs of adjacent

stations are recorded. Thus, the elements of the matrix show the pairs of the vertices



that are adjacent. In order to distinguish the incidented locations from the non-
incidented locations, the elements of incidented locations are denoted by a number,
say 1, or else they are denoted by zero. Thus for example G(ij)=1, if vertex x; is
adjacent to vertex X; in G, or else G(ij)=0, i.e. vertex x; and X; are not adjacent.

Table 13: Adjacency matrix G of the graph as shown in Figure 9

xl x2 x3 x4 b )
x1 0 1 0 1 0
%2 1 0 0 1 l
X3 0 0 0 I 1
x4 I 1 1 0 0
x5 0 1 15 0 0

4.4.2 Cadastral network and the graph

Since the objective of introducing graph theory is to facilitate the study of
sparse matrices found in cadastral network, the relationship between graphs and
cadastral networks is now established. Lets begin by defining cadastral network in

terms of the graph terminology.
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Vertices and edges of a graph are respectively equivalent to stations and
measurements in a cadastral network. Thus, when an edge e, is connected between
the vertices i and j, it represents the k" measurement between station i and station j.
When an edge is shown with a direction, it describes a measurement and its direction
of observation. Thus ‘e!- with a direction reveals that station i was occupied by the
instrument whereas the station j becomes the target during the observation. The

structure of edges within a graph represents a measurement scheme in a cadastral

network.

The term outdegree of vertex x; refers to the number of stations which had
been used as targets from the instrument station x;. On the other hand, indegree of
vertex X; represents the number of instrument stations which use station xi as one
of their targets. The degree of a vertex xi represents the number of stations that are
connected to station xi (i.e., either x; used as an instrument station or as a target
from other stations). This feature is particularly important in cadastral because the

elements of arow of coefficient matrix N corresponds to the degree of vertices.

The concept of parallel edges in a graph corresponds to a line measured by
more than one type of measurement. For example, two types of measurements such
as distance and bearing are measured between a pair of stations. A loop at a vertex

X; in a graph indicates that station x; has coordinate measurement.



Referring to the undirected graph in Figure 9, its equivalent measurement scheme

are presented in Table 14.
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It is clear that the geometric figure of a graph represents a cadastral network.

Table 14: Measurement scheme of the graph in Figure 9

No. FROM STN TO STATION MEASURE- EDGES
Initial Vertex final Vertex MENTS

1 1 2 bearing El
2 1 coordinate e2
3 2 5 distance e3
4 ) 5 bearing ed
3 3 ¥ distance e5
6 5 3 bearing eo
7 4 3 distance &7
8 4 1 bearing e8
9 4 2 distance e9
10 2 4 bearing el0
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4.4.3 Adjacency matrix of a cadastral network

The adjacency matrix of a cadastral network is a station to station incident
matrix., A station is said to be incidented with another station when a measurement
exists between them. In other words, the connections between stations within a
network are recorded in the adjacency matrix. Therefore, the elements of adjacency
matrix represent the connectivity structure of the network. The incidented location is
denoted by a number, say 1, or else they are denoted by zero. Thus for
example, G(1j)=1 if station x; is linked by a measurement to station X;, or else

G(1j) =0, (i.e., no measurement exists between station x, and station X; ).

The adjacency matrix of a graph is equivalent to the adjacency matrix of a
cadastral network, except for the status of the diagonal elements. Diagonal elements
are denoted by zero values in adjacency matrix of a grai)h whereas these elements
are denoted by number 1 in the cadastral adjacency matrix G. Therefore, all diagonal
clements are assigned as number 1( i.e. G(ii)=I, for all i), instead of zero as in the
case of the standard adjacency matrix of a graph. This is because the diagonal
elements are nonzero terms in a cadastral application. The corresponding adjacency

matrix for the measurements in Table 14 is shown in Table 15.

In a cadastral network, each row of the adjacency matrix represents a station
and the total number of elements within the row is the degree of the station. The
elements in a row represent the connections that exist to or from the station. Each

element represents a connection between two stations. Therefore, as an example, in



99

Table 15 the first row shows all the connections that are linked to station 1. From
this station there exists two connections, i.e.,, stations 2 and 4 as indicated by
G(1,2) and G(1,4) that is equal to 1. Similarly, the station 2 is connected to stations
1,4 and 5 as indicated by G(2,1)=G(2,4)=G(2,5)=1. Thus, the matrix provides the
indication whether or not certain edges (i.e. measurements) between stations are
present or not. This information provides the basic data for computing the nonzero

locations.

Table 15: The adjacency matrix G of the network as in Table 14

Stnxl |[Stnx2 |Stnx3 |Stnx4 [ Stnx5
Stn x1 1 11 0 1 0
Stn x2 1 1 0 1 1
Stn x3 0 0 1 1 1
Stn x4 1 l 1 1 0
Stn x5 0 1 1 0 1

4.5 Adjacency number

The adjacency matrix describes the structure of the measurement scheme
however, the use of 0 or 1 for presenting its elements is inefficient in subsequent

matrix manipulations. A new system of numbering the elements is hereby proposed.
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The adjacency matrix is more meaningful if its nonzero elements are arran ged
in a systematic manner. The numbering scheme that is suitable for presenting matrix
N is an ascending order of row-by-row. Such a scheme is referred to as adjacency
number and for example, the adjacency numbers of the measurements as shown in

Table 14 can be tabulated as in Table 16.

The adjacency number is a sequence of connections of stations. Since
stations are tied by measurements, each measurement can be described in terms of
adjacency number. The relationship between an adjacency number and a

measurement can be described as follows:

For a measurement at a single station, i, such as a coordinate measurement,
the adjacency number is at G( 1,i). For a measurement between station iand station
J, such as bearing and distance, there are three adjacency numbers (i.e. two
adjacency numbers at the diagonal and 1 adjacency number at the off diagonal

location). Their respective locations are G(i,i), G(i,j) and G(j,j).

Table 16: Adjacency number of an adjacency matrix G

x1 x2 x3 x4 x§
x1 1 2 3
x2 4 5 6
*3 7 8 9
x4 10
x5 11
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For a measurement which involves three stations (i,j,k) such as angles, there
are six adjacency numbers (i.e. three adjacency-number at diagonal and three-
adjacency number at the off-diagonal locations). These locations are  G(i, i), G(4J),
G(k,k), G(i,)), G(i,k) and G(j,k).

Considering the measurements shown in Table 14, the adjacency number for
the coordinate measurement at station 5 is 11 (i.e., G(5,5)=11). The three adjacency
numbers for any measurement between stations 2 and 4 are G(2,2)=4, G(2,4)=5
and G(4,4)=10. The six adjacency numbers for an angle measured at 1, reference
target 2 and final target 4 are at G(1,1)=1, G(2,2)=4, G(4,4)=10, G(1,2)=2,

G(1,4)=3 and G(2,4)=5.

4.6 Computing locations of coefficients in vector n

As mentioned earlier in the introduction, the aim of the method developed in
this chapter is to identify all locations of nonzero coefficients situated in the upper
triangle of the symmetric matrix N and arranging these locations in a systematic
linear list in the coefficient vector n . The adjacency numbers associated with every

measurement provide the key information for computing the designated locations

n vector n.
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The relationship between vector n and the measurement is then described as
follows. Every adjacency number generates four locations in the coefficients vector
n. However, for diagonal adjacency numbers only three locations are used. They are:

G(i,1) foralli has 3elements (diagonal adjacency number)

G(i,j) i#] has 4elements (off-diagonal adjacency number).

A diagonal adjacency number generates three locations because one of its
elements falls below the diagonal. Note that only the elements in the upper
triangle are required to be stored. For a coordinate measurement at station ’ i ’
whose adjacency number is at G(i,1), there are three nonzero terms. For a
measurement between stations iand j whose adjacency numbers are at G(i,i),
G(),) and G(i,)), there are 10 nonzero terms (i.e 3+3+4 elements). For an angle
measured at station £, reference target station ; and final target & whose adjacency
numbers are at G(1,1), G(,j), G(k,k), G(i,j), G(j,k) and Gti,lc) will produce 21 nonzero

terms( i.e., 3+3+3+4+4+4 elements).

The relationship between the locations in vector n and the adjacency numbers
has therefore been established. A location in vector n is a function of the three
adjacency numbers in a row. The derived mathematical function is described as
follows. Let q, q,,q;, and q,, be the four locations in coefficient vector n derived
from an adjacency number (say the Q™ for row i and column j ) and these locations

are tabulated as in Table 17.
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Table 17: Locations generated by an adjacency number.

Station 1 Station j
; easting  northing gasting northing
easting x [ ] . . q, q,
northing x 1 , s Q4

The mathematical functions relating Q" and q,,q,,q, and q, were developed

using empirical method:

6 =2x(Qm *+ Q")-i

Q=0 {2(Quy - Quu) T1} eq 4.3
q = q-1
g; = gy-1

where Q,,,, is the last diagonal adjacency number for row i,

Q 4 15 the diagonal adjacency number for row 1.

As an example, one of the adjacency number for a measurement between stations
2 and 4is G(2,4)=5. The adjacency number 5 is in row 2 and for this row
Quiag =4, Q1 =6,  the locations in vector n are therefore:
Q@ =2x(6+5-2 =20
g, =20-{2(6-4)+1} =15
q, =15-1 =14

q, =20-1 =19
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Equation (4.3) is the mathematical function that relates an adjacency number
to their corresponding locations in coefficient vector n. By using the equation (4.3)
cach measurement can update their respective locations in the coefficient vector o,
without having to create matrix N. Equation (4.3) is therefore a key tool for the
optimization of construction of vector N. When all the measurements within a
network complete their updating process, the coefficient vector which represents the

matrix N is completed.

Table 18: The arrangement of location of non-zero elements in N

stn 1 stn2 - stn3 stn4 stnS

[ 2 |3 5 € 9 10
1 1 3 4 5 6
2 8 9 10 11
3 12 13 14 15 16 |17
B 18 18 20 21 .22
3 23 24 25 26 27 |28
6 29 30 31 32 |33
7 34 35
8 36
9 37 |38
10 38




Note that the locations are arranged as a simiple list without any zero terms
within the list. Considering the observation scheme in Table 14 the resulting
location of matrix N is as shown in Table 18. For example, a measurement between
stations 2 and 4 whose adjacency numbers are 4, 5 and 10, their respective elements
to be updated in vector n are printed in bold. These locations are 12, 13, 14, 15, 18,

19, 20, 34, 35, and 36.

4.7 Linking coefficients with their true locations in matrix N

Since matrix N is now represented by the coefficient vector n, the elements
within the vector must be linked to their true locations in the original matrix N. This
is done by introducing an indexing scheme. The indexiﬁg scheme developed in this
research is made up of two integer vectors:

(a) ICOL containing column numbers for each element, and

(b) IEND containing the diagonal coefficient numbers for each row.

The length of ICOL equals to the total number of elements, whereas the
length of IEND is equals to the number unknowns. Using the example in Table 18,
the 19 " element in vector n is in the 7* column and the diagonal coefficient number
inrow 4 is 18. Therefore for n(19), its indexing information are ICOL (19)=7 and
IEND (4)=18. The vector n and their corresponding indexing information are

listed in Table 19.
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4.8 Computing coefficients values

Based on the general equation (4.3), and the indexing information the

coefficient values of the vector n can be directly computed by:

-

n=n+A XA, x W, eq (4.4)
where n; 1s a computed location in vector n, i is obtained using eq (4.3)
A, is the partial differential of the measurement with respect to easting ;
A, is the partial differential of the measurement with respect to northing j

Wyq is the weight of the measurement.

To illustrate the application of equation (4.4), consider a measurement, says
the ninth measurement, which was measured between stations 2 and 4 and has
three adjacency numbers 4, 5 and 10. Using these adjacéncy numbers, the locations
in vector n can be computed and the locations are found to be
12,13,14,15,18,19,20,34,35,and 36 which are shown in bold in Table 18. Using the

equation (4.4), the coefficient values are computed as:

n,=n,+A; A, W,
n,=n;+A; AW,
n,=n,+A A W,
n;=n;+A, A, Wy

n=n,+A AW,

n, =n,*+A; A, W,
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Ny, =ny,+A, Ay W,
n,= n,+A; A, W,
N =n;,+A; Ay W,

Ny =N+ Ay Ay W,

The coefficient values are updated directly at the predetermined locations without
the need to construct and store the three matrices N, A and W. The related elements

within those matrices are directly identified and used to compute the coefficient in

the predefined location in vector n.

4.9 Number of elements in vector N

It is clear that the number of elements in the coefficient vector n depends on
the total connections in a network which is given by the adjacency number in matrix
G. Since each diagonal adjacency number generates four locations except for the
off-diagonal adjacency number which generates three locations, the total elements in

the coefficient vector n is therefore:

N, =4 x G, - total stations, eq(4.5)
where
N, the total number of terms in vector n,

G, thelast connectivity number, and



Table 19: Vector N and its corresponding indexing vectors

108

Numpber Coefficient Column Number | Starting row number
of matrix N ICOL IEND

1 n(1) 1 1

2 n(2) 2 7

3 n(3) 3 12

4 n(4) - 16

5 n(5) 7 19

6 n(6) 8 23

7

25 n(25) 7

26 n(26) 8

27 n(27) 9

34 n(34) 7

35 n(3s) 8

36 n(36) 8

37 n(37) 9

38 n(38) 10

39 n(39) 10
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410 The CGM algorithm for solving normal equations

The CGM algorithm for solving normal equations, Nx =d is a straight
forward solution of the system of linear equations (Bhirud, 1975; Press et. al 1987).
1. Let p=1‘=a
2. Changeinx=e.p andchangeinr =e.q
where  gq=N.p
c=p".r
d=p".q
e=c/d
3. Changeinp=g.p
where f=r'.q
=-f/d

Repeat step 2 to 3 until the magnitude of the changes in x and r are insignificant.

Based on the above CGM method, the step-by-step algorithms suitable for
computer implementation has been developed ( Table 20). The algorithm is simpler
and shorter compared to the CGM version for solving observation equations.
There is only one major operation (i.e., step 2), among the eleven steps. This step
involves multiplication of the matrix N to a vector. However, since matrix N is

replaced by vector m the multiplication process is reduced drastically.



Table 20: CGM algorithm for solving normal equations
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Na ALGORITHM REMARK MATRIX OPERATION.
1 Letp=r=b and x=0 Initialize vectors
2 q=N.p . Begin iteration Matrix by vector
3 n Vector by vector

=2 p;.T;

1

4 n vector by vector

d= Zp.f -4,
5 c scalar

e=—

d

6 x =x+ep Update parameter x scalar by vector
7 r =r -eq Update vector r scalar by vector
g n vector by vector

= Z I;-q;

!

9 f “scalar

B
10 p =r+gp Update vector p scalar by vector
11 repeat step 2 to 10 until

p=0

411  Summary

The method of setting up the normal equations developed in this chapter has

achieved the goal to identify the nonzero terms within upper triangle of the
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coefficient matrix N and arranging these terms in a vector n. A mathematical

function is developed to link the locations in vector n to the measurements.

The summary of the method used for constructing the normal equations are:
(a) recovering the connectivity of stations in the observation scheme,
(b) arranging the connectivity of stations in ascending order of row-by-row section,
(c) converting the connectivity numbers into locations numbers in vector n,
(d) linking the elements in the vector n to their original locations in matrix N, and

(e) computing the predetermined locations in the vector n for each measurement.

The CGM will therefore solves normal equations for least squares parameters
and residuals. The algorithm of the method is shorter and simpler as compared to its
version for solving observation equations. The CGM uses vector n without altering
the structure of the elements in vector n throughout thé whole least squares
estimation process.This means that the operations do not require new elements to be
allocated to the vector. The vector is also free from complicated fill-in effect.
Therefore, the method of setting up the normal equations developed in this chapter
has achieved three leading advantages in sparse matrix technology, i.e., storing
only the minimum nonzero terms, operating only on the stored nonzero terms and

always preserving the sparsity pattern.
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CHAPTER YV

DEVELOPING CGM COMPUTER PROGRAM

5.1 Introduction

The importance of having up-to-date and accurate cadastral information in
GIS has been clearly emphasized in Chapter I. The best way to obtain such a quality
information is to process raw cadastral measurements using the simultaneous
rigorous least squares method. The outputs of the solution are the coordinates of the

cadastral points which are needed in variety of applications, such in GIS.

Solving a problem using a computer requires that certain procedures to be
strictly followed. It should be noted at the outset that despite the apparent complexity
and power of the computer, it is merely a tool which requires systematic instructions
in order for it to solve a problem. Thus, solving a problem using a computer requires

a great deal of planning especially in building up the instructions. The process of
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developing these instructions can be painstaking at times, but there are steps that can

be adopted in order to minimize the problems that may arise. These steps include:

1.

defining the problem,

developing a methodology for solving the problem,

designing' the computer program,

writing the computer program,

submitting the program for compilation, and locating and correcting any
errors the compiler detects, and

testing the program ﬁvith sample data, and locating and correcting any

TEMaining errors.

The first two steps are independent of the computer system and have been

described in detailed in Chapter 1 and 2. This chapter, however, deals with the

remaining steps to translate the methodology described in Chapters 3 and 4 into

computer programs.

The most suitable and widely used language for engineering computation

and also applicable to cadastral computation problem is FORTRAN. Therefore, this

language is selected for implementing the CGM program. This chapter describes the

development of the program from design stage to writing up the program. This

chapter describes the operations involving sparse matrices of the observation and

normal equations. The test and evaluation of the programs are described in Chapter 6.
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5.2 Program design methodology

Programming is a process of ‘instructing * a computer what to do. The
product of programming is a source code. Before the source code is written, one
must decide on the design of the program. The design of a computer program isa
process of structuring and desgning the algorithm of the program to such a level that

the coding or the writing of the program can proceed without further description.

Before the design of the cadastral program is presented, a discussion on the
concept and approach in designing a computer program proceeds. The general plan
of design is called ‘fop-down development or successive refinement. One tries to
decompose a problem into a simple sequence of sub-problems in order of increasing
the details, Breaking the problem into such manageable sub-units at this point greatly

simplifies the program-coding task that must be performed later.

The basic concept for implementing a program design is the systematic
transformation of a statement to a detailed specification of action in FORTRAN. The
basic steps of a top-down design are as follows:

1. break a problem into a sequence of sub-problems,
9 refine a statement into several finer statements with increasing details,

expand a statement of what has to be done into a specification of how it is to be

[s]

done,

4. expand the high level commands such as “solve”,”find” or “compute” into

lower-level statements of a programming language, and
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5. translate a problem description into FORTRAN statements.

The highest-level module is the main control modules. These modules outline
the major structure and the basic algorithm and it is further broken down into lower-
level modules. Depending on the complexity of the problem, several levels of
modules may be required. The lowest-level modules contain the greatest level of
detail or the most refined algorithm. A module performs a specific function, and the

combinations of several independent modules create a program which performs the

required task.

The communication between the modules is of fundamental importance. For
correct flow of communication the data in each module must be defined precisely.
Thus in subdividing a problem into modules, the input and output of information
within a module and passing of information between modules are the primary
considerations. Depending on the degree of data and common coupling, the

communication of data can be nontrivial operations and can cause a major problems

in program designing.

During the process of designing a program errors may occur anywhere in
any module. The errors of a particular module are apparent in the next higher
modules. At this point, the structure and the algorithm of the particular module must
be reexamined and corrected. If the error is still apparent, the next higher level
modules or the previous module may have to be redesigned accordingly. This

process is known as a stepwise refinement. This is a practical feed back mechanism



116

in the design which allows the design scheme to be refined gradually as it becomes

more and more to completeness.

There are a number of visual aids commonly used to present the designed
structure and algorithm. These visual aids include:

(1) structure chart,

(2) HIPO chart,

(3) flowchart, and

(4) pseudo code.

The structure chart is a hierarchical, or a tree-like diagram. It shows
functions, their relationships and flow of control. HIPO is the acronym for Hierarchy
plus Input-Process-Output, whereas structure chart emphasis only on the structure

and functions. HIPO diagrams shows the inputs and outputs of program modules.

A flowchart is a means for describing, ordering, and expressing a solution in
graphical form. The flowchart is most suitable for describing lower-level modules
which contain the greatest level of details. At times, flowcharts may become lengthy
and difficult to read, especially those for complex diagrams. In some cases, it is also
difficult to express the logic of processing steps within the commonly used flowchart
symbols. In these cases, a flowchart can be replaced by a pseudo code. A Pseudo
code 1s an English-like description of the processing steps in a program and it is

mainly used method for expressing program logic and algorithm.
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5.3 Design of cadastral adjustment program.

The above design methodology is applied in the cadastral computation
program. The design begins with the creation of five main control modules, i.e.,
INITIALIZE, READ, COMPUTE, WRITE and TERMINATE. The subdivision of
the problem into these modules seems trivial, but their task and process have to be
clearly defined. It should be clear that each module must perform three basic
functions:

1. receive the input data,

b2

process the input data, and

[F%)

release the output.

The outline of the main control modules of the cadastral computation
program can be summarized in Table 21. The design is depicted graphically using
a combination of structure chart and HIPO chart. Although the program is divided
into five main modules, the amount of processing task in each module varies
according to nature and purpose of a program. For the cadastral computation
program, which indeed specializes in data processing program, the largest and the

most important module is the COMPUTE module.

Other minor modules ( INITIALIZE, READ, WRITE, TERMINATE), are
relatively small as compared to COMPUTE module. These modules can be easily
designed by familiarizing with the FORTRAN language and writing down the

necessary statements.



The INITIALIZE module initiali

zes the necessary memory locations
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for the

program. The READ module opens previously created measurement data file. The

file contains the cadastral data input which inc

ludes measurements and their

respective standard errors, station numbers and provisional coordinates of the

stations.

| surements

| file

| reorder

| stations and

5 I—
‘|| open mea-

initialize vectars for
receiving input data, processing

data and output parameters.

(a) read stations,

(byread coordinates,

(c)read measurements and
related stations (d)standard

deviations.

each measurement,

(b) Indexing the coefficients,
locations in a vector,

(c) build linear equation,

(d) Solve the equation.

formatting the parameters

according o users requirement.

T ' coordinates
= + | reorder the
'WRITE parameters
_ e j .| decide to
TERMINATE stop or

cantinue

terminate program.

I
(a) compute the coefficients of

Table 21: Main modules of a least squares computer progran

vectors has been created

(a) measurements,related
stations, weights,

(b) vectors for storing linear
equations,

(c) vectors for output

parameters.

{a)station numbers and
coordinates are in memory,
(b)measurements and their

stations are in memaory.

(a) The solution is repeated
until the corrections to
parameters insignificant.

(b) Obtain the parameters and

the residuals of measurements.

present results.

work ended.
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The program allows random network station numbering so the program has
to re-order the stations according to the new number scheme which is used
throughout the computation process. The WRITE module writes the output
parameters and TERMINATE module simply stops the running of the program,

when all the necessary criteria are satisfied.

5.4 Design of COMPUTE module for observation equations

The COMPUTE module for creating observation equations consists of two
sub-modules:
1. create observation equations, and

2. solve observation equations.

The statement “creates observation equation” is itself a module which
obviously requires further refinements. Each type of measurements is read and
processed one by one to generate the observation equations. Figure 10 is a flowchart
of the COMPUTE module and the refinement of the module for the distance

measurement is given in Figure 11.

The steps outlined in Figure 11 are sufficiently detailed, in that it requires
no further definition, except for the PROCESS 1,2 ,3 and 4. The four processes, one

for each type of measurements (i.e., coordinate, distance, bearing and angle) need



120

further definition. These are the processes that actually build up the observation
equations Ax=b. It computes the coefficient values of each element at precomputed
locations (i.e., each jth element) in matrix A. Each jth element is linked to its true
locations in matrix A by indexing information in IROW and ICOL, as described in

section 3.4. It also computes the right-hand side of the equation.

Set counter for meas. (Nob= 1)
Set counter for nozero( j=1)

¢“‘ | i

Read data code i
1=coordinate 3=bearing
2=distance 4=angle

N

Process 1 Process 2 Process 3 Process 4
Coordinate Distance Bearing Angle
nob=nob+1

Yes

Observation equation completed

Figure 10: Flowchart showing the creation of the observation equations
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Process 2 begins
A\

Read
AT, TO, dE

dE=E(TO)-E(AT)
dN=N(TO)-N(AT)
dis=Sqrt(dExdE +dNxdN
d3=dE/dis
- d4=dNi/dis
W(nob)=1.0/e
L{nob)={dis-d)xW(nab)
IROW{nob)=4
Y
ICOL{J)=AT x 2-1
A(j)=d3 x W{naob)
=it

ICOL(J)=AT x 2
A(J)=d4 x W(nob

J=J+1
\ 4
IROW{J)=TO x 2-1
A(d)=- A(J-2)
J=J +
\d

IROW(J}=TO x 2
A(d)=- A1)
J =| J+1

|
\J

Proceed to the next measurement

INPUT ARGUMENTS OUTPUT ARGUMENTS

D = Measurements W= Weight

dE = Standard error L = Computed - Observed

AT = Occupied station 10 = Number of elements for a row

TO = Target station 1B = Column number for each coefficient
N = Prov. Northing (from Figure 10) A = Coeflicient values

E = Prov. Easting (from Figure 10)

NOB = Counter for meas. (From

Figure 10)

Figure 11: Contribution of a distance to observation equations
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The flowchart for PROCESS 2 manipulates distance measurements, and is
given in Figure 11. The flowchart for the'other measurements is not shown as they

are basically the same except for the functions for partial differentials.

5.4.1 Flowchart of the CGM for solving Ax=b

The solution of equation Ax=b using the CGM algorithm has been described in

Section 3.6. The flowchart of the algorithm is depicted in Figure 12.

The algorithm consists of several standard vector multiplications, except for
operations involving vector A (i.e., R= ATv and BH= A h) which require further
definition. This is because vector A is not a standard, filled vector, but it is the
optimized vector that contains only the nonzero terms of the original matrix A, and
has been described in details in Chapter 3. The corresponding flowcharts are
modified versions of vector multiplication R= A™v (Hintz, 1994) as shown in

Figure 13, and the manipulation of BH=A h is shown in Figure 14.



Initilize 3 vectors r, s, v=b, r,=1
Recieved 3 vectors A,x and b.

V <

r=AT.v ?
Y

e . — . —
e, =r'.r ; e=e, ; e=e)le,

Figure 12: Flowchart of CGM steps for solving observation equations.
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Set J=1, JJ=1

V Nexti

<30 I=1, Nob I> A

V Nextk

<7}~
< DO k=1,I0() > A
. y

R(ICOL(J))=R(ICOL(J)) x A{J) x V(JJ)

v

J=J+1 -
Y
Jd=JdJd +1 .J
y
Continue
Figure 13: Flowchart for computing R=AT v
Set J=1, JJ=1
Y Next i
< Do I=1, Nob S A
Y Next k
<D0 k=1, IROW(I> A
BH(JJ)=BH(JJ) x A(J) x H(ICOL J))
J=J+1 -
Y
JJ=JJ +1 J
Y
CONTINUE

Figure 14: Flowchart for computing BH=A h



n. The elements in vector n are then linked to their true locations in matrix N

through the indexing information in IROW and ICOL.

[

icnt=0
; i Next k
Q k=1, Nosﬁ %

icnt=icnt+1

Link(icnt)=k

Istar(k)=icnt

v Next j '
Qo j=1,Nob + A
Nto(j)=k No
at(j)=k -

lend(k)=icnt l Ves

Nti(j)=k

Do jj=Istar(k),icnt

lent=icnt+1 ient=icnt+1
link{icnt)=Nat(j) Link(icnt)=Nto(j)

' '

Figure 15: The creation of an adjacency matrix

The control steps for the COMPUTE module are similar to the steps listed in
Figure 10. The module consists of four processes (i.e., PROCESS 1,2 .3 and 4) which
require further definitions. The flowchart for PROCESS 2, i.e., the process for

distance is given in Figures 16 and 17. The flowchart for other type of

126



127

measurements is not shown as they are basically the same, except for the functions

for partial differentials.

INPUT,ARGUMENTS OUTPUT ARGUMENTS

D = Measurements . W= Weight

dE = Standard error L = Computed - Observed

AT = Occupied station IROW = Number of element for a row

TO = Target station. ICOL = Column number for each coefficient
N = Provisional Northing A = Partial differential

E =Provisional Easting N Coefficients value in vector N

Read AT, TO,D, dE

Compute column numbers
K1,K2,K3,K4 from stns
AT & TO

Y

Compute link numbers

N1,N2,N3,N4 & N5 from stns AT & TO
Compute coefficients

| A{1),A(2),A(3) & A(4)

Compute weight W

PROCESS at N1 PROCESS at N2 PROCESS at N3
Comp. ceoff. loc. num Comp. ceoff. loc. num. Comp., ceoff. loc. num.
at link number N1 at link number N4 at link number N2
Update coefficients B Update coefficients B Update coefficients
Assign column num. Assign column num. Assign column num.

Compute right elements in hand side
B(K1)=B{K1)+A{1) x WXL

B(K2)=B(K2) + A(2) x Wx L < |
B(J1)=B{J1) + A(3) xWxL
B(J2)=B{J2) +A(4) x Wx L

CONTINUE

Figure 16: Computing coefficients in vector n from a distance
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PROCESS AT N2

Comp. ceoficient location numbers
at link number N2

1G4=2 x (N3+N1) -K
IC3=1C4 -1
1C2=1C4-((N3-N1) x 2 +1
. 1C1=1C2-1

Update coefficients

N{IC1) = N{IC4) +A(3). A (1). W
N(IC2) = N(IC2) +A(4). A (1). W
N(IC3) = N(IC1) +A(3). A(2). W
N({IC4) = N(IC4) +A(4) . A(2). W

Assign column numbers for each coefficients.

ICOL(IC1) = J1
ICOL(IC2) = K2
ICOL(IC3) = J1
IcoL(IC4) = J2

Figure 17: Updating the elements in coefficient vector n

5.5.2 Solving normal equations

The flow chart for the CGM for solving normal equations is depicted in
Figure 18. The algorithm consists of several standard vector multiplications except
for operations involving vector nn (i.e. b= n.p) which require further definition.
This is because n is a vector containing only nonzero terms of its original sparse
matrix N and has been described in detailed in Chapter 4. Vector n which contains
nonzero terms only in the upper triangular block of matrix N further complicates the

computation. The multiplication b=N. p is shown in Figure 19.



Receive 3 vectors N x and b.
Initilize 3 vectors p=r=b
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b=l:.p T

e;=p’ .r; e,=pT.b; e=e,le,

Y

X=x+e.p

Yes

Figure 18: CGM for solving normal equations
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K=IEND (1)

KST =1
Y Next KI

DO KI=1,NN

Next j
éo J=KST, K ?

b(Kl)= B(KI) + N(J) . p(IROW(J))

No

B(IROW(J))=B(IROW(J)) + N(J) . P(KI)

.

KST=IEND(KI)+1

K=IEND(KI+1)

\

Continue

Figure 19: The multiplication of sparse vector b=n. p

5.6 Writing and debugging source code

The flowcharts shown in Section 5.5 provide the necessary information
about the structure and the algorithm for implementing the COMPUTE module of
the cadastral computing program. Based on this information, the writing of the
program is only a mechanical transformation of the design into the desired program.

The translation involves the process of writing the program by converting each
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block within the flowchart into one or more FORTRAN statements. These

FORTRAN statements become the souree code of the program.

,The FORTRAN language statements can be obtained from many textbooks in
computer language such as Monro (1982). Briefly there are four types of statements
used in FORTRAN programming:

1. Control statements determine the sequence in which operations are performed.
Operations such as choosing alternatives and branching to another part of the
program are governed by control statements.

2. Arithmetic statements direct the computer to perform computations.

Input/output statements instruct the computer to read data from or write to an I/O

L

device.

4. Specification statements describe the arrangement of data read from an input

device, or information written to an output device.

The most critical part of writing the cadastral computation program is the
creation of normal equations and the observation equations. The nonzero terms have
to be correctly arranged and connected to their true positions so that they are
accepted by the CGM algorithm. This consumes most of the time used for

developing the program.



5.7 Compiler: Microsoft FORTRAN PowerStation

The program is compiled using Microsoft FORTRAN PowerStation
compiler. The compiler is a tool for building and debugging MS-DOS-based, 32-bit
FORTRAN applications in an integrated Windows environment. The FORTRAN
PowerStation compiler produces 32-bit, MS-DOS-extended applications. A special
version of the Phar Lap MS-DOS extender environment called DOSXNT.EXE is

used to host the compiler and its targets.

The compiler has a very desirable feature, in that, it can produce executable
programs which can cope with any volume of data. They are only limited by the
hardware that runs the program. The programs can take full advantage of all the disk
space on a machine that is available as virtual memory. Other features of the
compiler includes the availability of options that can im.prove execution speed and

the consistency of floating-point calculations.

In addition to the standard ANSI FORTRAN 77 syntax and a set of
Microsoft proprietary extension, the compiler supports most of the DEC VAX
FORTRAN extensions and a large suite for IBM mainframe FORTRAN extensions.
Thus mini-computer and mainframe FORTRAN users can easily download their

existing codes to FORTRAN PowerStation.
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5.8 Compilation process

After the program has been written, it is submitted to computer for
compilation. The compiler translates the high-level language codes of the source
codes into machine codes. The compilation process detects syntactical errors, such
as incorrect spelling and incorrect punctuation, while semantic errors will be
discussed in Chapter VI. Errors in programs are called bugs, and the process of
locating, isolating, and eliminating bugs is called debugging. Debugging is part of
any programming processes. The amount of time that must be spent in debugging
depends on the quality of the program. The newly cadastral completed program
required a lot of debugging work. To help debugging a program, the compiler

provides a listing of all compiler-detected errors.

Apart from this, there are various techniques and tools which can help in
debugging, like printing out intermediate results, using cross-reference listings,
checking for subscript ranges and other dynamic debugging tools. Every violation of
the syntax rules of the language should be detected by the computer during loading
the program. The manner in which detection is announced and the amount of
explanation provided depends upon the compiler used. In many cases the flaw is
obvious and the correction is straight-forwards. However in some situations, the
actual error in the program is located far from the statements where its presence is

detected. Finally, after a meticulous checking, the program is shown to be free from

those syntactical bugs.
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5.9 The compiled program

The CGM program is a user-friendly program that is easy to use, easy to
learn and handles data intelligently. The program is self contained and can be run
interactively in a flexible menu-driven mode. There are two computer programs,
CGOBS for observation equations approach and CGNOM for normal equations
approach. When each program is successfully loaded, it will display the main
menu, and from here the user can select the desired options. In principle, options and
commands can be applied repeatedly and in any order, although, of course, surveying

logic and principles will restrict the permitted order of use.

The program has extensive error trapping facilities, so the user will be
informed if he tries to break any computing rules or surveying rules. In principle any
input will be processed in a reasonable manner. At any level the user is informed
what action has been taken and messages are displayed when necessary. These
messages are classified into three types: notes, warnings and errors. A note is
displayed when the program has successfully performed a user request. If the
program encounters an error but the program can continue to the next step, a warning
message is given. The error message is displayed when the program encounters an

error that has to be fixed before further processing can be made.

The program is carefully organized and structured so that further development
and extension can be done with ease. In other words, the existing structure and

routines need not be altered or deleted when it is further developed. It is written in
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the standard FORTRAN 77 with 17 self contained subroutines. The program is
compiled using PowerStation FORTRAN which has a facility to use the extended
memory of the computer. This means that it does not limit the memory to 640K
RAM only, as an ordinary FORTRAN compiler does.

There are no external system library subroutines adopted, except one
FORTRAN routine to display the processing time. This short system routine is

clearly highlighted in the source code so that it can be easily erased or freeze when

necessary.
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CHAPTER VI

TESTS AND EVALUATION OF THE CGM PROGRAM

6.1 Introduction

Conjugate gradient is the proposed method for solving cadastral least squares
computations. This method should be rigorously tested to determine if it is a better
alternative to the conventional Cholesky Decomposition method. There are five
objectives in which the tests are carried out in this research:

(1) to prove the validity of setting up the coefficient matrix of the system of
observation equations which contains the only non zero elements,

(2) to prove the validity of setting up the coefficient matrix of the system of normal
equations which contain only the nonzero elements,

(3) to prove the validity of the least squares computation using the CGM,

(4) to evaluate the utilization of computer memory needed for CGM solution, and

(5) to evaluate the speed performance of the CGM program.
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The first three objectives focus on the aspect of validity while the last two
concern with performance of the CGM. -Validity test is to ensure the method gives
right results. The test is fundamental to the iterative CGM because the method is
anew fool in cadastral computation and it may also proned to rounding-off error.
Furthermore, until the method is proven to give correct results, any evaluation of its

performance is meaningless.

Performance evaluation concerns with the question of efficiency of the
implemented computer program in terms of utilization of various computer
resources. The principal resources are memory and time, each of which contributes to
the cost of running a program. The method for minimizing computer storage
resources has been described in Chapters IIl and IV. Memory usage is the amount

of variables needed for the execution of a program while time is the execution speed

of the program.

This chapter is divided into two main parts. Since the performance test is of
no use until the program is proven to be correct and reliable, the first part of this
chapter concerns mainly with the tests carried out for the validity of the implemented
CGM program. The second part of the chapter concerns with the performance of the

method in solving cadastral problems.
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6.2 Validity of the CGM approach

The most important question faced after the program is successfully
compiled is how to determine whether the program gives the correct results.
Confirming the correctness of a program requires a convincing demonstration
whether the program actually satisfies the precise requirements of the problems. This

testing involves executing the program with input data from simulated and real

networks.

Since the CGM program is of an iterative nature, steps should be taken,
especially in the early stage, to make sure the iteration process terminates. If there is
a bug in the program and the process is not converging, excessive computer time
will be used and very little knowledge will be gained. So the initial effort was to

ensure the method is correctly translated into a computer program and it converges.

Validity or correctness is a measure of the closeness of a computed value to
the true value. The present work uses three methods for testing the correctness of
the CGM programs:

(1) the comparisons of the results against some pre-determined values,
(2) the internal numerical check, and

(3) the comparison of the results from a different implementation or approach,

The basis of the first method is solving a preset network whose parameter is

already known, such as the sum of internal angles of a triangle is exactly 180



degrees. The method compares the computer-determined outputs with the true
parameters of the preset network. The true parameters can be obtained by applying

basic mathematical formulae which can be computed by manual calculations.

The second method concerns with internal numerical check within the least
squares computational process itself. Theoretically, there exists a vector, whose
value should be approaching zero if all arithmetic operations within the process are
performed correctly. The vector denoted by ¢ is obtained by following formula.

c=ATWy Eq (5.1)
where ¢ is the check vector
A is the design matrix,
W is the weight of measurements, and
v is the residual of measurements.
The proof of this numerical check vector can be found in Cross (1983). This check
ensures correct computation and solution of the normal equations and also ensure

correct computation of the residuals.

The third kind of validity test is based on comparisons of the results
obtained by CGM with their corresponding values obtained from other computer
programs. There are three programs used to test the results, namely

(1) STAR*NET-PLUS,

(2) CHOLES, and

(3) CGOBS.
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STAR*NET-PLUS is a commercial least squares program which uses the
Cholesky decomposition method. STAR*NET-PLUS is an upgraded program of the
STAR*NET program, and it can perform at least twice as fast as the standard
STAR#-NET program (Starplus Software Inc, 1993). Unfortunately, the program
can only displays results to four decimal places and as such it is considered
insufficient for the purpose of comparing of results. Validity test requires greater
number of decimal places in order to cope with rounding off error and to investigate
the rate of convergence. As an alternative a new program (CHOLES) which uses
the Cholesky decomposition method is created for this purpose. Since this research
investigates CGM in two different approaches (observation equations and normal
equations) there are two programs CGOBS and CGNOM implemented using the

method. These two programs compliment each other.

The above methods have been tested for three types of networks:
(1) network 1: a simulated network with no redundant measurement,
(2) network?2: a simulated network with redundant measurement, and

(3) network 3: a real cadastral network.

The preceeding sections will describe the features of these networks and the

testing procedures that were carried out to determine the validity of the CGM.
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6.2.1 Test network 1

The network is made up of four stations (i.e. stations 1,2,3,and 4) two of
which (j.e. stations 1 and 2) are known points. The coordinate values of the known

points and the measurements are shown in Figure 20.

Uknown pomt
4

Uknown point
3

421
111.803

3.000 100.000
1 N 500 2 N 500
E 500 "E 600

Figure 20: Test network 1.

The network consists of four distance measurements. To suppress the effect
of the weights of each and individual measurements, the variance of each
measurement is set to unity (i.e., weight equals one). This kind of network is useful
for monitoring rate of convergence for iterative method and the effect of rounding-off

errors. Networks with different measurement accuracy is described in section 6.2.3.

The true coordinates of the unknown stations (3 and 4) of such network can
be computed directly by using standard trigonometric formulae, such as the side

formula. In a triangle ABC, the side formula is given by:



sinlA =[
2

(s—b)(s—c)f
be

where a, b, and ¢ are sides of the triangle ABC

Knowing the angle A, bearing A to C can be computed. Using bearing AC and

distance b, coordinates can be determined by:

Using equations (5.2) and (5.3), the coordinate values of the unknown

stations 3 and 4 were computed to twelve decimal, see Table 22. These

s§= (a+b+c)/2

Ec=E,+ Sin,. b

Ne= N, +Cos b

eq(5.2)

eq(5.3)
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coordinates can be considered as true values and they serve as reference values for

testing the CGM.

Table 22: The reference coordinate for test network 1

Station

Northing

Easting

9%

557.838 860 178 516

504.320 445 955 000

599. 999 999 998 731

599.999 496 205 041
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The test on this network proceeds to determine whether the CGM converges

and the resulting parameters are correct, * based on the preset coordinates. To carry

out the tests, the coordinates of stations 3 and 4 were shifted to a new set of values

as shown in Table 23. The shifts are not systematic, witha combination of

positive and negative values with varying magnitude. Two of the shifted

coordinates are exceedingly large as initial coordinates in a practical cadastral

computation. They are purposely introduced for the above tests.
Table 23: Initial coordinates for test network 1
Stn. Initial Initial Shift in Shift in
Northing(m) Easting(m) Northing Easting
3 558.7 498.5 0.8 -5.8
4 622.0 589.1 4220 -10.8

The test network 1 was solved by CGM program CGOBS and CGNOM.

Being an iterative method, the CGM program can be terminated at any specified

tolerance by user. The level of accuracy selected for the test was set to 12 decimal

places. This level of accuracy is considered sufficient for the research in the

behaviour of convergence and the effect of rounding-off error.

The computation started with the initial coordinate values taken from Table

23. The coordinates of the network converged to the true values after four times of

updating the coefficient matrix. The resulting coordinates of the network from both
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programs CGOBS and CGNOM were the same and the values agreed with the
corresponding reference coordinates to at least twelve decimal places. The computed

coordinates and the corresponding reference values are shown in Table 24.

The rates of convergence in the coordinates for both CGOBS and CGNOM
are rapid. After the first update, the starting coordinates were moved to their preset
values within a few meters. The second updates brought the coordinates nearer to
their true values, that is, within tenths of millimeters. After the third update, the
coordinates are correct to one thousandth of a millimeter and the correction in the

forth update is negligible. The rate of change of corrections to coordinates for

CGOBS and CGNOM are shown in Figure 21 and Figure 22 respectively.

Table 24: CGM coordinates and the reference coordinates.

Northing station 3

Easting station 3

Reference coordinates

557.838 860 178 516

504.320 445 955 000

CGOBS 557.838 860 178 516 504.320 445 955 000
CGNOM 557.838 860 178 516 504.320 445 955 000
Difference 0.000 000 000 000 0.000 000 000 000

Northing station 4

Easting station 4

Reference coordinates

599.999 999 998 731

599.999 496 205 000

CGOBS

599.999 999 998 731

599.999 496 205 000

CGNOM

599.999 999 998 731

599.999 496 205 000

Difference

0.000 000 000 000

0.000 000 000 000
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Change in coordinate(m) station 3
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Figure 21: Rates of change of coordinate in CGOBS
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Change in coordinate(m) station 3
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Figure 22: Rates of change of coordinate in CGNOM
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Considering the results produced by the CGM program, the following
conclusions can be made:
(1) the CGM is correctly translated in the computer pro gram.
(2) the CGM converged and the answer is correct to at least twelve decimal places.
(3) the rounding offerror is negligible in CGM.

(4) the rates of convergence in CGM is rapid.

6.2.2 Test network 2

The configuration of the second test network is similar to the first test
network, except that it contains four new bearings in addition to the existing
distances. The network has four redundant measurements and it becomes an over-
determined network which requires the use of least squares method to determine its

coordinates. The network is depicted in Figure 23.

The measurements were derived from the true coordinates obtained from the
first test and therefore all the measurements ( including the distances) fit exactly with
geometry of the network. Such a network has three distinct features:

(1) all residuals should be of zero value,
(2) unit variance should be of zero value, and

(3) coordinates should converge to the preset values.



Uknown point

Uknown point

-

416 19.0027 4.,

1 N 500
E 500

Figure 23: Test network 2.

The network is computed by CGOBS, CGNOM and CHOLES. The initial
coordinates of network 1 (as listed in Table 23) were used as the starting
coordinates. The solution converged to their preset coordinates, and they are similar
to the results of the first network, see Table 24. The residuals and unit variance

converged closed to zero value, that is to six decimal places as shown in Table 25,

Since network 2 has redundant measurements, the computations involved a
system of over-determined equations. Solving over-determined equations require the

use of the least squares method. The computation involved manipulations and

[48
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operations of equations that were set up and optimized by the method as being
proposed in this research. Based on the least squares parameters derived from the
programs, the following conclusions can be made:

(1) The methodology in setting up the observation equations is correct.

(2) The methodology‘in setting up the normal equations is correct.

(3) The computation of least squares parameters (coordinates, residuals and unit

variance) are correct.

Table 25: The computed residuals for test network 2

Observation at to CGOBS CGNOM CHOLES

(1) Northing 1 0.000000 m 0.000000 m 0.000000 m
(2) Easting I 0.000000 m 0.000000 m 0.000000m
(3)Northing 2 0.000000 m 0.000000 m 0.000000 m
(4)Easting 2 0.000000 m 0.000000 m - | 0.000000 m

(5) Distance l 3 0.000001 m 0.000001 m 0.000001 m

(6) Distance 1 4 0.000000 m 0.000000 m 0.000000 m

0.000000 m 0.000000 m 0.000000 m

L

(7) Distance 2

0.000000 m 0.000000 m 0.000000 m

[§8]
B

(8) Distance

(9) Bearing 1 3 0.00000 sec 0.00000 sec 0.000000 sec

(10) Bearing 1 4 0.00000 sec 0.00000 sec 0.000000 sec

=

0.00000 sec 0.00000 sec 0.000000 sec

LJ

(12) Bearing 2

0.00000 sec 0.00000 sec 0.000000 sec

(28]
B

(13) Bearing

4 0.00000 sec 0.00000 sec 0.000000 sec

(V5]

(14) Bearing

Unit variance= 0.000 000 016
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6.2.3 Test network 3

This network is a real and typical cadastral network. It is a section of a
certified plan PA01-045948 of Mukim Pulai in the State of Johore, Malaysia, see
Figure 24. The network consists of 25 stations, two of which are known stations. It
consists of 78 measurements, i.e. 4 coordinate values (i.e. northing and easting of
the two known coordinates), 37 distances and 37 bearings. The number of unknowns

is 50 and, therefore, the network has 32 redundant measurements.

Unlike the previous test networks, the third network has no preset
parameters. Since the network is a real network with redundant measurements
measured to various accuracy levels, the coordinates of the stations can no longer
can be determined in advance by simple non-rigorous trigonometric methods. The
coordinates must be estimated by the rigorous least squares computation process. In
this case, there are two ways to test the correctness of the CGM implementation:

(a) comparing results from another independent and established method, and

(b) verify the value of the numerical check vector ¢ (i.e equation 5.1 ).

The network was computed using the three least squares programs:
CGNOM, CHOLES, and STAR*NET-PLUS. CGOBS was not used since previous
tests proved that the result will be similar to CGNOM. The results obtained from
the three programs CGNOM, CHOLES and STAR*NET-PLUS were almost
identical. The output of CGNOM and CHOLES agreed to twelve decimal places.

However, comparison with STAR*NET-PLUS was limited to four decimal places
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since the program can only displays to four decimal places. The resulting coordinates

are listed in Tables 26 and 27 for northing and easting respectively.

The residuals of all 78 measurements obtained from the three programs
agree to at least twelve decimal places. However, the comparison with
STAR*NET-PLUS is limited to two decimal places for bearings and four decimal
places for distances. The resulting residuals are listed in Table 28. [ Note that only

25 residuals out of the 78 measurements are shown].

The numerical check vector ¢= AT™Wv as in eq(5.1) was computed in
CGNOM. All the 50 elements are less than 0.0000004; see Table 29. Note that only

25 elements of the 50 elements of the vector are presented.

The program has been checked and tested usingl real and simulated data and
was confirmed to be properly implemented. The above results provide a conclusive
evidence that the CGM is a valid method for solving least squares equations in
cadastral computation. The results from the above tests clearly proved that the

effect of rounding-off error in the iterative CGM is insignificant.
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Figure 24: Test network 3



Table 26: Northings for test network 3.

Stn ,CGNOM CHOLES STAR*NET-PLUS
Northing(A) # Northing(B) Norhing(C)
I -53507.275116780490 -53507.2751 16780490 -53507.2751
2 -53489.170736119920 -53489.170736119920 -53489.1707
3 -53471.046558993190 -33471.046558993190 -33471.0466
4 -53452.922964093630 -53452.922964093630 -53452.9230
5 -53434.809230423300 -53434.809230423300 -53434.8092
6 -53419.707559556720 -53419.707559556720 -53419.7076
7 -53414.816498587670 -53414.816498587670 -53414.8165
8 -53415.260019481590 -53415.260019481590 -53415.2600
9 -53415.653626367670 -53415.653626367670 -53415.6536
10 -53423.613496015040 -53423.613496015040 -53423.6135
11 -53435.906576688630 -53435.906576688630 -53435.9066
12 -53453.010003498280 -53453.010003498280 -53453.0100
13 -53472.112752317560 -33472.112752317560 -53472.1128
14 -53490.2 14898566440 -53490.214898566440 -53490.2149
15 -53508.317679942900 -33508.317679942900 -53508.3177
16 -53507.798899740890 -53507.798899740890 -33507.7989
17 -53489.692751319080 -53489.692751319080 -53489.6928
18 -53471.585770739070 -53471.585770739070 -53471.5858
19 -53453.478811304310 -53453.478811304310 -53453.4788
20 -53435.372651371250 -53435.372651371250 -53435.3727
21 -33514.318008317750 -53514.318008317750 -53514.3180
22 -53514.282697550610 -53514.282697550610 -53514.2827
23 -53526.351231112700 -53526.351231112700 -33526.3512
24 -53525.905348903040 -53525.905348903040 -53525.9053

-53525.379373632330

-53525.379373632330




Table 27: Eastings for test network 3.
STN | CGNOM CHOLES STAR*NET-PLUS
Easting ( A) - Easting(B) Easting (C)
Il 2599.470093677401 2599.470093677401 2599.4701
2 2559.79798465 1758 2559.797984651758 2559.7980
3 2600.125802159478 2600. 125892159478 2600.1259
4 2600.452490510777 2600.452490510777 2600.4525
B 2600.776910413995 2600.776910413995 2600.7769
6 2601.047418378889 2601.047418378889 2601.0474
5 2606.114663735923 2606.114663735923 2606.1147
8 2631.308397002805 2631.308397002805 2631.3084
9 2653.682806981984 2653.682806981984 2653.6828
[0 | 2661.362909214741 2661.362909214741 2661.3629
11 | 2661.146148997452 2661.146148997452 2661.1461
12 | 2660.826562108034 2660.826562108034 2660.8266
13 | 2660.506938472450 2660.506938472450 2660.5069
14 | 2660.186989846703 2660.186989846703 2660.1870
I5 | 2659.868081267265 2659.868081267265 2659.8681
16 | 2629.638986012726 2629.638986012726 2629.6390
17 | 2629.974710706294 2629.974710706294 2629.9747
I8 | 2630.289743222131 2630.289743222151 2630.2807
19 | 2630.616407465746 2630.616407465746 2630.6164
20 | 2630.044226830066 2630.944226830066 2630.9442
21 | 2659.762473660395 2659.762473660395 7659.7625
22 | 2657.750801191611 2657.750801191611 2657.7508
23 | 2657.538494366237 2657.538494366237 2657.5384
24 | 2629.311964186716 2629311964186716 26293120
25 | 2599.143193018016 2599.143193018016 2599 1432




Table 28: Residuals for test network 3.

. CGNOM CHOLES STAR*NET
Measurement Resid: (A) Resid.(B) Resid.C)
1.East (m) 024193018015 .024193018015 .0242
2.North(m) 019626367669 019626367669 .0196
3.East(m) -.024193018015 -.024193018015 -.0242
4.North(m) 019626636676 - 019626636676 -.0196.
5.Dist (m) 004349656811 004349656811 .0043
6.Brg(sec) 35.282429405150 35.282429405150 35.28
7. Dist {m) 004143289607 004143289607 .0041
8. Brg(sec) 31.391464977695 31.391464977695 3139
9. Dist (m) 0.00353730251 0.00353730251 0.0035
10. Brg(sec) 16.616690991622 16.616690991622 16.62
11.Dist (m) .003638653836 003638653886 .0036
12. Brg(scc) 3.841149763650 3.841149763650 3.84
13. Dist (m) 0020933392837 0020933392837 L0021
14. Brg(sec) 4.313504988777 4.313504988777 431
15. Dist (my) .001687903872 .001687903872 .0017
16 Brg(sec) -1.101636894G19 -1.101636894619 -1.10
17. Dist (m) 001636927025 001636927025 .0016
18. Brg(sec) -9.204142830295 -9.204142830295 -9.20
19. Dist (m) 002871844685 .002871844685 .0029
20. Brg(sec) -11.798199425729 -11.798199425729 ~11.80
21. Dist (m) -.003100619356 -003100619356 -0031
22. Brg(sec) 19.266084362017 19.266084362017 19.27
23. Dist (m) 001991359134 001991559134 .0020
24. Brg(sec) 6.62881946360 6.62881946360 6.63
25. Dist (m) 001247486218 001247486218 0012

Ln

w



Table 29: Numerical check vector for test network 3

Measurement CGNOM
5 ATWy

1 -.000000008
2 .000000475
3 -.000000014
4 000000441
5 -.00000044
6 .000000468
7 -.000000022
8 .000000080
9 .000000005
10 -.000000334
11 .000000133
12 .000000020
13 .000000140
14 -.000000383
15 -.000000034
16 .0000000365
17 0000000067
18 0000000432
19 -.00000001 75
20 -.0000000158
2] -.0000000137
22 -.0000000791
23 -.0000000188
24 -.0000000608
25 -.0000000017
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6.3 Performance of the CGM

Performance of a computer method is based on the efficiency of managing
computer resources. Two principal resources are memory and time, each of which
contributes to the cost of running a computer program. Time is the speed of
executing the program and the memory is the amount of storage used during the
computation process. The performance in solving cadastral least squares
computation depends primarily on the -size and geometry of a network. The
network size is the number of stations while the geometry is the shape and the

amount of connections found in the network.

To evaluate the performance of the CGM, eight simulated networks were
created, i.e networks 4, 5, 6, 7, 8, 9, 10, and 11. A computer program called
‘DATA’ was written to generate these networks. Th'e geometry of each of the
networks 4, 5, 6 and 7 is in the form of squares interconnected with bearings and
distances, as shown in Figure 25. The other four networks are also in the form of
squares with additional measurements along the diagonals, as shown in Fi gure 26.
Additional data for the networks, whose sizes vary between 3000 to 20000

stations are given in Table 30.

Bearing and
distance for
each line

Figure 25: Geometry of Network 456, &7
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Figure 26: Geometry of Networks 8,9,10 & 11

Table 30: List of network for testing the performance of CGM

Number of Number of Network geometry
Stations measurements
Network 4 3000 11744 squares
Network 5 9000 35624 squares
Network 6 15000 59504 squares
Network 7 20000 79404 squares
Network 8 3000 17486 squares + diagonals
Network 9 9000 53246 squares + diagonals
Network 10 15000 89008 squares + diagonals
Network 11 20000 118808 squares + diagonals
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6.4 Measuring storage space

The first aspect of the performance is the evaluation of computer memory
storage, used by the computer to process the computation. The amount of memory
storage will depend on the number of arrays assigned for the program. The arrays in
least squares computation can be divided into two groups:

(a) the arrays for processing and presenting the least squares results.

(b) the arrays for storing and solving the linear equations.

The arrays within the first group are for processing and presenting the least
squares method. These arrays are one-dimensional filled arrays, that is, they contain

no zero terms, and thus they cannot be compressed or restructured to reduce their

dimensions.

The second group of arrays are those for storing and processing the linear
equations Ax=b (as in the case of observation equations) and Nx =d (for the

normal equations). The bulk of the storage lies in the coefficient matrix A or N,

6.4.1 Number of elements in observation equations
The approach for constructing observation equation presented in Chapter 3 is
found to save tremendous amount of storage. The total elements in vector a is less

than one percent of the elements in the original matrix A, for the networks 4 to 11.
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For example, the square grid network 4, consisting of 3000 stations
(6000 unknowns) with 11744 measurements would have in matrix A 70,464
million elements (i.e. 11744 x 6000). The same network only generated 46976
elements (i.e. 4 x 11744) using eq.(3.9). This figure represents less than 0.07
percent of all the locations in matrix A, and thus a saving of 99.93 percent. A
saving of at least 74 percent can be obtained compared to half-bandwidth
optimization scheme (say, bandwidth is 0.5% of unknowns) which would need

180,000 elements (i.e. 30 x 6000).

Figure 27a summarizes the saving of the elements in the observation
equations compared to the banded optimization scheme. For networks with greater
number of connections and irregular bearing and distance measurements, such as
networks 8 to 11, the minimum bandwidth would become much wider and thus

generate larger elements within the band, see Figure 27b.

6.4.2 Storage of normal equations

The second approach of CGM is the processing of normal equations Nx =
d. The bulk of the storage lies in the coefficient matrix N of the equation. However,
it has been substantially reduced to vector n containing only the nonzero coefficients

within the upper triangle of matrix N. Vector x and d are filled arrays.
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Figure 27a: Number of elements for Networks 4 to 7: Observation equations versus
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Figure 27b: Number of elements for Networks § to 11: Observation equations
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Since matrix N in cadastral application is very sparse, the number of
elements in coefficient vector n is relatively small compared to the full matrix N.
For example, a rectangular grid network with 3000 stations (i.e., 6000 unknowns)
would have 36 million elements ( i.e. 6000 x 6000 ) in matrix N, whereas the same
network with 9640 connections (i.e. adjacency number) would generate 32560
elements (i.e. 4 x 9640 - 6000) using eq. (4.6). This figure represents less than 0.09
percent of the 36 million locations in matrix N, and thus a saving of 99.94 percent.
The further saving of 82 percent can be obtained if compared to half-bandwidth
optimization scheme ( say, bandwidth is 0.5% of unknowns) which would need
180,000 elements (i.e. 30 x 6000). Figures 28a & 28b summarize the saving of the

above approach as compared to the bandwidth optimization scheme.
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Figure 28a: Number of elements of Networks 4 to 7 : Normal equations versus

banded scheme
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Figure 28b: Number of elements for Networks 8 to 11: Normal equation versus

banded scheme

6.5 Speed of execution

The execution speed of a program depends mainly on the algorithm of the
method and the computer hardware. There is not much can be done with the
computer hardware except getting access to a much powerful computer when they
are available. However, the algorithms within a program can be manipulated to
minimize the execution time. The actual time for processing a survey network
depends upon several factors which include network size and geometry, the number

of interconnections, the type of measurements, and the quality of results.
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The test networks 4 to 11 were computed using CGOBS, CGNOM and
STAR*NET-PLUS. The performance of CGOBS and CGNOM can be compared
directly since both programs have similar features. Unfortunately, the output of
STAR*NET-PLUS cannot be compared directly with those from the CGM programs,
because the two programs were designed for different purposes. STAR*NET-PLUS
computes a variety of geodetic values, besides the fundamental parameters
(coordinates, residuals and unit variances) derived from the CGOBS or CGNOM.
However, these additional computations are not time-consuming. The CGM pro gram
produces results in a format suitable for GIS applications. For instance, the

CGNOM results were written in a format acceptable by a GIS software MAPINFO.

In addition, STAR*NET-PLUS imposes limits on the size of a network to
10000 stations only. CGOBS and CGNOM can process network virtually of any
size, and the only constraint is the limitation of compute.r memory. Computations on
networks up to 40000 stations, on PC based computer with Pentium processor has
been successfully carried out, although it took nearly one and a half hour to
complete the solution. For small networks (less than 3000 stations), the three
programs performed almost of the same speed. However, as the size of a network
increases, the CGM shows Dbetter performance. Generally, CGOBS and CGNOM
computes survey network at least one and a half times faster than the optimized
STAR*NET-PLUS, as indicated in Figure 29a. This is a pessimistic figure because
banded solutions are very good at regular squared networks. The time difference is

longer for networks with larger numbers of connections, as shown in Fi gure 29b.
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6.6 Validity and performance of CGOBS and CGNOM

Both programs CGOBS (solving the observation equations) and CGNOM
(solving the normal equations) have shown to produce valid results. The solution of
all networks (1 to 11) using the two approaches agreed to 12 decimal places. The
output from the test networks 1,2 and 3 are shown in Tables 24-29,
but the output of the networks 4 to 11 whose total stations ranges from 3000 to
20000 are not presented, to save space. All the results from the two program

CGOBS and CGNOM proved that the effect of rounding-off error in CGM is

insignificant.

The performance of CGOBS and CGNOM are almost the same for small
networks (say less than 3000 stations), but for larger networks, CGNOM showed to
be more efficient than CGOBS in term of computer storége and execution time.
GNOM stores smaller amount of nonzero elements than the CGOBS. Therefore, the
length of vector n which stores the elements of the coefficient matrix of CGNOM is
longer than the vector a which stores the elements of CGNORBS. The length of
these two vectors for networks 4 to 11 are shown in Figures 30a & 30b. On

average, the length of vector n is 35% less than the length of vector a.

In terms of speed, CGNOM is one and a half times faster than CGOBS, as
indicated in Figures 29a & 29b. The number of iterations in CGOBS being less
than that of CGNOM, see Figures 31a & 31b indicates that the time to complete an

iteration in CGOBS is longer than the time taken by CGNOM. This is because, as
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per iteration, the number of arithmetic operations in CGOBS is greater than in
CGNOM. CGOBS has two major matrix. operations (see Table 8) while CGNOM
has only one matrix operation (see Table 20) to complete an iteration. On the other
hand, the process of creating the system of linear equations from the measurements
is simpler in CGOBS. CGNOM has to transform the observation equations into
normal equations before CGM is used to solve for the unknowns. However, the
transformation process is shorter as compared to the additional matrix operations

carried out in the observation equations approach.
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Figure 30b: Number of elements for Networks 8 to 11: CGNOM versus CGOBS

Although the approach of solving the observation equations was found to be
less efficient than that of solving normal equations, this is only true for the case of
cadastral networks. Note that the system of equations in cadastral networks are
actually non-linear systems. They are linearized in the form of the observation
equations and later transformed to normal equations. The approach of directly
solving the observation equations using the CGM is a new and unique approach,
and it is still has some potentials for optimizing special survey networks particularly
which generate linear systems. Such a network is found in levelling survey, and
recently in modern GPS survey which produces baselines vectors (DX, DY, DZ).
Since GPS is becoming a common tool for today’s survey operations and in the near
future, the solution of the observation equation by the CGM can be an important tool

towards total network optimization.
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