
 VOT 72179

PARALLEL PROCESSING MODELS FOR IMAGE PROCESSING PROBLEMS

SHAHARUDDIN SALLEH

BAHROM SANUGI

JABATAN MATEMATIK

FAKULTI SAINS

UNIVERSITI TEKNOLOGI MALAYSIA

2003

 ii

DEDICATION AND ACKNOWLEDGEMENT

This research has been conducted mostly at the Department of Mathematics, Faculty of

Science, Universiti Teknologi Malaysia. Part of the work was done at the Department of

Computer Science, Old Dominion University, USA. The authors would like to thank the

University for providing the moral and financial support in the form of the Malaysian

Government IRPA Grant no. 72179.

 iii

ABSTRACT

This report is the compilation of our research work under IRPA Vot no. 72179. The work

consists of four main problems of study. First, we look at the stochastic task scheduling

problem using the reconfigurable mesh network as the computing platform. Through our

model called the Dynamic Simulator on Reconfigurable Mesh (DSRM) which maps a

randomly generated number of tasks onto the processors at discrete time, some

reasonably good load balancing results were obtained. The second problem is the

application of the first model in the edge detection problem using the Laplacian

convolution method on the same parallel computing network. In the third problem, we

extend the scope to include a strategy for the single-row routing of pins and vias in VLSI

design, using our model called the Enhanced Simulated annealing for Single-row Routing

(ESSR). This model is the parallel implementation of the simulated annealing method,

and it generates optimum solutions to the problem. The fourth problem is the extension of

the single-row routing problem, where a model has been developed to transform a

complete graph into its single-row representation. This last problem has some significant

contributions in applications such as scheduling and channel assignment problem in

cellular telephone systems.

 iv

ABSTRAK

Laporan ini mengandungi kerja-kerja penyelidikan kami di bawah peruntukan IRPA Vot

no. 72179. Kajian terbahagi kepada empat masalah utama. Pertamanya, kami mengkaji

masalah penjadualan kerja menggunakan rangkaian jaring boleh-konfigurasi. Model

kami, dipanggil DSRM (Dynamic Simulator on Reconfigurable Mesh), berjaya

menghasilkan satu sistem penjadualan yang baik yang memeta kerja-kerja secara rawak

dengan pengseimbangan beban. Masalah kedua adalah mengenai aplikasi daripada

masalah pertama terhadap masalah pencarian sempadan bagi suatu imej menggunakan

teknik konvolusi Laplacian pada rangkaian komputer selari yang sama. Dalam masalah

ketiga, kami mengkaji masalah pencarian laluan baris-tunggal dalam pembangunan

VLSI, menggunakan suatu kaedah dipanggil ESSR (Enhanced Simulated annealing for

Single-row Routing). ESSR merupakan model kami yang mengimplementasi kaedah

penyelindapan simulasi secara selari, untuk menghasilkan keputusan yang optimum.

Masalah keempat merupakan sambungan daripada masalah ketiga, di mana teknik ESSR

digunakan untuk menjelma suatu graf lengkap kepada bentuk masalah laluan baris-

tunggal.

 v

TABLE OF CONTENTS

COVER i

DEDICATION AND ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABSTRAK iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES x

SYMBOLS AND NOTATIONS xi

CH. SUBJECT PAGE

1. RESEARCH FRAMEWORK

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives of Research 4

1.4 Scope of the Study 4

1.5 Report Outline 4

2. RECONFIGURABLE MESH COMPUTING NETWORKS

2.1 Introduction 6

2.2 Why do we need a parallel computer? 8

2.3 Parallel processing paradigms 12

 vi

2.4 Memory computational models 15

2.5 Processor organization/topology 17

2.6 Reconfigurable mesh network (Rmesh) 18

2.7 Sorting algorithm example on Rmesh 23

3. DYNAMIC MULTIPROCESSOR SCHEDULING ON RMESH

3.1 Introduction 26

3.2 Dynamic task scheduling problem 28

3.3 Reconfigurable mesh computing model 31

3.4 Simulation and analysis of results 36

3.5 Summary and conclusion 39

4. RMESH MODEL FOR THE EDGE DETECTION PROBLEM

4.1 Introduction 40

4.2 Edge detection problem 41

4.3 Reconfigurable mesh computing model 43

4.4 RM model for detecting the edges 44

4.5 Summary and conclusion 46

5. SINGLE-ROW ROUTING USING ESSR

5.1 Introduction 47

5.2 Problem background 48

5.3 Review of state of the art 57

5.4 Enhanced simulated annealing approach 60

5.5 Experimental results and analysis 68

5.6 Summary and conclusion 70

6. SINGLE-ROW TRANSFORMATION OF COMPLETE GRAPHS

6.1 Introduction 71

 vii

6.2 Problem formulation 73

6.3 Complete graph partitioning strategy 74

6.4 Application of the frequency assignment problem 82

6.5 Summay and conclusion 83

7. SUMMARY AND FUTURE WORK

7.1 Summary of results 84

7.2 Open issues and proposal for future work 86

APPENDIX 88

REFERENCES 89

LIST OF PUBLICATIONS 93

 viii

LIST OF FIGURES

 Page

Figure 2.1: a conventional processor 10

Figure 2.2: A pipelined processor 11

Figure 2.3: SISD Model 12

Figure 2.4: SIMD Model 14

Figure 2.5: MIMD Model 14

Figure 2.6: The RAM model of sequential computation 15

Figure 2.7: The PRAM model of parallel computation 16

Figure 2.8: 2-dimensional RMesh with 16 processing elements 19

Figure 2.9: Torus 20

Figure 2.10: Four external ports for a node in a 2-dimensional RMesh network 20

Figure 2.11a: 2D mesh with fixed connection 22

Figure 2.11b : 2D reconfigurable mesh 22

Figure 2.13: A few patterns of the switch connection 23

Figure 2.14: Numbers in descending order from above 25

Figure 3.1: A reconfigurable mesh of size 54 x 27

Fig.3.2: The m/m/c queueing model 30

Fig.3.3: A 44 x reconfigurable mesh network with two subbuses 33

Fig.3.4: Sample run from DSRM 37

Fig. 4.1: A 4 x 4 reconfigurable mesh network with two subbuses 43

Fig. 5.1: Net ordering },,,,{ 45231 NNNNNL = with the reference line 51

Fig. 5.2: Realization from the ordering },,,,{ 45231 NNNNNL = 54

Fig. 5.3(a): Final net ordering based on virtual tracks 58

Fig. 5.3(b): Final realization with 2=Q and 5=D 59

Fig. 5.4(a): Classification according to zones 60

Fig. 5.4(b): Final realization with 2=Q and 6=D 60

Fig. 5.5: An ordering showing net segments and their heights 62

 ix

 Page

Fig. 5.6: ESSR flowchart 65

Fig. 5.7: Comparison between ESSR and SRR-7 67

Fig. 5.8: Final net realization of Example 1 using ESSR 67

Fig. 5.9: Energy against the number of doglegs in ESSR by pivoting Q 69

Fig. 6.1: Formation of nets based on the zones and levels in 5S from 5C 76

Fig. 6.2: Nets ordering with minimum energy, 11=E , of 5C using ESSR 80

Fig. 6.3: Final realization of 5C with 11=E , 3=Q and 1=D 80

Fig. 6.4: Realization of the assignment of 45 nets from 10C from Table 6.2. 81

 x

LIST OF TABLES

 Page

Table 2.1: Numbers to sort 24

Table 3.1: Sample run of 209 successful randomly generated tasks on 16 PEs 38

Table 5.1: Classification of nets in Example 1 58

Table 5.2: Comparison of experimental results 68

Table 6.1: Formation of nets in 5S from 5C 79

Table 6.2: Summary of results for some complete graphs, mC 81

 xi

SYMBOLS AND NOTATIONS

G a graph

mC a complete graph with m vertices

mS single-row representation of mC
Q congestion of the nets in mS
D number of interstreet crossings (doglegs) in mS
E total energy in mS
L partial order of nets arranged from top to bottom in mS

jv vertex j in the graph

jd degree of vertex j in the graph
m number of vertices in the graph

it terminal i

kb left terminal of net k

ke right terminal of net k

kn net k , given as),(kkk ebn =

miyn ,, the i th net in level y in mS

miyb ,, beginning (left) terminal of the i th net in level y in mS

miye ,, end (right) terminal of the i th net in level y in mS

myw , width of every net in level y in mS

myr , number of nets in level y in mS

jz zone j in mS

CHAPTER 1

RESEARCH FRAMEWORK

1.1 Introduction

Numerous problems in science and engineering today require fast algorithms for

implementations and executions on computers. These problems involve massive

computations arising from intensive mathematical calculations with double precisions

variables and large array sizes. The solutions require high degree of accuracy and

constant updates that really take up the maximum capability of the host computers. As a

result, single-processor computers based on the von Nerumann architecture seldom

satisfy all these requirements. Fast computing platforms with large storage area for

processing data in the form of parallel computing networks become the ultimate tools

for solving these types of problems.

 1

In our research, we study various number-crunching problems, formulate them as

solutions in the form of parallel algorithms and then develop these ideas into their

visualization models. The problems of interest in our research include image processing

and routing. We develop the parallel algorithms for these problems and their solutions

in the form of user-friendly softwares.

1.2 Problem Statement

The problem in this study consists of the development of fast algorithms for highly

intractable engineering problems. Three main problems are studied, namely, task

scheduling for parallel computing networks, image processing and routing for the VLSI

design as some of the applications in task scheduling.

In the first problem, we study the task scheduling problem for the parallel

computing network. A task is defined as a unit of job in a computer program. Task

scheduling can be stated as the problem of mapping a set of tasks, T , onto a set of

processing elements, , in a network, with the main objective of completing all the

jobs at the most minimum time. In this work, we study the problem of scheduling

randomly generated tasks on a reconfigurable mesh network. A mesh network consists

of processors arranged in a rectangular array. Each processor in the network has

i

kP

nm x

 2

the processing capability and some storage area for the data. The intermediate processor

communicates with its four neighbors through its east, west, north and south ports.

In the second problem, we study several methods for detecting the edges of an

image. An image consists of a rectangular array of pixels, each with a varying degree of

intensity represented as colours and gray tone scale. The problem of edge detection can

be stated as searching a set of boundary pixels that separate the high and low

intensities of the given image, . Edge detection is one of the most fundamental

components in image analysis, as the method contributes in solving problems such as

object recognition, noise reduction, multiresolution analysis, image restoration and

image reconstruction. Since an image is normally rectangular in shape, the parallel

mesh computing network provides a good platform for its solution. Physically, mesh

network provides an ideal tool for solving the image processing problem as each of its

processor directly maps the pixels of the given image.

),(jib

),(jif

In addition, we also study the routing techniques for the very large scale

integration (VLSI) design problem in the printed circuit board (PCB). In VLSI, two

main problems arise in order to produce a highly compact and integrated design. The

first problem is the placement of millions of minute electronic components into the

small area of the chip. The second problem deals with the development of routes that

connect pairs of these components to allow them to communicate with each other. In

this work, we study and develop a model for the second problem based on the single-

row routing technique.

 3

1.3 Objectives of Research

The objectives of our research are as follows:

1. To promote fundamental research that integrates mathematics with its

applications, especially in areas of engineering and information technology.

2. To develop and promote parallel algorithms and solutions on highly interactive

combinatorial problems, and its simulation and visualization models.

3. To promote learning groups on various problems of this nature in the community.

4. To contribute the ideas to the interested parties in industries for further

collaboration.

1.4 Scope of the Study

Our study is confined to the development of simulation models for task scheduling,

edge detection in image processing and routing problems based on the mesh network.

The work extends to the development of algorithms and user-friendly computer

softwares based on the personal computer Microft Windows environment.

1.5 Report Outline

The report is organized into seven chapters. Chapter one is the research framework

where the problems, objectives and scope of the work are described.

In Chapter two, we describe an overview of the overall parallel computing system,

some common topologies and ideas for the processor parallelization. One particular

interest of the parallel computing system is the reconfigurable mesh network. We

 4

discuss the architecture of the reconfigurable mesh which has ports that can be

configured dynamically according to the requirements of the program.

In Chapter three, we discuss the task scheduling problem on the reconfigurable

mesh network. Task scheduling is a combinatorial optimization problem that is known

to have large interacting degrees of freedom and is generally classified as NP-complete.

Task scheduling is defined as the scheduling of tasks or modules of a program onto a set

of autonomous processing elements (PEs) in a parallel network, so as to meet some

performance objectives.

In Chapter four, we present the edge detection method which is an application of

the task scheduling problem. Edge detection is a technique of getting a boundary line

which holds the key to other image processing requirements, such as object recognition,

image segmentation, and image analysis. We concentrate on the development of the

second-order Laplacian convolution technique on the mesh network for this problem.

Chapter five discusses another application of task scheduling, namely, the single-

row routing problem. In the single-row routing problem, we are given a set of n evenly

spaced terminals (pins or vias) arranged horizontally from left to right in a single row

called the node axis. The problem is to construct nets in the list from the given intervals

according to the design requirements. In this chapter, a model called the Enhanced

Simulated annealing for Single-row Routing (ESSR) is proposed to represent the

solution to the problem.

In Chapter six, we formulate the concept of transforming a complete graph into its

single-row representation. This idea is a significant contribution in the sense that it

generalizes the single-row routing as an effective application from other applications.

Through this technique, any problem that can be represented by a graph is reducible to

its the single-row routing representation.

Finally, Chapter six is the conclusion and suggestions for further research.

 5

 6

CHAPTER 2

RECONFIGURABLE MESH COMPUTING NETWORKS

2.1 INTRODUCTION

Observation, theory, and experimentation are basic action for classical science. All

these will lead to a hypothesis. From that, scientists will develop a theory to explain the

phenomenon and design a physical experiment to test the theory. Usually the results of

the experiment require the scientists either to refine the theory or completely reject it.

And the process will repeat again and again. All this experiments may be too expensive

or time consuming. Some may be unethical or impossible to perform.

Contemporary science, then, is characterized by observation, theory,

experimentation and numerical simulation. Numerical simulation is an increasingly

important tool for scientists. Many important problems are just too complex that solving

them via numerical simulation requires extraordinarily computers. High speed

computers allow scientist to test their hypotheses in another way by developing a

 7

numerical simulation of a phenomenon. Instead of doing physical experiments, they can

save time through effective simulations.

The followings are some of the several categories of complex problems (Levin

1989) that require massive numerical computations:

1. Quantum chemistry, statistical mechanics, and relativistic physics.

2. Cosmology and astrophysics.

3. Computational fluid dynamics and turbulence.

4. Biology, pharmacology, genome sequencing, genetic engineering, protein

folding, enzyme activity and cell modeling.

5. Global weather and environmental modeling.

These entire problems can be solved by the fastest computer in the world which

is built of numerous microprocessors. This computer is also known as parallel

computer. In order to keep up to this high speed computing, studying parallel

algorithms is a necessity today.

This chapter is divided into five sections. Section 2.1 is the introduction, while in

Section 2.2, we discuss the importance of parallel computers. A good analogy is

presented to make the problem easier to understand. Section 2.3 in this chapter reviews

the paradigms of parallel processing. From the Flynn’s taxonomy , the architecture of a

parallel can be classified as SISD, SIMD, MISD, and MIMD. The next section discusses

the memory models of computation which is divided into serial and parallel. In a serial

computational model, the model is called random access machine (RAM), while in

parallel, it is called parallel random access machine (PRAM). Section 2.5 presents the

topology of the network, which is the way processors are organized. The last section is

about the Reconfigurable Mesh network. We discuss the architecture of the

reconfigurable mesh, the differences between a reconfigurable mesh network and the

ordinary mesh network, and lastly an example on the application of reconfigurable mesh

in sorting numbers.

 8

2.2 WHY DO WE NEED PARALLEL COMPUTERS?

The solution to a typical numerical problem in engineering today requires the use of

several large size multi-dimensional arrays, multi-level loops and the thousands of lines

of code, in a single program. As a result, the program needs to be written in a very

systematic manner, with proper software engineering techniques and implementations.

The burden of a single computer system is greatly reducing by distributing the load to

the processors in the system. As a result, the individual processors are not too

overloaded and the same amount of work can be completed in a much faster time with a

network of cooperating processors.

A computer, as described in Zomaya (1996), is a digital electronic device with

either a sequential or parallel design. A sequential computer is a random access memory

model (RAM) that contains one processing element (processor) and an attached main-

memory unit in an architecture known as the von Neumann design. This digital machine

reads and executes instructions and data sequentially using only one processor. In

contrast, a parallel computer consists of a set of at least two computing elements, all of

which are connected in a network so that each one of them will be able to communicate,

and share resources and energy with others in performing a job. The parallel counterpart

to the RAM model, called the parallel random access memory (PRAM), has a set of

synchronous processors connected to a shared memory.

Much of the original contributions to the parallel processing ideas evolves from

the Kolmogorov’s Theorem, presented as follows:

 9

Kolmogorov’s Theorem (Kolmogorov, 1957): Any continuous function f(x1,x2,...,xn) of

n variables x1,x2,...,xn on on the interval In can be represented in the form

f x x x h g xn j ij i
i

n

j

n

(, ,...,) ()1 2
11

2 1

=

==

+

∑∑ (2.1)

where hj and gij’s are continuous functions of one variable. Furthermore, the gij’s are

fixed, monotonic increasing functions that are not dependent on f(x1,x2,...,xn). This

theorem provides a very useful development of parallel algorithms that relate a problem

with its solution in implicit or explicit manner.

A good analogy we can use to describe how the serial and parallel computers

work is in the construction of a house. If there is only one worker who will do all the

entire job (bricklaying, plumbing, and installing wiring, etc) by himself, he is going to

take a very long time to finish a house. All the tasks will be done one by one in a

sequence and this is called the sequential approach which is very slow way. However,

by splitting the tasks to several workers, the construction can be completed much faster.

The workers can be assigned different and independent tasks simultaneously, and this

contributes to faster completion.

If we compare it with modern computers today, we can see that a computer with

a single processor are most likely the house constuction with only a worker. This single

processor which does the computational work such as the addition, multiplication, and

the comparison of two numbers. Programmers divide the computational work into a few

sequence steps (a program) and the sequence will be executed step by step. This is

surely a very slow way to execute a task. Figure 2.1 shows a conventional computer

based on a single processor that illustrates this classical idea.

 10

Figure 2.1: a conventional processor

This reason has lead many computer designers to develop the solution for this

problem. The slowness of the computer in executing a task are caused by the access to

memory. When the data is fetched from the memory, all the processor’s functional unit

that perform the computation must remain idle. After executing, the result must be sent

to the memory and again, this will involve some extra overhead. Another problem

arises when the processor needs to fetch more than one operand at the same time. While

the first operand is fetched, the second operand must wait until the first has completed

its job. A solution to this problem lies in a co-operative system called interleaved

memory. Interleaved memory consists of a small number of separately accessible

memory units. In this system, several units of memory can be accessed at the same time

through separate channels. Data too can be fetched without having to wait for channels

to clear first.

Another reason that causes the slowness in a computer is the tedious process of

computations. Imagine a very large number to be multiply with another large number,

of course, it will take a few small steps before the computation can be done. In a

conventional computer, this step is done in a way which cause some processor idle

while waiting for a task to be executed. A pipelined processor, as shown in Figure 2.2,

3.65 × 104 ×
4.45 × 103

104+3

3.65 × 4.45
= 16.24

16.24 × 107

= 1.62 × 108

 11

can be used to solve this problem. It is effective for applications that require many

repetitions of the same operation.

Figure 2.2: A pipelined processor

The same house construction anology can also apply in parallel computer. It

seems like parallel when there are many workers doing different parts of the job. What

makes the system is good is because each individual has several function unit. All the

workers are differentiate by their speciality either in doing bricklaying, plumbing or

wiring. This system is also said to have a coarse grain size because the tasks assigned to

each worker are in certain amount. These people are similar with processors in the

parallel computer.

The laborers are communicated with each other. For example, bricklayers

working next to each other must stay in close communication to make sure the build a

uniform wall between section. This is called the nearest-network topology. However,

such a system can lead to overhead because while sending the message to each other, the

workers may talk a lot and do less job. That is why there must be another good

topology that can overcome this bottleneck.

3.65 × 104 ×
4.45 × 103

104+3 = 107

4.71 × 102 ×
5.20 × 105

8.39 × 106 ×
1.05 × 103

102+5 = 107

2.55×102 ×
6.11 ×109

106+3 = 109

4.71 × 5.20
= 24.49

3.65 × 4.45
= 16.24

16.24 × 107

= 1.62 × 108

 12

2.3 PARALLEL PROCESSING PARADIGMS

Computers operate simply by executing a set of instructions on a given data. A stream

of instructions inform the computer of what to do at each step. From the concepts of

instruction stream and data stream, Flynn (Flynn, 1972) classified the architecture of a

computer into four. Instruction stream is a sequence of instructions performed by a

computer; a data stream is a sequence of data manipulated by an instruction stream.

The four classes of computers are:

• Single instruction stream, single data stream (SISD)

• Single instruction stream, multiple data stream (SIMD)

• Multiple instruction stream, single data stream (MISD)

• Multiple instruction stream, multiple data stream (MIMD)

2.3.1 Single instruction stream, single data stream (SISD)

Most serial computers belong to the SISD class that have been designed based on the

von Neumann architecture. In such computers, the instructions are executed

sequentially which means the computer executes one operation at a time. The algorithm

used in this class is known as a sequential algorithm. Although a SISD computer may

have multiple functional units, there are still under the direction of a single control unit.

Figure 2.3 illustrates a SISD computer.

Figure 2.3: SISD

 Data stream Instruction
stream

Control
Unit

Processing
Unit

Memory

 13

2.3.2 Single instruction stream, multiple data stream (SIMD)

SIMD machines consist of N processors, N memory, an interconnection network and a

control unit. All the processor elements in the machine are supervised by the same

control unit. These processors will be executing the same instruction at the same time

but on different data. In terms of memory organization, these computers are classified

as shared memory or local memory. To get an optimal performance, SIMD machines

need a good algorithm to manipulate many data by sending instruction to all processors.

Processor arrays fall into this category.

2.3.3 Multiple instruction stream, single data stream (MISD)

Among all four, MISD is the least popular model for building commercial parallel

machine. Each processor in MISD machine has its own control unit and shares a

common memory unit where data reside. Parallelism is realized by enabling each

processor to perform a different operation on the same data at the same time. Systolic

arrays are known to belong to this class of architectures. Systolic means a rhythmic

contraction. A systolic array is a parallel computer that rhythmically ‘pumps’ data from

processor to processor. The might be some changes in the data everytime it goes

through the processors because each processor may modify the data before passing it to

the next processor. Figure 2.4 shows a typical network based on the SIMD model.

 14

Figure 2.4: SIMD Model

2.3.4 Multiple instruction stream, multiple data stream (MIMD)

MIMD machines are the most general and powerful system that implements the

paradigm of parallel computing. In MIMD, there are N processors, N streams of

instructions and N streams of data. As shown in Figure 2.5, each processor in MIMD

has its own control unit.

Figure 2.5: MIMD Model

Data
Stream n

Data
Stream 2

Instruction
Stream

Data
Stream 1

Control
Unit

Processing
Unit 1

Processing
Unit 2

Processing
Unit n

.....................................

Memory

Instruction Stream

.........................

.........................

Data
Stream 2

Instruction
Stream 2

Instruction
Stream n

Data
Stream n

Instruction
Stream 1

Data
Stream 1

Control
Unit

Processing
Unit 1

Processing
Unit 2

Processing
Unit n

Memory

Control
Unit

Control
Unit

 15

2.4 MEMORY COMPUTATIONAL MODELS

There are two models of computation. First is the serial model of computation while the

other one is the parallel model of computation. The random access memory (RAM), as

shown in Figure 2.6, is the sequential model of computation. The model consists of a

memory, a read-only input tape, a write-only output tape, and a program.

.

Figure 2.6: The RAM model of sequential computation

Parallel processing actually is information processing that emphasizes the

concurrent manipulation of data elements belonging to one or more processors solving a

single problem. While a parallel computer is a multiple processor computer capable of

parallel processing. A theoretical model for parallel computation is the parallel random

access machine (PRAM).

 Read-only
 input tape

 Write-only
 output tape

 r0 Accumulator
 r1

 r2
 r3

 Memory

Location
counter

Program

x1 x2 x3 xn

y1 y2 y3

 16

The PRAM model, as shown in Figure 2.7, allows parallel-algorithm designers

to treat processsing power as an unlimited resource, much as programmers of computers

with virtual memory are allowed to treat memory as an unlimited resource. It is

unrealistically simple which means it ignores the complexity of interprocessor

communication. By doing that, it can focus on the parallelism inherent in a particular

computation. A PRAM consists of a control unit, global memory, and an unbounded set

of processors, each with it’s own private memory. A PRAM computation begins with

the input stored in global memory and a single active processing element. During each

step of the computation an active, enabled processor may read a calue from a single

private or global memory location, perform a single RAM operation and write into one

local or may activate another processor.

Figure 2.7: The PRAM model of parallel computation

PE1 memory
PE2 memory

PE3 memory
PE4 memory

Global (shared) memory

Control

 17

2.5 PROCESSOR ORGANIZATIONS / TOPOLOGY

The topology of a network describes how processors are distributed and organized in it.

In terms of graph, the processors are represented as nodes and the edges linking any

pair of nodes in the graph are the communication links between the two processors (El-

Rewini et al., 1992). Some common types of processor organizations include the mesh,

binary trees, hypertree, butterfly, pyramid, hypercubes, shuffle-exchange and the De

Bruijn model.

These processor organizations are evaluated according to criteria that help

determine their practicality and versatility. The criteria include:

1. Diameter

 The diameter of a network is the largest distance between two nodes.

2. Bisection width

The bisection width of a network is the minimum number of edges that

must be removed in order to divide the network into two halves.

3. Number of edges per nodes

The number of edges per nodes should be maintained as a constant

independent of the network size. This is because it would be easier for the

processor organizations to scale the system with large number of nodes.

4. Maximum edge length

It is best if the nodes and edges of the network can be laid out in three

dimensional space. By doing this, the maximum edge length can be a

constant independent of the network size.

 18

In this chapter, we focus on the reconfigurable mesh (RMesh) network as a

platform for solving the task scheduling, image processing and routing problems. Mesh-

based architectures have attracted strong interest because of the following reasons:

• The wiring cost is cheap as the complexity is lower compared to other

models, such as the hypercube.

• It has a close match for direct mapping on many application problems, such

as in task scheduling and image processing.

A regular mesh of size NN × has a communication diameter equals to

)1(2 −N . The time needed by this network to solve problem like comparing or

combining data is)(NO . To improve the time complexity, that is to get the most

minimun computation time, researchers have studied a new architecture based on a 2 or

3 dimensional mesh which provide additional communication links between the

processors of the mesh.

2.6 RECONFIGURABLE MESH NETWORK (RMESH)

Reconfigurable mesh is a theoretical parallel computing model which is being used to

develop parallel algorithms independent of the hardware factors (Miller and Prasanna-

Kumar, 1993). Several fast algorithms for the reconfigurable mesh networks have been

developed, among others, as in Stout (1992) for the padded sort problem, and Olariu et

al. (1993) for the component labelling and convex hull construction problem . These

applications contribute in the design of high-performance central processing units (CPU)

and other very large-scale integration VLSI circuits. A suitable realization for this model

is the message-passing transputer-based system where each transputer represents a

processing element with memory module each, and has communication links with other

transputer. The architectures allow the network topology to change dynamically as

required by the algorithm. As the result, the interprocesser communication will be more

flexible and efficient.

 19

2.6.1 Reconfigurable Mesh Architecture

In a reconfigurable mesh network, the processors are arranged into n-dimensional arrays

of processors (Olariu et al., 1993). Figure 2.8 shows a 2-dimensional RMesh. Torus, as

shown in Figure 2.9 occurs when wraparound connection are present. Wraparound

connection means the connection of the processors at the edge with processors at the

another edge of the same row or column. For example, processors on the first row are

connected through their north ports to the south ports of processors in the last row.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 Figure 2.8: 2-dimensional RMesh with 16 processing elements

 20

 Figure 2.9: Torus

The computational model in Figure 2.8 shows a 44 × network of 16 processing

elements, PE[k], for k = 1, 2, …., 16. For the n-dimensional mesh, each processing

element in the network has n2 external ports. As this model is a two-dimensional

network, each processing element has 4 external ports, namely, ‘North’, ‘South’, ‘East’

and ‘West’.

 North Port

 West Port East Port

 South Port

Figure 2.10: Four external ports for a node in a 2-dimensional RMesh network

 21

 Figure 2.10 shows a processor in the Reconfigurable Mesh network.

Communication between the processing elements in the reconfigurable mesh can be

configured dynamically in one or more buses. A bus is a doubly-linked list of

processing elements, with every processing element on the bus being aware of its

immediate neighbors. A bus begins in a processing element, pass through a series of

other processing elements and ends in another processing element. A bus that passes

through all the processing elements in the network is called the global bus, otherwise it

is called a local bus.

Figure 2.8 shows two local buses }14,13,9,5,1,2{)1(=B and

}4,8,7,3,2,6,10,14,15,16,12{)2(=B , where the numbers in the lists represent the

processing element numbers arranged in order from the first (starting) processing

element to the last (end). As an example from the figure, communication between

]9[PE and]13[PE on the bus)1(B is made possible through the link

}].13[,].9[{ nPEsPE .

The processing elements in a bus cooperate to solve a given problem by sending

and receiving messages and data according to their controlling algorithm. A positive

direction in a bus is defined as the direction from the first processing element to the last

processing element, while the negative direction is the opposite. Note that the contents

in the list of each bus at any given time t can change dynamically according to the

current computational requirements.

 22

2.6.2 Data Transmission in Mesh Networks

We illustrate the idea of data transmission through the diagrams in Figures 2.11a and

2.11b. In this mesh network, data transmission from PE[1] to PE[16] requires 6 hops.

The path can be written as follows:

PE [1] PE [5] PE [9] PE [13] PE [14] PE [15] PE [16]

It can be seen that the path needs ()12 −N or 6 steps for data transmission.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2.11a: 2D mesh with fixed

connection

Figure 2.11b : 2D reconfigurable mesh

However, with the reconfigurable mesh, data transmission between the two

processors reduces to a constant time. Only two steps are needed by a RMesh network

for the same communication between PE [1] to PE [16]. First, it needs to set the

switches and recognize which port can be connected with the next processor. Second

step is transfering the data by a local bus. In this case, the local bus can be writtan as

() { }16,15,14,13,9,5,11 =B

 23

Reconfigurable mesh network is created in order to provide the flexibility to

change the interconnection pattern. So, it is more dynamic and easy to use. While for

mesh network, it is a static network. What makes RMesh network dynamic is because

of the switches it got in every Processing Elements or nodes. This switches are also

known as external ports. For 2-dimensional network, there are four ports that is North,

South, East and West.

e

w

n

s

w

ww w

www

n

n

n nn

nn

eee

e e ee

s s ss

s ss
Figure 2.13: A few patterns of the switch connection.

2.7 Sorting Algorithm Example on RMesh

In this section, we illustrate the operation of a reconfigurable mesh network through an

example in solving the sorting problem. Given a set of numbers, 6, 9, 1, 5, we need to

sort these numbers in ascending order using the Rmesh model. The solution is outlined

as follows:

Step 1

Make a table with these numbers. Compare the numbers in the first column with

numbers in the first row. If value of the numbers in the row are same or bigger than the

value of the numbers in the column, tick 0 in the box. But if not, tick 1.

 24

Table 2.1: Numbers to sort

 6 9 1 5

6 0 0 1 1

9 1 0 1 1

1 0 0 0 0

5 0 0 1 0

Step 2

Now that we have the binary number, we can draw the Reconfigurable Mesh network.

For 0, we draw a horizontal line through the nodes. While for 1, we draw a vertical line.

Figure 2.14 illustrates the steps in solving this problem on Rmesh.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

6

1 100

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 101

9

Number 6 at the second rank Number 9 at the first rank

 25

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 000

5

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

0 000

1

Number 5 at the third rank Number 1 at the last rank

Figure 2.14: Numbers in descending order from above

2.8 Summary

This chapter is an overview of the parallel computing systems. One particular network

of interest is the reconfigurable mesh system. Rmesh is made up of a rectangular array

of processors where each processor has four ports configured dynamically according to

the program requirements. We discuss the practicality of Rmesh in solving several

number-crunching applications, such as in image processing and task scheduling.

CHAPTER 3

DYNAMIC MULTIPROCESSOR SCHEDULING ON RMESH

3.1 Introduction

Task scheduling is a combinatorial optimization problem that is known to have large interacting

degrees of freedom and is generally classified as NP-complete (El-Rewini et al., 1994). Most

solutions to the problem have been proposed in the form of heuristics. These include approaches

using list scheduling, queueing theory, graph theoretic and enumerated search. Task scheduling

is defined as the scheduling of tasks or modules of a program onto a set of autonomous

processing elements (PEs) in a parallel network, so as to meet some performance objectives. The

main objective in task scheduling is to obtain a scheduling model that minimizes the overall

execution time of the processing elements. Another common objective is to distribute the tasks

evenly among the processing elements, an objective known as load balancing. Task scheduling

applications can be found in many areas, for example, in real-time control of robot manipulators

(Hwang et al., 1989), flexible manufacturing systems (Ramamritham and Stankovic, 1989), and

traffic control (Ramamritham and Stankovic, 1989).

 26

In terms of implementation, task scheduling can be classified as either static or dynamic. In

static scheduling, all information regarding the states of the tasks and the processing elements

are known beforehand prior to scheduling. In contrast, all this information is not available in

dynamic scheduling and it is obtained on the fly, that is, as scheduling is in progress. Hence,

dynamic scheduling involves extra overhead to the processing elements where a portion of the

work is to determine the current states of both the tasks and the processing elements.

In this chapter, we consider the task scheduling problem on the reconfigurable mesh

architecture. A reconfigurable mesh is a bus-based network of identical PE[k], for

, positioned on a rectangular array, each of which has the capability to change its

configuration dynamically according to the current processing requirements. Figure 3.1 shows a

 reconfigurable mesh of 20 processing elements. Due to its dynamic structure, the

reconfigurable mesh computing model has attracted researchers on problems that require fast

executions. These include numerically-intensive applications in computational geometry (Olariu

et. al, 1994), computer vision and image processing (Olariu et. al, 1995) and algorithm designs

(Nakano and Olariu, 1998).

N

Nk ,...,2,1=

54 x

Figure 3.1: A reconfigurable mesh of size 54 x

 27

This chapter is organized into five sections. Section 3.1 is the introduction. Section 3.2 is

an overview of the dynamic scheduling problem, while Section 3.3 describes our model which is

based on the reconfigurable mesh computing model. The simulation results of our model are

described in Section 3.4. Finally, Section 3.5 is the summary and conclusion.

3.2 Dynamic Task Scheduling Problem

Dynamic scheduling is often associated with real-time scheduling that involves periodic tasks

and tasks with critical deadlines. This is a type of task scheduling caused by the nondeterminism

in the states of the tasks and the PEs prior to their execution. Nondeterminism in a program

originates from factors such as uncertainties in the number of cycles (such as loops), the and/or

branches, and the variable task and arc sizes. The scheduler has very little a priori knowledge

about these task characteristics and the system state estimation is obtained on the fly as the

execution is in progress. This is an important step before a decision is made on how the tasks are

to be distributed.

The main objective in dynamic scheduling is usually to meet the timing constraints, and

performing load balancing, or a fair distribution of tasks on the PEs. Load balancing improves

the system performance by reducing the mean response time of the tasks. In Lin and

Raghavendran (1991), load balancing objective is classified into three main components. First, is

the information rule which describes the collection and storing processes of the information used

in making the decisions. Second, is the transfer rule which determines when to initiate an

attempt to transfer a task and whether or not to transfer the task. Third, is the location rule which

chooses the PEs to and from which tasks will be transferred. It has been shown by several

researchers that with the right policy to govern these rules, a good load balancing may be

achieved.

Furthermore, load balancing algorithms can be classified as source-initiative and server-

initiative (Lin and Raghavendran, 1991). In the source-initiative algorithms, the hosts where the

 28

tasks arrive would take the initiative to transfer the tasks. In the server-initiative algorithms, the

receiving hosts would find and locate the tasks for them. For implementing these ideas, a good

load-balancing algorithm must have three components, namely, the information, transfer and

placement policies. The information policy specifies the amount of load and task information

made available to the decision makers. The transfer policy determines the eligibility of a task for

load balancing based on the loads of the host. The placement policy decides which eligible tasks

should be transferred to some selected hosts.

Tasks that arrive for scheduling are not immediately served by the PEs. Instead they will

have to wait in one or more queues, depending on the scheduling technique adopted. In the first-

in-first-out (FIFO) technique, one PE runs a scheduler that dispatches tasks based on the

principle that tasks are executed according to their arriving time, in the order that earlier arriving

tasks are executed first. Each dispatch PE maintains its own waiting queue of tasks and makes

request for these tasks to be executed to the scheduler. The requests are placed on the schedule

queue maintained by the scheduler. This technique aims at balancing the load among the PEs and

it does not consider the communication costs between the tasks. In Chow and Kohler (1979), a

queueing model has been proposed where an arriving task is routed by a task dispatcher to one of

the PEs. An approximate numerical method is introduced for analyzing two-PE heterogeneous

models based on an adaptive policy. This method reduces the task turnaround time by balancing

the total load among the PEs. A central task dispatcher based on the single-queue multiserver

queueing system is used to make decisions on load balancing. The approach is efficient enough

to reduce the overhead in trying to redistribute the load based on the global state information.

Several balance-constrained heuristics, such as in Saletore (1990), consider

communication issues in balancing the load on all PEs. The approach adds balance constraint to

the FIFO technique by periodically shifting waiting tasks from one waiting queue to another.

This technique performs local optimization by applying the steepest-descent algorithm to find

the minimum execution time. The proposed cost-constraint heuristic further improves the load

balancing performance by checking the uneven communication cost and quantify them as the

time needed to perform communication.

 29

Our performance index for load balancing is the mean response time of the processing

elements. The response time is defined as the time taken by a processing element to response to

the tasks it executes. In general, load balancing is said to be achieved when the mean response

time of the tasks is minimized. A good load balancing algorithm tends to reduce the mean and

standard deviation of the task response times of every processing elements in the network.

Scheduler

task arrivals

task departures

µ1

µc

µ3

µ2

λ1

λ4

λ3

λ2

PE[1]

PE[c]

PE[3]

PE[2]

Fig.3.2: The m/m/c queueing model

In our work, task scheduling is modeled as the Markovian queueing system. An

algorithm is proposed to distribute the tasks based on the probability of a processing element

receiving a task as the function of the mean response time at each interval of time and the overall

mean turnaround time. Tasks arrive at different times and they form a FIFO queue. The arrival

rate is assumed to follow the Poisson distribution with a mean arrival rate of

cmm //

λ . The service rate

at processing element is assumed to follow the exponential distribution with mean k kµ . Our

idea is illustrated through a simulation model called DSRM which is explained in Section 3.4.

 30

In general, the mean response time R for tasks arriving at a processing element is given

from the Little’s law defined in (Kobayashi, 1978), as follows:

λ
NR = (3.1)

where is the mean number of tasks at that processing element. In a system of processing

elements, the mean response time is given as follows (Kobayashi, 1978):

N n

kk

kR
λµ −

=
1 (3.2)

where kλ is the mean arrival rate and kµ is the mean service rate at the processing element k. It

follows that the mean response time for the whole system is given as follows (Kobayashi, 1978):

 ∑
=

=
n

k
kR

n
R

1
*

1 (3.3)

where . ∑
≠=

=
n

k k

n
0,1

* 1
λ

3.3 Reconfigurable Mesh Computing Model

Our computing platform consists of a network of 16 processing elements arranged in a

reconfigurable mesh. A suitable realization for this model is the message-passing transputer-

based system where each node in the system is a processor which includes a memory module. In

addition, each processor in the system has communication links with other processors to enable

message and data passing.

 31

3.3.1 Computational Model

The computational model is a network of 16 processing elements, , for k ,

as shown in Figure 3.3. Each processing element in the network has four ports, denoted as

 and , which represent the north, south, east and west

communicating links respectively. These ports can be dynamically connected in pairs to suit

some computational needs.

44 x][kPE 16,...,2,1=

nkPE].[, skPE].[, ekPE].[wkPE].[

Communication between the processing elements in the reconfigurable mesh can be

configured dynamically in one or more buses. A bus is a doubly-linked list of processing

elements, with every processing element on the bus being aware of its immediate neighbours. A

bus begins in a processing element, pass through a series of other processing elements and ends

in another processing element. A bus that passes through all the processing elements in the

network is called the global bus, otherwise it is called a local bus. Figure 3.3 shows two local

buses and }14,13,9,5,1,2{)1(=B }4,8,7,3,2,6,10,14,15,16,12{)2(=B

)1

, where the numbers in the

lists represent the processing element numbers arranged in order from the first (starting)

processing element to the last (end). As an example, from Figure 3.3, communication between

 and on the bus is made possible through the link { .]9[PE]13[PE (B }].13[,].9[nPEsPE

 32

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig.3.3: A reconfigurable mesh network with two subbuses 44 x

The processing elements in a bus cooperate to solve a given problem by sending and

receiving messages and data according to their controlling algorithm. A positive direction in a

bus is defined as the direction from the first processing element to the last processing element,

while the negative direction is the opposite. Note that the contents in the list of each bus at any

given time t can change dynamically according to the current computational requirements.

3.3.2 Scheduling Model and Algorithm

In the model, assumes the duty as the controller to supervise all activities performed by

other processing elements in the network. This includes gathering information about the

incoming tasks, updating the information about the currently executing tasks, managing the

buses and locating the positions of the PEs for task assignments.

]1[PE

 33

In our model, we assume the tasks to be nonpreemptive, independent and have no

precedence relationship with other tasks. Hence, the computational model does not consider the

communication cost incurred as a result of data transfers between tasks. We also assume the

tasks to have no hard or soft executing deadlines. At time 0=t , the controller records

randomly arriving tasks, for

0Q

QQ ≤≤ 00

i].[

0Q

, and immediately places them in a FIFO queue, where

 is a predefined maximum number of tasks allowed. Each task Task is assigned a number i

and a random length, denoted as Task . The controller selects connected PEs to form

the bus and assigns the tasks to the q PEs in . At this initial stage, the controller

creates the bus list to consist of a single bus , that is,

Q][i

0q

0({B

length

0)0(B)0(B

S)0(B)}S = . The PEs then start

executing their assigned tasks, and their status are updated to “busy”. Each PE broadcasts the

information regarding its current execution status and the task it is executing to the controller,

and the latter immediately updates this information.

This initial operation is repeated in the same way until the stopping time t is

reached. At time t , random new tasks arrive and they are immediately placed in the FIFO

queue. The queue line is created in such a way that every task will not miss its turn to be

assigned to a PE. There are some Q tasks who failed to be assigned from the previous time

slots, and these tasks are automatically in the front line. Hence, at any given time t , there are

 tasks in the queue, of which all Q tasks are in front of the Q tasks. In an attempt to

accommodate these tasks, the controller forms buses in the list

StopTime=

(),...,1(), mBB

tQ

w

wt QQ + w t

Sm)}0({B= .

Each bus has q connected PEs and this number may change according to the current

processing requirements. The controller may add or delete the contents of each bus ,

depending on the overall state of the network. A PE in a bus that has completed executing

a task may be retained or removed from this bus, depending on the connectivity requirements for

accommodating the tasks. The controller also checks the status of other PEs not in the list S .

These PEs are not “busy” and may be added to the connecting buses in . At the same time,

some PEs may be transferred from one bus in to another bus. In addition, the controller may

also add or delete one or more buses in the list to accommodate the same processing needs.

)(jB j

)

S

(jB

)(jB

S

S
 34

Finally, when the buses have been configured a total of q “free” PEs are then assigned to the q

tasks in the front queue. When all the tasks have been completely executed, the controller

compiles the information in its database to evaluate the mean arrival time

t t

kλ , the mean

executing time kµ , and the mean response time of each PE[k] in the network. kR

S
)0(

)}0=
0(B

t +
)(jB

S

S = S

tq

jB(

R

Our algorithm for scheduling the tasks dynamically on the reconfigurable mesh is

summarised as follows:

At t , the controller records Q newly arriving tasks; 0= 0

The controller selects connected PEs at random to form the bus ; 0q)0(B
The Q new tasks are assigned to the PEs in ; 0)0(B
The controller flags the assigned PEs in as “busy”; B
The controller creates the bus list ({B ;

The controller updates the state information of the PEs in ;)}{S =
for t to StopTime 1=
 new tasks arrive while Q tasks still waiting; tQ w

 The controller places all the Q wQ tasks in the FIFO queue;

The controller checks the state information of the PEs in of the

list where :)}(),...,1(),0({ mBBB ⊆)
 The controller checks the state information of the PEs not in ; S
 The controller decides if the contents of need to change;)(jB
 The controller decides if the list needs to change; S
 The controller selects “free” PEs, assign them to the buses in ; S
 The controller assigns PEs to the front tasks; tq
 The controller updates the state information of the PEs in ;

The controller evaluates kλ , kµ , and of PE[k] in ; k S

 35

3.4 Simulation and Analysis of Results

The simulation is performed on an Intel Pentium II personal computer. A C++ Windows-based

simulation program called Dynamic Scheduler on Reconfigurable Mesh (DSRM) has been

developed to simulate our model. DSRM assumes the tasks to have no partial orders, no

communication dependence, no timing constraints and are nonpreemptive. Figure 3.4 shows a

sample run of some randomly arriving tasks on a 4 network. In DSRM, every time tick is a

discrete event where between 0 to 10 randomly determined number of tasks are assumed to enter

the queue waiting to be assigned to the PEs. For each task, its arrival time (randomly

determined), length (randomly determined) and completion time, is displayed as a green or

orange bar in the Gantt chart.

4x t

DSRM has some flexible features which allow a user-defined mesh network sizes of m ,

where . In addition, DSRM also displays the status of each processor in the

network at time as a square. A green square indicates the processor is busy as it has just been

assigned a task, while a red square indicates the processor is also currently busy as it is still

executing a previously assigned task. A black square indicates the processor is currently idle

and, therefore, is ready for assignment. Figure 3.4 shows an instance of this discrete event at

. is busy as it has just been assigned with Task 98, while is also busy as it is

still executing Task 92. In contrast, is currently idle and is waiting for an assignment.

nx

64,...,2,1, =nm

t

]3[PE20=t]7[PE

]11[PE

 36

Fig.3.4: Sample run from DSRM

Results from a sample run of 209 successfully assigned tasks on a network are shown

in Table 3.1. Due to its dynamic nature, not all the tasks that arrive at time managed to be

assigned successfully on the limited number of processors. In this sample, 35 tasks failed to be

assigned and this gives the overall success rate of 85.7%, which is reasonably good. In general,

the overall success rate can be improved by controlling factors such as reducing the maximum

number of arriving tasks at every time tick t and increasing the network size. In addition, it is

possible to have a 100% success rate by bringing forward the unsuccessfully assigned tasks at

time to enter the queue at time

44 x

t

t 1+t , 2+t and so on. These factors normally impose some

timing constraints on the tasks, such as the execution deadline, and are presently not supported in

DSRM.

The results from Table 3.1 show a fairly good distribution of tasks on the processors with a

mean of 13.0625, with PE[1] having the highest number of tasks (17), while PE[5] has the

 37

lowest assignment (9). The standard deviation is 2.3310, while the overall mean response time is

1.880. The tasks have a total execution time of 824 time units, with a mean of 51.5 and a

standard deviation of 5.1720 on each processor. The table also shows the performances of each

processor in the network, in terms of its mean arrival time, mean service time and mean response

time, which describes a reasonably good distribution.

Table 3.1: Sample run of 209 successful randomly generated tasks on 16 PEs

PE

No. of
Tasks

Total Exec.
Time

Mean Arrival
Time

Mean Service
Time

Mean Response
Time

1 17 45 0.261538 0.377778 8.60294
2 16 53 0.246154 0.301887 17.9427
3 12 60 0.184615 0.2 65
4 11 45 0.169231 0.244444 13.2955
5 9 48 0.138462 0.1875 20.3922
6 12 50 0.184615 0.24 18.0556
7 10 54 0.153846 0.185185 31.9091
8 16 52 0.246154 0.307692 16.25
9 12 54 0.184615 0.222222 26.5909

10 11 44 0.169231 0.25 12.381
11 14 50 0.215385 0.28 15.4762
12 15 52 0.230769 0.288462 17.3333
13 15 60 0.230769 0.25 52
14 13 58 0.2 0.224138 41.4286
15 11 44 0.169231 0.25 12.381
16 15 55 0.230769 0.272727 23.8333

Total 209 824

Mean 13.0625 51.5 1.880
Std.Dev. 2.3310 5.1720

 38

3.5 Summary and Conclusion

This chapter describes dynamic task scheduling model implemented on the reconfigurable mesh

computing model. The model is illustrated through our simulation program called Dynamic

Simulator on Reconfigurable Mesh (DSRM) which maps a randomly generated number of tasks

onto a network of processors at every unit time based on our scheduling algorithm.

DSRM produces reasonably good load balancing results with a high rate of successful assigned

tasks, as demonstrated in the sample run.

nm x t

DSRM considers the tasks to have no partial orders, no communication dependence, no

timing constraints and are nonpreemptive. These important factors will be considered in our

future work as they are necessary in order for the model to be able to support many real-time and

discrete-event requirements.

 39

CHAPTER 4

RMESH MODEL FOR THE EDGE DETECTION PROBLEM

4.1 Introduction

This chapter presents our work in detecting the edges of an image using the reconfigurable mesh

network. Edge detection is an important component of image processing which involves massive

computations. Fast computers and good algorithms are some of the requirements in image

processing. Due to its dynamic structure, the reconfigurable mesh computing model has attracted

researchers on problems that require fast executions. These include numerically-intensive

applications in computational geometry (Olariu et. al, 1994), computer vision and image

processing (Olariu et. al, 1995) and algorithm designs (Nakano and Olariu, 1998).

The chapter is organized into four sections. Section 4.1 is the introduction. In Section 4.2,

we discuss the edge detection problem and some methods for solving this problem. The

reconfigurable mesh computing platform and model is explained in Section 4.3. In Section 4.4,

we present our parallel Laplacian algorithm on the reconfigurable mesh network for solving the

edge detection problem. Finally, Section 4.5 is the summary and conclusion.

 40

4.2 Edge Detection Problem

The edges of an image form a separation line between pixels of the low intensity and the high

intensity. Edge detection is a technique of getting this boundary line which holds the key to

other image processing requirements, such as object recognition, image segmentation, image

enhancement and image manipulation. Through edge detection, pixels can grouped according

their variation in grey level or colour values based on some predefined threshold value. This

information is vital to segmenting the image into two or more regions so that objects in the

image can be detected or manipulated in ways appropriate to the problem.

Edge detection techniques aim to locate the edge pixels that form the objects in an image,

minus the noise. Three main steps in edge detection are noise reduction, edge enhancement and

edge localization. Noise reduction involves the removal of some unwanted noise pixels that

sometime overshadow the real image. In edge enhancement, a filter is applied that responds

strongly at edges of the image and weakly elsewhere, so that the edges may be identified as local

maxima in the filter’s output. Edge localization is the final step that separates the local maxima

caused by the edges or by the noise.

The Laplacian edge detection method is a second order convolution that measures the local

slopes of x and of an image (Effold, 2000). For an image of size y),(yxf rq x

,1,0

, the intensity

of a pixel at coordinate (i,j) is represented in discrete form as , where ijf 1,...,2 −= ri and

. The Laplacian of this image is defined as follows: 12,1,0 −= qj ,...,

 2

2

2

2
2

y
f

x
ff

∂
∂

+
∂
∂

=∇ (4.1)

It follows that

2

1,,1,
2

,1,,12

)(

2

)(

2

y

fff

x

fff
f jijijijijiji

∆

+−
+

∆

+−
=∇ −+−+

 41

Assuming 1=∆=∆ yx

 (4.2) 1,1,,1,,1
2 4 −+−+ +++−=∇ jijijijiji ffffff

and this produces the x high pass filter [4]:

 (4.3)

−
−−

−

010
141

010

Similarly, the high pass filter is given by the matrix [4]: y

 (4.4)

−−−
−−
−−−

111
181
111

The sequential Laplacian method for detecting the edges of an image is given as follows:

/* Sequential Laplacian algorithm */

zLet = number of edges;
Let be the),(yExE x and output, respectively; y
Set the edge threshold ET be a constant;
Set as the left-hand corner pixel of the output image;),(yHxH
for j=0 to q
 for i=0 to r
 Set f = pixel value at (i,j); ij

Set ; 0=z
for j=1 to 1−q
 for i=1 to 1−r

)4(1,,1,,11, −+−+ −−+−= jijijijiji fffffabsxE ;

)8(1,11,1,1,1,,11,11,1,1 −+−−−+−++++− −−−−+−−−−= jijijijijijijijiji fffffffffabsyE ;

 Set xyE ; yExE +=
 if ETxyE ≥

 ; ++z
 Set E +i and xHxz =].[xHyzE =].[+j;

 Plot the edge pixel at ;)].[,].[(yzExzE

 42

4.3 Reconfigurable Mesh Computing Model

Our computing platform consists of a network of 16 processing elements arranged in

reconfigurable meshes. A suitable realization for this model is the message-passing transputer-

based system where each transputer represents a processing element with a processing element

and a memory module each, and has communication links with other transputers.

Figure 4.2 shows a 4 x 4 network of 16 processing elements, , for the rows

 and columns . Each processing element in the network is capable of

executing some arithmetic and logic operations. In addition, each processing element has some

memory and four ports for communication with other PEs, denoted as

 and , which represent the north, south, east and west links respectively.

These ports can be dynamically connected in pairs to suit some computational needs.

],[jiPE

jiPE].,

3,2,1,0=i

ejiPE].,[

3,2,1,0=j

n[, sjiPE].,[,

wjiPE].,[

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Fig. 4.1: A 4 x 4 reconfigurable mesh network with two subbuses

 43

Communication between processing elements in the reconfigurable mesh can be

configured dynamically in one or more buses. A bus is a doubly-linked list of processing

elements, with every processing element on the bus being aware of its immediate neighbors. A

bus begins in a processing element, pass through a series of processing elements and ends in

another processing element. A bus that passes through all the processing elements in the network

is called the global bus, otherwise it is called a local bus. Figure 4.2 shows two local buses

 and , where the numbers in the lists

represent the processing element numbers arranged in order from the first (starting) processing

element to the last (end). As an example from the figure, communication between and

 on the bus is denotated as { .

}14,13,9,5,1,2{)1(=B

]0,3[PE B

}4,8,7,3,2,6,10,14,15,16,12{)2(=B

].0,3[,].0,2[nPEsPE

]0,2[PE

)1(}

The processing elements in a bus cooperate to solve a given problem by sending and

receiving messages and data according to their controlling algorithm. A positive direction in a

bus is defined as the direction from the first processing element to the last processing element,

while the negative direction is the opposite. Note that the contents in the list of each bus at any

given time t can change dynamically according to the current computational requirements.

4.4 RM Model for Detecting the Edges

Our computing model is based on a n reconfigurable mesh network. As the model resembles

a rectangular array, the computing platform is suitable for mapping the pixels of a

nx

rq x image

directly for fast executions. For this purpose, we assume qn < and rn < .

The Laplacian convolution of a rq x image involves scanning the portion of the

image beginning from the top left-hand corner of the image to the right, and continues downward

continuously until the bottom right-hand corner is reached. This windowing process computes

the second derivatives of with respect to

nn x

f x and , given as and in Equation (4.1),

respectively. The convolution output at (i,j) is then given as

y xE

xyE

yE

yE+xE= . This value is

then compared to the edge threshold ET : if , an edge is present at location ET≥xyE

 44

)].[,].[(yzExzE

ijf

, where is the edge number, otherwise the pixel is not an edge. Some initial

assignments: is the intensity of the pixel at (i,j),

z

ET is the edge threshold and (

indicates the home coordinate where the binary edge image needs to be constructed.

), yHxH

),(yExE x
),(yHxH

T
T

4q n

)11+ −

)1,1 −+8 ,− jifjif
yE

ifyE

xyE

xH

600 x

It follows that our parallel algorithm using the RM model is summarized as follows:

/* Parallel Laplacian algorithm using a reconfigurable mesh */ nn x
Let be the and output, respectively; y
Set as the left-hand corner pixel of the output image;

Let the intensity at pixel (i,j) be ; ijf
At PE[0,0], set the number of edges 0=z ;
At PE[0,0], set the edge threshold ET to be a constant;
PE[0,0] broadcasts E southbound to PE[0,k], for k=1,2,…, n;
PE[0,k] broadcasts E westbound to PE[h,k], for h=1,2,…, n;
for u=0 to step , where

 for v=0 to step , where 4r n n
rn=4r

 par j=u to u+n
 par i=v to v+ n
 Set h = 1 + i% n;
 Set k = 1 + j% n;
 PE[h,k] evaluates 4(,,1,,1, −+− −−+= jijijijiji fffffabsxE and

 (1,1,1,1,11,11,1,1 −−−+−++++ −−−−+−−−−= jijijijijijij ffffffabs ;

 PE[h,k] evaluates xyE xE += ;

 if at PE[h,k] ET≥
 PE[h,k] broadcasts a positive flag to PE[0,0];
 At PE[0,0], set 1+← zz with the positive flag;

 At PE[h,k], set E xz =].[+i and +j; xHyzE =].[
 At PE[h,k], plot the edge pixel at ;)].[,].[(yzExzE

As can be seen, the above algorithm has the complexity of , against the sequential

complexity of O . Finally, a C++ program to simulate the above algorithm has been

developed. The program detects edges of up to 800 bitmap images, to produce their

corresponding binary images.

)/(2nqrO

)(qr

 45

4.5 Summary and Conclusion

We have presented a parallel Laplacian method using the reconfigurable mesh network for

detecting the edges of an image . The algorithm is implemented in a C++ program that simulates

 networks of various sizes to support up to 800 bitmap images. The method has the

complexity of .

nn x 600 x

)/(2nqrO

 46

CHAPTER 5

SINGLE-ROW ROUTING USING THE ENHANCED SIMULATED
ANNEALING TECHNIQUE

5.1 Introduction

A typical VLSI design involves extensive conductor routings which make all the necessary wirings

and interconnections between the PCB modules, such as pins, vias, and backplanes. In very large

systems, the number of interconnections between the microscopic components in the circuitry may

exceed thousands or millions. Therefore, the need to optimize wire routing and interconnection in the

circuit is crucial for efficient design. Hence, various routing techniques such as single-row routing,

maze routing, line probe routing, channel routing, cellular routing and river routing have been applied

to help in the designs.

In So (1974), a divide-and-conquer approach has been proposed to deal with the complicated

wiring problem in VLSI circuit design. The method begins with a systematic decomposition of the

general multilayer routing problem into a number of independent single layer and single-row routing

problems. This approach defines single-row routing problems for every horizontal and vertical line of

 47

points in the original problem. The solutions of these sub-problems are then combined to contribute

towards the overall solution to the original problem. Single-row routing (SRR) is a combinatorial

optimization problem that finds its application in the design of VLSI multi-layer printed circuit boards

(PCBs). The main objective in the single-row routing problem is to obtain a realization from the given

routing that minimizes congestion on both the upper and lower streets of the circuit.

Single row routing problem has been shown to be NP-complete with large number of interacting

degrees of freedom (Raghavan and Sahni, 1983). Most solutions to the problem have been expressed in

the form of heuristic algorithms based on graph theory (as in Deogun and Sherwani, 1988), exhaustive

search (as in Tarng et al, 1984) and greedy algorithms (as in Du and Liu, 1987). In Salleh and Zomaya

(1999), a simulated annealing model called SRR-7 (Single-Row Routing Model 7) was introduced for

solving the problem with the objective of minimizing both the street congestion (Q) and the number of

doglegs (D). The model is based on an energy function E as a collective set representing both Q and D.

Since the two parameters are allowed to vary freely during the annealing steps, the energy may, in

some cases, produce optimum solution in one while ignoring the other.

In this chapter, we further improve on our earlier simulated annealing technique by expressing

the energy as a function of one parameter. This process can be achieved by pivoting the other

parameter to values not higher than its present value. The new approach is called ESSR (Enhanced

Simulated annealing for Single-row Routing). In addition, ESSR involves the simultaneous swappings

of all the nets in any single iteration. This approach has the effect of a faster convergence to the global

minimum. The chapter is organized as follows: Section 5.2 is the problem statement, Section 5.3

discusses previous methods for solving the single-row routing problem, Section 5.4 is on our model,

Section 5.5 presents the experimental results and analysis, while Section 5.6 is the conclusion.

5.2 Problem Background

5.2.1 Problem Formulation

In the single-row routing problem (Raghavan and Sahni, 1983), we are given a set of n evenly spaced

terminals (pins or vias) V={vj}, j=1,2,...,n arranged horizontally from left to right in a single row called

 48

the node axis. The problem is to construct nets in the list },...,,{ 21 mNNNL = from the intervals

. Each of these intervals is formed from a pair of two (or sometimes more) terminals

through non-intersecting vertical and horizontal lines. The nets are to be drawn from left to right and

the reverse direction is not allowed. The terminals for a given net are also called the net touch points.

Physically, each net represents a conductor path for its terminals to communicate. Each path joining

the terminals is called a track. An interval)

},...,,{ 21 mIIII =

,(ebI i = is the horizontal range between two terminals vb

and ve that makes up the net Ni. A unit interval (a,a+1) is the interval between two successive

terminals va and va+1.

The area above the node axis is called the upper street, while that below is the lower street. The

number of horizontal tracks in the upper and lower streets are called the upper street congestion Cu and

lower street congestion Cl respectively. The street congestion Q of a realization is defined as the

maximum of its upper and lower street congestions, that is, Q),max(lu CC= . The congestion of an

interval (b,e) can also be expressed as the density ρ, defined as the number of nets covering that

interval.

Each terminal vj has a cut number cj, defined as the number of horizontal tracks a vertical line

drawn through that point cuts. The nets cut by the vertical line are termed as the nets that cover the

terminal. The nets are said to cover from above (below) if they lie above (below) the terminal. It can be

shown that the street congestion given by Q),max(lu CC= can also be expressed as (Raghavan and

Sahni, 1983):

 Q = max{number of nets covering a terminal}. (5.1)

 49

Our earlier algorithm (Salleh and Zomaya, 1999) evaluates the street congestion Q based on equation

(5.1), as follows:

Algorithm SRR_CONGESTION
begin
 Set =Q ; 0
 for to , where 1=j J =J total number of terminals

 if Q) on abovefrom covers net of max(number jv <

 Q number of net covers from above on ; = jv
 endif;
 if Q max(number of net covers from below on); < jv
 Q number of net covers from below on ; = jv
 endif;
 endfor;
end;

The upper (lower) cut number cju (cjl) is the number of nets cut by the vertical line through vj

from above (below). The cut number qi of net Ni is the maximum of the cut numbers of the net left and

right terminals. For the interval (b,e), cb and ce are the net total beginning (left) and end (right) cut

numbers, respectively. The vertical position of a terminal vj in a net ordering is called position, denoted

by pos (j).

A vertical line crossing the node axis in a given realization is called a dogleg. A dogleg is

necessary since it represents the sudden detour of a track in order to avoid crossing another track. The

presence of doglegs, however, increases the system overhead as they add to the circuit complexity.

Therefore, minimizing the number of doglegs D is another important circuit design objective as it

contributes towards the design of a more compact realization.

 50

1 5

3 10

2 7

6 8

4 9

N1

N4

N5

N2

N3

Fig. 5.1: Net ordering },,,,{ 45231 NNNNNL = with the reference line

Figure 5.1 shows five nets in the order },,,,{ 45231 NNNNNL = formed from the following

intervals: , ,)5,1(1 =N)7,2(2 =N)10,3(3 =N ,)9,4(4 =N 5 and)8,6(=N . The line joining the

vertices successively from left to right is called reference line. The reference line is important in the

design as it gives a preview of the graphical realization. It can be seen, for example, from the figure

that v6 is covered from above by N2 and N3, and from below by N4. The net ordering in the figure gives

a street congestion value Q , as v3= 5 has 3 nets covering from below () and v3=lC 4 has 3 nets

covering from above (Cu=3). In the figure, a dogleg is marked from the crossing of the reference line

on any interval. It is easy to verify that the number of doglegs D is 3 with a dogleg present in each of

of the intervals (3,4), (4,5) and (5,6).

 51

The following algorithm (Salleh and Zomaya, 1999) outlines a method to determine the number

of doglegs in the interval using the horizontal position of vertex i : jd)1,(+jj)(ipos

Algorithm SRR_NDOGS
begin
Set ; 0=jd
In the given interval)1,(+jj :

 for i to 1= m
 if Ni covers)1,(+jj
 if)1()()(+≤≤ jposiposjpos

 ; 1+← jj dd
 endif;
 if)1()()(+≥≥ jposiposjpos

 ; 1+← jj dd
 endif;
 endif;
 endfor;
end;

In Olariu and Zomaya (1996), a graph theoretic technique has been applied to produce the

maximal interlocking set from a set of net intervals. The results have been used to obtain a time- and

cost-optimal realization without doglegs with O(log n) time complexity using
n

n
log

 processors in the

CREW-PRAM model. It has been shown that the realization is possible only if the corresponding

overlap graph is bipartite.

Vertices that are local maxima with respect to the reference line are called peaks, while those that

are local minima are valleys. In the above figure, v3, v5 and v7 are peaks, while v2, v4 and v6 are valleys.

It is also noted that N2, for example, has 4 segments formed from the intersection between the

reference line and the interval (2,7). The segments of a net Ni are labeled as Ni,r, for i=4 and r=1,2,3,4.

The number of segments in a given interval (b,e) is determined as follows (Salleh and Zomaya, 1999):

 No. of segments = No. of doglegs on (b,e) +1 (5.2)

 52

The height of the segment is defined as the vertical unit distance of that segment from the

node axis and is determined as follows:

rih , riN ,

 Maximum number of nets covering a peak or a valley in (5.3) =rih , riN ,

Algorithm SRR_SegmentHeight (Salleh and Zomaya, 1999) below outlines a method to determine

the height of the segment : rih , riN ,

Algorithm SRR_SegmentHeight
begin
 Given a segment : riN ,

 Set rh ; 0, =i

 if the number of peaks > the number of valleys
 for w to , where 1= rw =rw number of peaks in riN ,

 if number of nets covering from

 number of nets covering from ;

<rih ,

=rih ,

wv

wv
riN ,

riN ,

 endif;
 Update 1,, −← riri hh ;

 endfor;
 endif;
 if the number of peaks < the number of valleys
 for w to , where 1= rw =rw number of valleys in riN ,

 if number of nets covering from <rih , wv riN ,

 number of nets covering from ; =rih , wv riN ,

 endif;
 Update 1,, +← riri hh ;

 endfor;
 endif;
end;

A height with a “+” value means the segment is in the upper street, while the “-” value means it

is in the lower street. It can been seen from the figure that the heights of segments N2,1, N2,2, N2,3 and

N2,4 are -1, +1, -2 and +1, respectively. Also, the height of N4 is -3 as 3 nets cover the valley v5 and 2

nets covering v7. It is also easy to verify that the maximum height of the segments in an interval gives

the street congestion of that net.

 53

5.2.2 Necessary and Sufficient Conditions

A realization or routing is said to be achieved when all the nets are successfully drawn for the given

terminals, satisfying all the following conditions (Ting et al., 1976):

(1) N Ni jI = φ , for i≠j

(2) UN ni = { ,2,..., }1

(3) Each path is made up of horizontal and vertical segments only.

(4) The paths do not cross.

(5) The path movement is in forward direction, and backward move is not allowed.

The optimality of SRR is very much related to the order of the nets in a given list, L. Hence, SRR

produces solutions in a similar fashion to the travelling salesman problem. For example, Figure 5.2

shows the graphical realization corresponding to the net ordering },,,,{ 45231 NNNNNL = from

Figure 5.1.

7
8 9

101 3
2 4

5
6

N1

N5

N4

N2

N3

Fig. 5.2: Realization from the ordering },,,,{ 45231 NNNNNL =

 54

The following relationships for j=1,2,...,m are obtained from (Kuh et. al, 1979):

)(max juju cC = (5.4a)

)(max jljl cC = (5.4b)

),max(lu CCQ = = (5.5))},{max(max jljuj
cc

An optimal realization is a realization that represents the best permutation of nets which satisfies a

number of optimality conditions. Several possible performance metrics defining optimal realizations

are stated as follows:

(1) Realization with minimum congestion on both streets. Our problem of finding an optimal

realization amounts to a massive search for the best ordering of m nets among the m!/2

permutations that produce Q)min(min Q= . The objective function is, therefore Q, and our

problem is to find Q which is the global minimum.)Qmin(min =

(2) Realization with minimum number of doglegs. The objective function in this case is the number

of doglegs D generated in the realization, and our objective is to find . With a

small number of doglegs, the circuit physical size is reduced and this helps in making it more

compact.

)min(min DD =

(3) Realization with a bounded number of doglegs d0 in every unit interval. Since each interval in the

node axis have equal spacing, it is expected that the distribution of doglegs among them,

, will vary. Some intervals will have too many doglegs, while some others may not have

any. This adds constraints to its design since an unbalanced distribution may cause excessive

conductor wiring in some area. Therefore, it is desired that the interval crossings are bounded at

every interval, and that the doglegs are evenly distributed at all intervals.

)1,(+ii

1, +iid

(4) Realization that minimizes the maximum number of doglegs in every net. With a small number

of doglegs in a net, the overall length of the track is shortened. This, in turn, reduces

communication between the terminals and, therefore, improves the circuit performance.

(5) A combination of one or more of the above.

 55

In general, it is difficult to determine an optimal realization for a given problem due to the large

number of interacting variables in the problem, especially when the number of nets is large. A feasible

realization, that is, the one that approximates the solution close to its optimal value, is accepted in

many cases. The feasible solution must, however, satisfy the necessary and sufficient conditions stated

in the following theorems:

Theorem 5.1 (Kuh et al., 1979): Let)(min iim qq = and)(max iiM qq = , then { }tm qqQ ,maxmin ≥ , for

, and i=1,2,...,m, where m is the total number of nets. 2/Mt qq =

}

This theorem asserts that the lower bound for a congestion is given by Q while

the upper bound is max . However, the optimal solution

{ tm qq ,maxmin ≥

)(ii
q { }tq,mqQ maxmin = is not guaranteed and

it may be impossible to find especially when the size of the problem grows. The following two

theorems describe this situation:

Theorem 5.2 (Kuh et al., 1979): An optimal realization with street congestion Q exists

if and only if there exists such an ordering that, for each v

 2/min Mq=

 k+

j with c q where k=1,2,...,qj M= / 2 M-

, the net associated with vqM / 2 j is covered from above and below by at least k nets.

Theorem 5.3 (Kuh et al., 1979): An optimal realization with street congestion pqMQ += 2/min

exists if and only if p is the least nonnegative integer for which the p-excess property holds. The p-

excess property states that for each vj the net associated with vj is covered by at least k-p nets from

above and below, given by where k=p+1,...,kqc tj += 2/MM qq − .

 56

5.3 Review of State of the Art

Due to their practical importance, single-row routing problem has been studied extensively. In Kuh et

al. (1979), an algorithm based on a graph-theoretical interpretation of the problem produces optimal

solutions. However, the method has the complexity O(m!) for m nets, which is exponential. In

Raghavan and Sahni (1983), an optimal solution is obtained when the number of tracks available on

each street is known in advance. The heuristic method is also exponential in nature. Several other

solutions using heuristics produced over the past few years also end up with exponential complexities.

This development suggests that the problem is, in general, intractable and, therefore, is NP-complete.

In Tarng et al. (1984), the nets are arranged by placing those with lower cut number in outer

rows and those with higher cut numbers to the middle. It also suggests that the cut number cj of any

terminal vj is to be divided properly between cju and cjl at those terminals where the cut number is

larger than the net minimum cut number qm.

Some terminologies are used to describe Tarng et al.’s heuristic. Given a net list L={N1,N2,...,NI}

and a division of L into two sublists L1 and L2 such that L1∩L2=φ and L1∪L2=L. The internal cut

number of Ni∈L1 in L with respect to L1 is defined as the cut number of Ni in L1. The residual cut

number of Ni in L with respect to L1 is defined as the cut number of Ni in {L2∪Ni}.

In the implementation, the nets are first sorted according to their classes, followed by the internal

cut numbers and finally by the residual cut numbers. Nets are said to belong to the same class if they

have the same number of cut numbers. Nets in the same class are arranged in the descending internal

cut numbers. If two nets belong to the same class and have the same internal cut numbers, then the one

with larger residual cut number precedes the one with smaller residual cut number. The classification

method produces a zoning list based on the cut numbers and further zoning based on virtual tracks.

Example 1 below illustrates how the heuristic is implemented.

Example 1: Given a set of net intervals: N1=(1,5), N2=(2,6), N3=(3,7), N4=(4,12), N5=(10,11),

N6=(9,15), N7=(8,18), N8=(13,16) and N9=(14,17). We need to find the net ordering that produces the

minimum street congestion.

 57

Table 5.1: Classification of nets in Example 1

i interval qi class int.cut no. res. cut no.
N5 (10,11) 3 L0 2 1
N9 (14,17) 3 L0 2 1
N1 (1,5) 3 L0 1 2
N4 (4,12) 3 L0 1 2
N6 (9,15) 3 L0 1 2
N2 (2,6) 2 L1 1 1
N3 (3,7) 2 L1 1 1
N8 (13,16) 2 L1 0 2
N7 (8,18) 1 L2 0 1

Table 5.1 classifies the nets according to the cut number qi, internal cut numbers and residual cut

numbers, from the given intervals. Figures 5.3 shows the resulting net ordering and realization,

respectively. The final net ordering from the algorithm is given as follows:

, with },,,,,,,,{ 536971482 NNNNNNNNNL = 2=Q and 5=D . The realization is optimal in terms

of minimum street congestion. By coincidence, the number of doglegs is also optimum although the

algorithm does not take this criteria as a performance objective.

2 6 13 16

4 12

1 5 10 11 14 17

9 153 7

8 18

N2

N6

N8

N5

N3

N1 N7 N9

N4

2

1

0

-1

-2

level

Fig. 5.3(a): Final net ordering based on virtual tracks

 58

1 5
2 6

73
10 11

159
13 1614

178 18
4 12

Fig. 5.3(b): Final realization with 2=Q and 5=D

Tarng et al.’s heuristic has a number of shortcomings. It was demonstrated in Du and Liu (1987) that

Tarng's heuristic generates optimal solutions in cases where all the given nets cover at least one

common terminal. In cases where not all the nets cover a common terminal, the heuristic may not be

optimal. Therefore, there is a need to further rearrange the nets using other net properties to improve

on the results.

Du and Liu’s heuristic considers the net grouping situation before sorting the nets according to

their classes, internal cut numbers and residual cut numbers. A group is defined as the set of nets that

cover more than one terminal. Therefore, in a given situation more than one group of nets maybe

formed. Tarng et al.’s heuristic is optimal only if all the nets can be formed into one group. In contrast,

Du and Liu’s heuristic improves the computational complexity in the worst-case performance to

O(mn). In most other cases, the algorithm performs faster and generates better near-optimal solutions.

We briefly illustrate Du and Liu's heuristic using Example 1. Figure 5.4(a) shows the net position

when the zoning considers net classification into groups. The heuristic produces the list

 with },,,,,,,,{ 536971482 NNNNNNNNNL = 2=Q and 6=D , which is optimal in terms of

minimum street congestion. Figure 5.4(b) shows the realization from this list.

 59

2 6

13 16

4
12

1 5 10 11 14 17

9 15

3
7

8 18

N2 N6

N8

N5N3

N1 N7 N9

N4

2

1

0

-1

-2

level
Zone 1 Zone 2 Zone 3

Fig. 5.4(a): Classification according to zones

1 5
2 6

73
10 11

159 13 16
14 178 18

4 12

Fig. 5.4(b): Final realization with 2=Q and 6=D

5.4 Enhanced Simulated Annealing Approach

Both heuristic approaches in Section 5.3 consider the minimum street congestion as the only

performance objective. The realization may produce many intolerable doglegs although the objective

of minimum street congestion is achieved. As mentioned earlier, the presence of doglegs may increase

the track length, and this adds to the circuit complexity and overhead. Therefore, it is our objective in

this section to find a realization that minimizes both the street congestion Q and the number of doglegs

D.

Earlier in Salleh and Zomaya (1999), we presented a model for minimizing both Q and D using

simulated annealing. It is possible to apply simulated annealing (SA) in VLSI design as demonstrated

 60

by Rutenbar (1989). In his work, SA is used to design the chip layout and floorplanning. As discussed

earlier, simulated annealing is a hill-climbing, gradient-descent technique that has the disadvantage of

slow convergence to the solution. However, SA often produces good solutions that are comparable to

other techniques. The SA method based on the Metropolis Algorithm (Aarts and Korst, 1989 and

Kirkpatrick et al., 1983) implements the Boltzmann distribution function as its energy minimization

network. This probability function is known to have the mechanism to escape from getting trapped in a

local minimum. Therefore, convergence is guaranteed although at the expense of long computation

time. In addition, SA is easier to implement as the objective function does not have to be in an explicit

functional representation.

5.4.1 Energy Formulation

Our objective in this subsection is to obtain a realization that minimizes both the street congestion Q

and the number of doglegs D. However, this objective is very difficult to achieve as the two

components are separate but dependent entities. While having one component minimized, the other

tends to show some resistance to minimization. We solved this difficulty by expressing both

components as a single energy function. To express this requirement, the energy in a given net

ordering is expressed as the total length of all the tracks.

Since the horizontal length of each interval is fixed, this energy depends on the vertical length of

the tracks. That is, the total energy EL of nets in a given list is directly proportional to the sum of the

energy of net segments, given as follows (Salleh and Zomaya, 1999),:

 ∑∑
= =

=
m

i

m

j
jiL

i

hE
1 1

, (5.6)

where mi is the number of segments in the net Ni, for i=1,2,...,m. In this equation, jih , is the energy of

segment j of net i, which is the absolute value of the height h of that segment relative to the node

axis.

ji,

 61

Figure 5.5 shows a list from Example 1. Using

Equation (5.6), it is easy to verify that

},,,,,,,,{ 317852946 NNNNNNNNNL =

33=LE .

4 12

9 15

14 17

2 6

8 18

13 16

10 11

1 5

73

-1

+2

+1

-1

-2

-3

+1

+2 -1

-2

0

+1

+2

+3

-1

-2

-3

+1

+2

-1+1-1

h1,1 h1,2 h1,3

h3,1

h2,1 h2,2 h2,3

h4,1 h4,2 h4,3

h5,1 h5,2 h5,3 h5,4

h6,1

h7,1

h8,1

h5,5 h5,6

h9,1 h9,2

h5,7

Fig. 5.5: An ordering showing net segments and their heights

5.4.2 ESSR Model

Simulated annealing is an iterative improvement process of local search for the global minimum of a

given energy function. This method is based on the simple and natural technique of trial and error. SA

requires the definition of a solution space, a cost function and a set of moves that can be used to

modify the solution. Through the iterative improvement method, one starts with an initial solution y0

and compares this solution with its neighbors. A solution ′y is said to be a neighbor of a solution y if

can be obtained from y via one of the moves. The neighbors of y′y 0 are examined until a

neighborhood solution y with a lower cost is discovered. In this case, y becomes the new solution and

the process is continued by examining the neighbors of the new solution. The algorithm terminates

when it arrives at a solution which has no neighboring solution with a lower cost.

 62

In our previous solution (Salleh and Zomaya, 1999), a pertubation is performed to examine the

neighbors by swapping the position of two nets at random. The resulting change in energy ∆E is then

evaluated. If the energy is reduced, or 0≤∆E , the new configuration is accepted as the starting point

for the next move. However, if the energy increases, or 0>∆E , the move generates the Boltzmann

probability, given by T
E

e
∆

−
etancaccep =}Pr{ . The move is accepted if this probability is greater than a

threshold probability of acceptance ε and rejected otherwise. The value of ε is proportional to the rate

of acceptance of rejection. With a higher value, the number of moves accepted for are reduced

and the same rule applies vice versa.

0>∆E

The above technique works well in producing optimal solutions in cases of up to 80 nets.

However, the time taken for convergence may be very long in some cases. This problem may be

caused by the fact that only one pair of nets are swapped at a given temperature. Furthermore,

simulated annealing is a stochastic process which depends on the strict Boltzmann probability for

convergence. We improve on the convergence through ESSR, which involves the movement of all nets

rather than just one, at any given temperature.

We now describe how ESSR works. First, the parameters are initialized according to simulated

annealing requirements. At the initial temperature T 0T= (T is assigned a value such as 100), the

following parameters are given random values: the reducing parameter α (for example α = 0.9) and the

Boltzmann probability threshold ε (for example ε = 0.85). An initial net list is chosen at random

and its energy is evaluated. A pair of nets, denoted as

0

0L

0E r , are then chosen and their positions are

swapped to produce a new configuration . We then evaluate the energy , congestion Q and

dogleg . The energy difference

rL

r

rE r

rD 0EEE −=∆ is computed. The acceptance or rejection

(no change in) of this new configuration follows the same rule as above. We next choose another

pair of nets for swapping different from the previous pair, and apply the same energy update criteria to

determine if changes or not. The same process is repeated until all

)0 rL←(L

0L

0L

 2
m

 pairs of nets have been

tested for the energy update. The final list may or may not change during these swapping

processes.

0L

 63

The above procedure is repeated at each temperature , ,…,T where T , for

 and T is the critical temperature, or the temperature at which the energy stabilizes. At

each of these decreasing temperatures, the Boltzmann probability tends to decrease. This means there

is a higher rejection rate. Hence, the acceptance procedure becomes stricter, to allow more stable

solutions. At , the energy is at its global minimum and the individual from and with

the lower energy then represents the desired net configuration.

1T 2T c 1α −← kk T

uL vL

ck ,...,2,1= c

cTT = cE

We further enhance the convergence criteria in ESSR by preserving the street congestion value

, while at the same time allowing the number of doglegs to decrease. This is necessary since the

energy function

Q

E is a function of both Q and . A minimum D E contributes to minimum Q and

as a grouped object, but not necessarily on each of these variables individually. Therefore, by pivoting

one parameter, for example Q , to some fixed value

D

E can be made directly proportional to the other

parameter . At each temperature T the last street congestion value Q is maintained in such a way

that changes to the net configuration are allowed only if the new value Q is lower or has the same

value as Q , besides obeying the acceptance/rejection rule. However, at the following temperature

, is only allowed to change to the same value or to a lower value, according to its energy

change.

D

k

k k

r

1+kT kQ

 64

Set k := 0, determine Tk

Select Lk,
determine Ek, Qk, Dk

For r = random pair,
determine Lr,

evaluate Er, Qr

Qr ≤ Qk?

∆Ε ≤ 0 ?

Yes

Yes

P(∆Ε) > ε ?
No

Update
Lk := Lr

Ek := Er

Qk := Qr

Dk := Dr

Yes

k := k + 1

Tk + 1 := α Tk

No

No Select another
pair r at random

Have all the
pairs been
selected ?

Start

No

YesNo

Stopping
Criteria Met ?

Yes

No

Exit

Fig. 5.6: ESSR flowchart

 65

The whole steps in the implementation of ESSR is shown as a flowchart in Figure 5.6. In

addition, Algorithm ESSR below summarizes our simulated annealing model for this problem:

Algorithm ESSR
(by pivoting Q)
begin
Select a suitable value for α 1≈ , for 10 α << ;

Let and select the starting temperature T ; 0=k 0

Choose an initial list ; 0L
Compute (using Equation 6) and Q (using SRR_CONGESTION); 0E 0

while T is in the cooling range kT=
for to 1=j 2/m

Select one pair of nets and swap their positions to form ; rL
Evaluate the new energy and congestion Q ; rE r

if Q kr Q≤
 if (0≤−= kr EEE∆), or (if 0>∆E and exp(ε)/ >∆− kTE)

 Update L and rk L← rk EE ← ;

 Evaluate Q and update Qr rk Q← ;
 endif;
 endif;
 endfor;

Test for the stopping criteria:
 if ∆ δ<E after some small number of iterations

 Evaluate the final D using SRR_NDOGS; k

 Obtain the final values , Q , and ; kE k kD kL
 Obtain the realization from ; kL
 Stop and exit;
 else
 Update 1+← kk and 1α −← kk TT ;
 endif;
endwhile;

Example 2: This example illustrates ESSR using the nets in Example 1. We set the initial temperature

, the reducing parameter α and the threshold probability of acceptance ε1000 =T 95.0= 95.0= . It

can be verified that this net list results in 33=LE

,,, 76 NN

. The iterative improvement process in ESSR

reorders the nets to at equilibrium after 24 moves with the

final net energy . Figure 7.7 shows the graph of the net energy against the accepted moves,

while Table 7.2 tabulates the instances of the accepted moves with the Boltzmann probability.

},,,{ 31582 NNNNNL =

17=

,, 49 NN

LE

 66

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24

No. of Moves

En
er

gy
SRR-7
ESSR

Fig. 5.7: Comparison between ESSR and SRR-7

The final net ordering yields and 2=Q 5=D , which is optimal both in terms of minimum street

congestion and minimum number of doglegs. Figure 5.8 shows the graphical realization of the nets at

equilibrium.

1 5
2 6

73
10 11

159
13 1614

178 18
4 12

Fig. 5.8: Final net realization of Example 1 using ESSR

 67

6.5 Experimental Results and Analysis

We tested our model on several net sizes and configurations. A program called ESRR.EXE, coded in

C, has been developed to perform the simulations. The results are compared to our earlier model SSR-

7 (Salleh and Zomaya, 1999), and to the heuristic approaches by Tarng et al. (1984), and Du and Liu

(1987).

In all the cases, we use T as the initial value for the thermostatic temperature T. This

value is gradually reduced geometrically using Algorithm SRR_SA, with α . The threshold

probability of acceptance is set at ε .

1000 =

.0=

95.0=

9

Table 5.2: Comparison of experimental results

Data Q,D
Set# No. of Nets ESSR SRR-7 Tarng et al. Du and Liu

1 8 2,5 2,5 2,6 2,6
2 9 2,5 2,5 2,5 2,6
3 10 3,5 3,5 3,8 3,7
4 12 5,3 5,3 5,8 5,9
5 13 5,5 5,5 5,8 4,10
6 14 5,8 5,8 5,12 5,10
7 18 (set 18a) 6,9 6,10 5,14 5,10
8 18 (set 18b) 6,14 6,14 6,17 6,16
9 20 (set 20a) 6,13 6,13 6,19 5,18
10 20 (set 20b) 7,12 7,14 7,24 7,21
11 24 8,13 8,13 7,24 7,21
12 30 11,17 11,18 10,25 10,26
13 36 11,28 13,27 11,37 11,40
14 40 (set 40a) 15,25 16,28 16,34 16,43
15 40 (set 40b) 16,28 16,29 16,38 16,34
16 40 (set 40c) 16,32 16,35 not

available
not available

17 50 23,155 23,161 not
available

not available

18 80 24,304 28,312 not
available

not available

 68

Figure 5.9 shows a ESSR simulation of 20 nets using Model 9 from the above table. An initial

list is first obtained at T to produce 100= 251=E , 7=Q and 53=D . is pivoted at this value or

lower while

Q

E and values are allowed to vary according to the annealing steps. Obviously, the

energy drops almost proportionally as the number of doglegs during the simulation. The simulation

produces until T where the value drops to 6, while

D

7=Q 9.35= 88=E and . The energy

stabilizes at T for 6 and

17=D

5.8= ,82=E =Q 13=D , which are all minimum. The results obtained

from this model are very optimum both in terms of minimum street congestion and minimum number

of doglegs. The results obtained in other models, as tabulated in Table 5.2, also optimum in most

cases.

0

50

100

150

200

250

300

0102030405060708090100
Temperature

En
er

gy

0

10

20

30

40

50

60

#D
og

le
gs

E
D

Fig. 5.9: Energy against the number of doglegs in ESSR by pivoting Q

Table 5.2 also suggests that ESSR performs better than the other three previous methods when

the number of nets is large. This effect can be seen especially in cases of 40, 50 and 80 nets where the

time taken for convergence to the equilibrium is longer. Both, the energy and the number of doglegs,

drop drastically during the annealing steps. For example, in our 50-net set, the initial values are

, and At equilibrium these values converge to , 810,6=E 26=Q .667=D 352,1=E 23=Q and

. Our 80-net set in Model 18 initially has 155=D 792,11=E , 26=Q and at 206,1=D 100=T .

After 256 steps the energy stabilizes at 006,2=E to produce 24=Q and . 304=D

 69

5.6 Summary and Conclusion

This chapter describes our enhanced simulated annealing technique for the single-row routing

problem. The problem has its origin in the complex VLSI design. Massive connections between pins

and vias in the circuitry require their breakdown into smaller single-row components, as described by

So (1974). The components are solved individually to generate solutions which can then be combined

to provide the overall solution to the problem. Single-row routing is a divide-and-conquer approach

that is frequently used in solving the VLSI design problem.

In this chapter, we propose ESSR (Enhanced Simulated annealing for Single-row Routing) for

solving the single-row routing problem. The main objective in this problem is to produce a realization

that minimizes both the street congestion and the number of doglegs. Simulated annealing is based on

the thermostatic cooling properties of atoms in physical systems. By performing slow cooling, the nets

in the single-row routing problem align themselves according to a configuration with the lowest

energy. In general terms, the energy is represented as the absolute sum of the heights of the net

segments. This energy is directly proportional to both the street congestion and the number of doglegs.

In our approach, we pivot the street congestion value while having the energy drops directly

proportional to the number of doglegs. This action has the effect of minimizing the number of doglegs

as the energy drops.

Our experiments using ESSR produce optimal solutions with both minimum street congestion

and minimum number of doglegs in most data sets, especially in cases where the number of nets is

large. The results match well against our previous method (Salleh and Zomaya, 1999), and the

methods by Tarng et al. (1984), and Du and Liu (1987).

 70

CHAPTER 6

SINGLE-ROW TRANSFORMATION OF COMPLETE GRAPHS

6.1 Introduction

Complete graph is a fully-connected graph where every node is adjacent to all other nodes in the

graph. Very often, many applications in science and engineering are reducible to this type of

graph. Hence, a simplified form of a complete graph contributes in providing the solutions to

these problems. In this chapter, we present a technique for transforming a complete graph into a

single-row routing problem. Single-row routing is a classical technique in VLSI design that is

known to be NP-complete. We solved this problem earlier using a method called ESSR, as

described in the previous chapter. The same technique is applied to the present work to transform

a complete graph into a single-row routing representation. We also discuss the application of this

work on the channel assignment problem in the wireless cellular telephone networks.

In many cases, problems in engineering and other technical problems can be reduced as

problems in graph theory. A problem of this nature is said to be reducible to the form of vertices

and links of a graph, and the solution to the problem can be obtained by solving the graph

 71

problem. Furthermore, several solutions to the problems in graph theory have found their roots in

some well-known prototype problems, such as the the travelling salesman problem, the shortest

path problem and the minimum spanning tree problem. Solutions to these problems are provided

in the form of dynamic programming techniques, mathematical programming and heuristics.

Most of these protototype problems have been proven to be NP-complete and, therefore, no

absolute solutions to the problems are established. However, their reduction to the form of

graphs have, in some ways, simplified their complexity and pave way for further improvement to

their solutions.

In this chapter, we study the relationship between a complete graph and its single-row

representation. A complete graph is a graph where every vertex in the graph is adjacent to all

other vertices. As described in the previous chapter, single-row routing is a classical problem

about finding the most optimum routing from a set of terminals, or nodes, arranged in a single-

row. In the Very Large Scale Integration (VLSI) technology, the terminals are the pins and vias,

and the routes consist of non-intersecting horizontal and vertical tracks called nets. The main

goal in single-row routing is to find a realization that reduces the congestion in the network.

We also propose a model for transforming a complete graph as nets in a single-row axis.

The motivation for this proposal comes from the fact that some problems in engineering are

reducible to the form of a complete graph. We study the mapping properties of a complete graph

into its single-axis representation, in the form of the single-row routing problem. We devise a

strategy for mapping this graph, and then apply the method for solving a graph-reducible

problem, namely, the channel assignment problem in the wireless cellular telephone networks.

Our chapter is organized into five sections. Section 6.1 is the introduction. Section 6.2

describes the problem in the chapter, while in Section 6.3, we outline the details of the mapping

strategy for converting the complete graph into its single-row axis representation. Finally,

Section 6.4 discusses the application of this method on the channel assignment problem. We

conclude the chapter with the summary and conclusion in Section 6.5.

 72

6.2 Problem Formulation

This chapter discusses the tranformation of a complete graph as a single-row routing problem. It

is easy to verify that a complete graph, C , with vertices has m m)1(−mm links (or edges). This

is because each vertex in the graph has a degree of)1(−m . The problem begins with the

mapping of the links in this graph as terminals in a single-row axis. Single-row routing problem

is an important component in finding an optimum routing in VLSI design (Raghavan and Sahni,

1983). The single-row representation, , of the graph, C , consists of zones and mS m m)1(−mm

terminals, all aligned in a single-row axis. The terminals are to be formed in equally-spaced

intervals along the single-row axis. In VLSI, each terminal represents a pin or via. In the single-

row routing problem, nets joining pairs of terminals are to be formed to allow communication

between the terminals. A net is made up of non-intersecting horizontal and vertical lines that is

drawn in the order from left to right.

In order to produce a practical area-compact design, the nets have to be drawn according to

the routes that will minimize the wiring requirements of the network. The main objective in the

single-row routing problem is to determine the most optimum routing between pairs of the

terminals so as to reduce the congestion in the whole network. It is also important that the

routing is made in such a way that the interstreet crossings (doglegs) between the upper and

lower sections of the single-row axis be minimized. This is necessary as the terminals in the

single-row axis are very close to each other, and a high number of interstreet crossings will

generate an intolerable level of heat that may cause problems to the network. In optimization, the

problem of minimizing the congestion in the network reduces to a search for the right orderings

of the nets, based on a suitable energy function.

 73

6.3 Complete Graph Partitioning Strategy

A graph consists of a set of vertices and edges, connecting some of these vertices. A graph

where a path exists to connect any two pairs of vertices in the graph is called a connected graph,

otherwise it is a disconnected graph. Node

G

j in the graph having links with its neighbors is

said to have a degree of . A graph with m nodes where every node is a neighbor of every

other nodes in the graph is a complete graph, . In , every vertex has the same degree of

.

d

jd

mC mC

1−m

6.3.1 Formation of Zones and Terminals from a Complete Graph

In C , every link between a pair of vertices in the graph is mapped as a terminal in .

Therefore, a graph having vertices and

m mS

mC m)1(−mm links is mapped into zones with a

total of terminals in . A vertex with degree

m

)1−(mm mS j in the graph occupies a zone in

with terminals.

mS

jd

We outline the overall strategy for mapping a complete graph. In general, the

transformation of a complete graph, C , into its single row representation, , consists of two

main steps. First, the vertices, v , are mapped into the zones, , that are numbered according to

their vertex number,

m mS

j jz

j , for . The next task is to determine the number of terminals

in each zone, , in , which is simply the degree, d , of its corresponding vertex, v , in .

Finally, we obtain the complete layout of by combining all the terminals from each zone and

number them successively beginning from the first zone to the last.

m,...,j 2,1=

jz mS j j mC

mS

 74

Our method for creating the zones and their terminals in from a complete graph, C , is

outlined in Algorithm 6.1, as follows:

mS m

/* Algorithm 6.1: Formation of zones and terminals in from C */ mS m

Given a complete graph C ; m

Draw the zones, , in , which corresponds to in C , for ; jz mS jv m mj ,...,2,1=
for to 1=j m
 Determine the degree, , of every vertex, , in C ; jd jv m

 Set =i ; 1
 for to 1=k jd
 Set the terminal number, t ii = ;

 Update +← ii ; 1

6.3.2 Construction of Nets from a Complete Graph

In the previous section, we described a plan to form the zones and nets in from C using

Algorithm 6.1. We illustrate the idea on the problem of forming a single-row representation

of , a complete graph with m vertices. In this problem, each vertex in the graph has a

degree of 4. There are zones, , for

mS m

5C 5=

5=m iz 5,...,2,1=i and the number of terminals on the

single-row axis is . Hence, the number of nets formed is 20)1 =−m(m 10
2

(−mrm
)1
==

m .

Figure 6.1 shows the zones and terminals in formed from when Algorithm 6.1 is

applied.

5S 5C

 75

1 202 193 184 175 161514131211109876

n4 = n1,1,5 n10 = n1,4,5n9 = n1,3,5n7 = n1,2,5

n1 = n4,1,5

n5 = n3,2,5
n2 = n3,1,5

n8 = n2,3,5n3 = n2,1,5
n6 = n2,2,5

z1 z5 z4 z3 z2

y = 1

y = 4

y = 3

y = 2

Fig. 6.1: Formation of nets based on the zones and levels in from C 5S 5

We now present a technique for forming the nets in the network that will contribute in

minimizing the total energy in . The technique calls for the formation of the nets by grouping

them first into several levels based on their width. The width of net k , denoted as , is defined

as the difference between its beginning and end terminals, given as

mS

kw

kkk be −w = . A level, , in

 consists of a set of equal-width nets grouped in ascending order from the lowest width to the

highest. Our strategy begins with Proposition 1 which consists of first forming levels where the

nets with equal width are grouped. In this proposal, the nets in are created by defining their

end-points. Once the nets have been formed, the next step consists of sorting and renumbering

the nets based on their beginning terminals, in ascending order from the lowest to highest. These

two steps are to be described later in Algorithm 6.2.

y

mS

mS

 76

Preposition 1: The th net in level in , denoted as i y mS),(,,,,,, miymiymiy ebn = , formed from the

complete graph, C , is grouped into levels based on its width, , according to the following

relationships:

m myw ,

)1)(1()(,, −−+−= imymb miy , (6.1a)

 (6.1b) myiymiy wbe ,,,, +=

for , and 1,...,2,1 −= my 1,...,2,1 −= mi .

From Proposition 1, we obtain the width of the nets in level of , given as follows: y mS

) , (6.2) 1)(1(1, −++= ymw my

and the number of nets in each level as follows:

) . (6.3) (, ymr my −=

The strategy for grouping the nets into levels based on their width is to minimize the total

network energy, given earlier in Equation (5.6). This goal can be achieved by forming nets

starting from the shortest width, continue with the next shortest and so on. Starting with level 1,

that is, , the nets are formed from two consecutive terminals from two different zones. This

level has the most minimum width possible, given by

1=y

1,1 =mw

i

. This minimum width has the

advantage of producing the net energy equals 0, as the net can be drawn directly on the node

axis. The i th net is formed from the last terminal in and the first terminal in zone (th, to z)1+i

 77

make sure that the width remains the same. Using Equations (6.1a) and (6.1b) from Proposition

1, we then obtain the i th net in this level,),(,,1,,1,,1 mimimi ebn = , given as

 and)1()1(,,1 −−+−= immb mi)(1 1,1,,1 += imi b

2z

e .

2)1(1,2 =++= mmw m +

)(1()2(,,2 −+−= imb mi m mi wb ,2,2mi,,2 +=

mS
m

rr
m

=1

1=y
1

y
y ,ry

1= yr
i y

y
y

ry ,...,2,1=
r,...,2,1=

, ,,, miss eb

1=

y

,mi

2
m

kb

)1(−m

),(kk e=),(,,,, mismis eb

In level 2, the first net is obtained by having the second last terminal in as its beginning

terminal, and the second terminal of as the ending terminal. This gives the width as

. In general, the i th terminal in this level,

1z

,,2 mi),(,,2,,2 mimi ebn = , is given

by)1− and e .

/* Algorithm 6.2: Construction of nets in */

Given a complete graph with vertices; C
Let the number of nets in level 1, ;

The initial width of nets in level 1 is 1, that is, 1,1 =mw ;

for to r
 if >y

 Update the width of the nets in level ,)1)(1(1, −++← ymw my ;

 Update the number of nets in level ,)(ymm −← ;

 for i to

 Form the th net in level as follows:

 Update the left terminal of net ,)1)(1()(,, −−+−← imymb miy ;

 Update the right terminal of net , myiymiy wbe ,,,, +← ;

for

 for i

 Sort (in ascending order with as the primary key;) misb ,,

for k to

 Assign n from the sorted ;

Algorithm 6.2 above summarizes our method for constructing the nets based on the

levels of the nets with equal width. In this algorithm, the nets are formed based on Equations

 78

(6.1a) and (6.1b). The number of nets and their width in each level are determined from

Equations (6.2) and (6.3), respectively. Once the nets have been formed, the algorithm then sorts

and renumbers the nets based on their beginning terminals, in ascending order from the lowest to

highest. Algorithm 6.2 prepares the nets before the next important step, which is their

execution in ESSR to determine their optimum routing.

We illustrate the idea of constructing the nets using Proposition 1 through an example with

a complete graph of five vertices, . The zones and terminals are obtained by applying

Algorithm 6.1. By applying Equations (6.1a) and (6.1b) from Proposition 1, we obtain the

nets grouped into 4 levels, as shown in Figure 6.1. Algorithm 6.2 transforms the C into

, and the results are shown in Table 6.1. We then apply ESSR to the nets to obtain the results

in the form of an ordering with minimum energy,

5C

5

5S

11=E , as shown in Figure 6.2. The final

realization of the network with Q and 3= 1=D is shown in Figure 6.3.

Table 6.1: Formation of nets in from C 5S 5

Level, y Width, 5,yw #nets, yr nets

1 1 4 (4,5), (8,9), (12,13), (16,17)

2 7 3 (3,10), (7,14), (11,18)

3 13 2 (2,15), (6,19)

4 19 1 (1,20)

 79

n4

0

-1 +1

+2

0

-1

-2

-3

0

0

+1

n3

n7

n9

n10

n8

n5

n2

n1

n6

Fig. 6.2: Nets ordering with minimum energy, 11=E , of using Algorithm ESSR 5C

1 202 193 184 175 161514131211109876

n5

n8n3

n4

n2

n6

n1

n9 n10n7

Fig. 6.3: Final realization of C with 5 11=E , 3=Q and 1=D

 80

We also apply the method to several other models of complete graphs. Table 6.2

summarizes the results of these graphs with vertices, , in their single-row representations.

Figure 6.4 shows the final realization of the routing obtained using ESSR from .

m mC

10C

Table 6.2: Summary of results for some complete graphs, C m

mC #nets E Q D

5=m 10 11 3 1

6=m 15 28 4 40

8=m 28 128 9 21

10=m 45 403 16 53

Fig. 6.4: Realization of an optimum assignment of 45 nets from from Table 6.2. 10C

 81

6.4 Application on the Frequency Assignment Problem

In this section, the single-row mapping strategy is applied to the problem of assigning radio

channels in a wireless cellular telephone network. In the wireless cellular telephone network

(Mathar and Mattfeldt, 1993), the assignment of radio frequencies to the mobile users within the

network can be modeled as the problem of mapping a complete graph into non-intersecting

single-row nets. This network consists of a geographical region partitioned into several cells

where each cell is allocated with a base station (BS). A base station has a transmitter and a

receiver for receiving and transmitting messages from/to mobile users within its cell. The base

stations in the network are linked with high-speed cables to the mobile switching center (MSC),

which functions as a controller to allow communication between any two mobile users in the

network by assigning a channel each to each of them. When a call is made from a cell, a request

is received by the base station of the cell. The base station relays this request to the mobile

switching center (MSC). Assuming the call is made and received within the network, a channel

each needs to be assigned to the caller and the receiver. In this network, MSC plays an important

role in assigning a pair of different channels to both the caller and the receiver, to allow

immediate circuit switching.

In this problem, we model the channels as the edges of a complete graph. The cells in the

network are then represented as nodes in the graph. In the single-row axis, each of these cells is a

zone and the channels allocated to a cell are terminals in the zone. Communication between two

mobile users from two different cells is established through a net linking their two terminals. We

model the single-row communication to be handled by the mobile switching center. This is

because MSC has a control on all channel assignments in the network, and this important task

must be done immediately without delay when requests for calls are received. In addition, MSC

must also be able to provide services associated with problems in channel assignments, such as

location finding of mobile users, and channel handovers as a mobile user moves from one cell to

another.

 82

We illustrate our model using an example with a network of five cells. The problem

reduces to the complete graph, C , which is represented as the zones, , for in ,

as shown in Figure 6.1. Hence, 20 channels are available for assignments and each of these

channels is represented as a terminal in the single-row axis. The channels are formed using the

same technique discussed in Section 6.3, to produce the results as shown in Table 6.1 (the

channels are numbered by assuming there are no electromagnetic interferences on the channels) .

Figure 6.4 is then the final realization of the optimum routing of the nets obtained using ESSR.

5 jz 5,...,2,1=j 5S

6.5 Summary and Conclusion

In this chapter, we propose a method for transforming a complete graph, , into its single-row

representation, . We first describe the single-row routing problem, which is a classical

technique in VLSI design. We relate the problem to our earlier work which solved the problem

using a method based on simulated annealing, called ESSR. The transformation from C to

involves the formation of nets based on Proposition 1. The proposition groups the nets with equal

width which contributes in reducing the overall energy of the network. The whole process is

implemented using Algorithms 6.1 and 6.2. We then apply ESSR to the network to obtain

some reasonably good results for optimum routing. Finally, we also describe briefly the

application of this transformation technique in solving the channel assignment problem in the

wireless cellular telephone networks.

mC

mS

m mS

 83

 88

APPENDIX

The enclosed CD-ROM has three main programs:

1. DSRM: this is our simulation program described in Chapter 3.

Name of program: DSRM.exe

Description: This model schedules randomly generated tasks dynamically on the 44 x

reconfigurable mesh network. Tasks arrive at every time slot with randomly

determined length, and are mapped to the available processors according to

the DSRM parallel algorithm.

2. Our simulation program described in Chapter 4.

Name of program: IPRM.exe

Description: This model performs edge detection on a given image using the 44 x

reconfigurable mesh network using the Laplacian convolution technique.

3. Our simulation program described in Chapter 5.

Name of program: SRR2.exe

Description: This program is the simulation model of ESSR on a network of 80 nets

(160 pins). At every temperature mark, 10 nets are chosen at random and

are swapped according to the simulated annealing process.

 89

REFERENCES

Aarts, E. and Korst, J. (1989); “Simulated annealing and Boltzmann machines”, John Wiley,

New York.

Chow, Y. and Kohler, W.H. (1979); “Models for dynamic load balancing in heterogeneous

multiple processing element systems”, IEEE Trans. Computers, vol.28, no.5, pp.354-361.

Deogun, J.S. and Sherwani, N.A. (1988); “A decomposition scheme for single-row routing

problems”, Technical Report Series #68, Dept of Computer Science, Univ. of Nebraska.

Du, D.H. and Liu, L.H., (1987); “Heuristic algorithms for single row routing”, IEEE Trans.

Computers, vol.36 no.3, pp.312-319.

Efford, N. (2000); “Digital image processing:, Addison-Wesley.

El-Rewini, H.; Lewis, T.G. and Ali, H.H. (1994); “Task scheduling in parallel and distributed

systems”, Prentice Hall.

Hwang, J.; Chow, Y.; Anger, F.D. and Lee, C. (1989); “Scheduling precedence graphs in

systems with interprocessor communication times”, SIAM J. Computing, vol.18, no.2. pp.

244-257.

Kuh, E.S., Kashiwabara, T. and Fujisawa, T. (1979); “On optimum single-row routing”, IEEE

Trans. Circuits and Systems, vol.26, no.6, pp.361-368.

Lewis, T.G. and El-Rewini, H. (1992); “Introduction to parallel computing”, Prentice-Hall.

Flynn, M.J. (1972); “Some computer organizations and their effectiveness”, IEEE Trans.

Computers, vol.21, no.9, pp. 948-960.

 90

Kirkpatrick, S., Gelatt, C.D. and Vecchi, (1983); “Optimization by simulated annealing”,

Science, vol.220, no.4598, pp.671-678.

Kobayashi, H. (1978); “Modeling and analysis: an introduction to system evaluation

methodology”, Addison-Wesley.

Kolmogorov, A.N.K. (1957); “On the representation of continuous functions of many variables

by superimposition of continuous functions of one variable and addition”, Dokl. Akad.

Nauk SSSR, vol.114, pp.953-956.

Lin, H. and Raghavendran, C.S. (1991); “A dynamic load-balancing policy with a central task

dispatcher”, IEEE Trans. Software Engineering, vol.18, no.2, pp.148-158.

Mathar, R. and Mattfeldt, J. (1993); “Channel assignment in cellular radio networks”, IEEE

Trans. Vehicular Technology, vol.42 no.4.

Miller, R. and Prasanna-Kumar, V.K. (1993); “Parallel computations on reconfigurable meshes”,

IEEE Trans. Computers, vol.42, no.6, pp.678-692.

Nakano, K. and Olariu, S. (1998); “An efficient algorithm for row minima computations on basic

reconfigurable meshes”, IEEE Trans. Parallel and Distributed Systems, vol.9, no.8.

Olariu, S., Schwing, J.L. and Zhang, J. (1993); “Fast component labelling and convex hull

computation on reconfigurable meshes”, Image and Vision Computing, vol.11, no.7,

pp.447-455.

Olariu, S., Schwing, J.L. and Zhang, J. (1995); “A fast adaptive convex hull algorithm on two-

dimensional processing element arrays with a reconfigurable bus system”, Computational

Systems Science and Engineering, vol.3, pp.131-137.

 91

Olariu, S. and Zomaya, A.Y. (1996); “A time- and cost-optimal algorithm for interlocking sets

with applications”, IEEE Trans. Parallel and Distributed Systems, vol.7, no.10, pp.1009-

1025.

Raghavan, R. and Sahni, S. (1983); “Single row routing”, IEEE Trans. Computers, vol.32, no.3,

pp.209-220.

Ramamritham, K. and Stankovic, J.A. (1989); “Distributed scheduling of tasks with deadlines

and resource requirements”, IEEE Trans. Computers, vol.38, no.8, pp. 1110-1122.

Rutenbar, R.A. (1989); “Simulated annealing algorithms: an overview”, IEEE Circuits and

Devices Magazine, January, pp. 19-26.

Saletore, V. (1990); “A distributed and adaptive dynamic load balancing scheme for parallel

processing of medium-grain tasks”, Proc. of DMCC-5, Portland, Oregon, pp.994-999.

Salleh, S., Sanugi, B., Jamaluddin, H., Olariu, S. and Zomaya, A.Y. (2002); "Enhanced

simulated annealing technique for the single-row routing problem", Journal of

Supercomputing, vol. 21 no.3, pp.285-302.

Salleh, S. and Zomaya, A.Y. (1999); “Scheduling for Parallel Computing Systems: Fuzzy and

Annealing Techniques”, Kluwer Academic Publishers, Boston.

So, H.C. (1974); “Some theoretical results on the outing of multilayer printed wiring board”,

Proc. IEEE Symposium on Circuits Systems, pp. 296-303.

Stout, Q.F.; “Ultrafast parallel algorithms and reconfigurable meshes”, Proc. DARPA Software

Technology Conference, 1992, pp.184-188.

Tarng, T.T., Sadowska, M.M. and Kuh, E.S. (1984); “An efficient single-row algorithm”, IEEE

Trans. Computer-Aided Design, vol.3 no.3, pp.178-183.

 92

Ting, B.S., Kuh, E.S. and Shirakawa, L. (1976); "The multilayer routing problem: algorithms

and necessary and sufficient conditions for the single row, single layer case", IEEE Trans.

Circuits Systems, vol. 23, pp. 768-778.

 93

LIST OF PUBLICATIONS

1. Shaharuddin Salleh, Mohd Ismail Abdul Aziz and Stephan Olariu, “Single-row

transformation of complete graphs”, submitted to the Journal of Supercomputing, USA,
2002.

2. Shaharuddin Salleh, Ruzana Ishak and Nurul Huda Mohamed, “Single-row routing
technique for channel assignments in wireless cellular networks”, Proc. Simposium
Kebangsaan Sains Matematik 10, ISBN #983-52-0284-2, Johor Bahru, 23-24 Sept. 2002,
pp. 310-315.

3. Shaharuddin Salleh, Bahrom Sanugi, Hishamuddin Jamaluddin, Stephan Olariu and
Albert Y. Zomaya, "Enhanced simulated annealing technique for the single-row routing
problem", Journal of Supercomputing, Kluwer Academic Publishing, vol. 21 no.3, pp.285-
302, March 2002.

4. Shaharuddin Salleh, Nur Arina Bazilah Aziz, Nor Afzalina Azmee and Nurul Huda
Mohamed, “Dynamic multiprocessor scheduling for the reconfigurable mesh networks”,
Jurnal Teknologi, vol.37(C) , December 2002, pp.57-68.

5. Shaharuddin Salleh, Nur Arina Bazilah Aziz, Nor Afzalina Azmee and Nurul Huda

Mohamed, “Dynamic multiprocessor scheduling for the reconfigurable mesh networks”,
Proc. Malaysian Science and Technology Congress, November 8-10 2001, Penang.

6. Shaharuddin Salleh, Nor Afzalina Azmee, Nurul Huda Mohamed and Nur Arina Bazilah
Aziz, “Reconfigurable meshes model for the edge detection problem”, Proc. Malaysian
Science and Technology Congress, November 8-10 2001, Penang.

	Chapter 3 (ts).pdf
	Chapter 3 (ts).pdf
	DYNAMIC MULTIPROCESSOR SCHEDULING ON RMESH
	Fig.3.3: A � reconfigurable mesh network with two subbuses
	�
	Fig.3.4: Sample run from DSRM
	Table 3.1: Sample run of 209 successful randomly generated tasks on 16 PEs
	
	
	DSRM considers the tasks to have no partial orders, no communication dependence, no timing constraints and are nonpreemptive. These important factors will be considered in our future work as they are necessary in order for the model to be able to support

	Chapter 4 (ip).pdf
	Fig. 4.1: A 4 x 4 reconfigurable mesh network with two subbuses

	Chapter 5 (essr).pdf
	Table 5.1: Classification of nets in Example 1
	5.4Enhanced Simulated Annealing Approach

	Fig. 5.5: An ordering showing net segments and their heights
	Fig. 5.7: Comparison between ESSR and SRR-7
	Table 5.2: Comparison of experimental results
	No. of Nets
	
	
	
	Du and Liu

