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ABSTRACT 

 

This report is the compilation of our research work under IRPA Vot no. 72179. The work 

consists of  four main problems of study. First, we look at the stochastic task scheduling 

problem using the reconfigurable mesh network as the computing platform. Through our 

model called the Dynamic Simulator on Reconfigurable Mesh (DSRM) which maps a 

randomly generated number of tasks onto the processors at discrete time, some 

reasonably good load balancing results were obtained. The second problem is the 

application of the first model in the edge detection problem using the Laplacian 

convolution method on the same parallel computing network. In the third problem, we 

extend the scope to include a strategy for the single-row routing of pins and vias in VLSI 

design, using our model called the Enhanced Simulated annealing for Single-row Routing 

(ESSR). This model is the parallel implementation of the simulated annealing method, 

and it generates optimum solutions to the problem. The fourth problem is the extension of 

the single-row routing problem, where a model has been developed to transform a 

complete graph into its single-row representation. This last problem has some significant 

contributions in applications such as scheduling and channel assignment problem in 

cellular telephone systems. 
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ABSTRAK 

 

Laporan ini mengandungi kerja-kerja penyelidikan kami di bawah peruntukan IRPA Vot 

no. 72179. Kajian terbahagi kepada empat masalah utama. Pertamanya, kami mengkaji 

masalah penjadualan kerja menggunakan rangkaian jaring boleh-konfigurasi. Model 

kami, dipanggil DSRM (Dynamic Simulator on Reconfigurable Mesh), berjaya 

menghasilkan satu sistem penjadualan yang baik yang memeta kerja-kerja secara rawak 

dengan pengseimbangan beban. Masalah kedua adalah mengenai aplikasi daripada 

masalah pertama terhadap masalah pencarian sempadan bagi suatu imej menggunakan 

teknik konvolusi Laplacian pada rangkaian komputer selari yang sama. Dalam masalah 

ketiga, kami mengkaji masalah pencarian laluan baris-tunggal dalam pembangunan 

VLSI, menggunakan suatu kaedah dipanggil ESSR (Enhanced Simulated annealing for 

Single-row Routing). ESSR merupakan model kami yang mengimplementasi kaedah 

penyelindapan simulasi secara selari, untuk menghasilkan keputusan yang optimum. 

Masalah keempat merupakan sambungan daripada masalah ketiga, di mana teknik ESSR 

digunakan untuk menjelma suatu graf lengkap kepada bentuk masalah laluan baris-

tunggal. 
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CHAPTER 1 

 

 

 

 

RESEARCH FRAMEWORK 
 

 

 

 

1.1 Introduction  

Numerous problems in science and engineering today require fast algorithms for 

implementations and executions on computers. These problems involve massive 

computations arising from intensive mathematical calculations with double precisions 

variables and large array sizes. The solutions require high degree of accuracy and 

constant updates that really take up the maximum capability of the host computers. As a 

result, single-processor computers based on the von Nerumann architecture seldom 

satisfy all these requirements. Fast computing platforms with large storage area for 

processing data in the form of parallel computing networks become the ultimate tools 

for solving these types of problems.  
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In our research, we study various number-crunching problems, formulate them as 

solutions in the form of parallel algorithms and then develop these ideas into their 

visualization models. The problems of interest in our research include image processing 

and routing. We develop the parallel algorithms for these problems and their solutions 

in the form of user-friendly softwares. 

 

1.2 Problem Statement  

 

The problem in this study consists of the development of fast algorithms for highly 

intractable engineering problems. Three main problems are studied, namely, task 

scheduling for parallel computing networks, image processing and routing for the VLSI 

design as some of the applications in task scheduling. 

 

In the first problem, we study the task scheduling problem for the parallel 

computing network. A task is defined as a unit of job in a computer program. Task 

scheduling can be stated as the problem of mapping a set of tasks, T , onto a set of 

processing elements, , in a network, with the main objective of completing all the 

jobs at the most minimum time. In this work, we study the problem of scheduling 

randomly generated tasks on a reconfigurable mesh network. A mesh network consists 

of  processors arranged in a rectangular array. Each processor in the network has 

i

kP

nm x 
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the processing capability and some storage area for the data. The intermediate processor 

communicates with its four neighbors through its east, west, north and south ports. 

 

In the second problem, we study several methods for detecting the edges of an 

image. An image consists of a rectangular array of pixels, each with a varying degree of 

intensity represented as colours and gray tone scale. The problem of edge detection can 

be stated as searching a set of boundary pixels  that separate the high and low 

intensities of the given image, . Edge detection is one of the most fundamental 

components in image analysis, as the method contributes in solving problems such as 

object recognition, noise reduction, multiresolution analysis, image restoration and 

image reconstruction. Since an image is normally rectangular in shape, the parallel 

mesh computing network provides a good platform for its solution. Physically, mesh 

network provides an ideal tool for solving the image processing problem as each of its 

processor directly maps the pixels of the given image. 

),( jib

),( jif

 

In addition, we also study the routing techniques for the very large scale 

integration (VLSI) design problem in the printed circuit board (PCB). In VLSI, two 

main problems arise in order to produce a highly compact and integrated design. The 

first problem is the placement of millions of minute electronic components into the 

small area of the chip. The second problem deals with the development of routes that 

connect pairs of these components to allow them to communicate with each other. In 

this work, we study and develop a model for the second problem based on the single-

row routing technique. 
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1.3 Objectives of Research 

The objectives of our research are as follows: 

1. To promote fundamental research that integrates mathematics with its 

applications, especially in areas of engineering and information technology. 

2. To develop and promote parallel algorithms and solutions on highly interactive 

combinatorial problems, and its simulation and visualization models. 

3. To promote learning groups on various problems of this nature in the community. 

4. To contribute the ideas to the interested parties in industries for further 

collaboration. 

 

1.4 Scope of the Study 

Our study is confined to the development of simulation models for task scheduling, 

edge detection in image processing and routing problems based on the mesh network. 

The work extends to the development of algorithms and user-friendly computer 

softwares based on the personal computer Microft Windows environment.  

 

1.5 Report Outline 

The report is organized into seven chapters. Chapter one is the research framework 

where the problems, objectives and scope of the work are described. 

 

In Chapter two, we describe an overview of the overall parallel computing system, 

some common topologies and ideas for the processor parallelization. One particular 

interest of the parallel computing system is the reconfigurable mesh network. We 
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discuss the architecture of the reconfigurable mesh which has ports that can be 

configured dynamically according to the requirements of the program. 

 

In Chapter three, we discuss the task scheduling problem on the reconfigurable 

mesh network. Task scheduling is a combinatorial optimization problem that is known 

to have large interacting degrees of freedom and is generally classified as NP-complete. 

Task scheduling is defined as the scheduling of tasks or modules of a program onto a set 

of autonomous processing elements (PEs) in a parallel network, so as to meet some 

performance objectives.  

 

In Chapter four, we present the edge detection method which is an application of 

the task scheduling problem. Edge detection is a technique of getting a boundary line 

which holds the key to other image processing requirements, such as object recognition, 

image segmentation, and image analysis. We concentrate on the development of the 

second-order Laplacian convolution technique on the mesh network for this problem. 

 

Chapter five discusses another application of task scheduling, namely, the single-

row routing problem. In the single-row routing problem, we are given a set of n evenly 

spaced terminals (pins or vias) arranged horizontally from left to right in a single row 

called the node axis. The problem is to construct nets in the list from the given intervals 

according to the design requirements. In this chapter, a model called the Enhanced 

Simulated annealing for Single-row Routing (ESSR) is proposed to represent the 

solution to the problem. 

 

In Chapter six, we formulate the concept of transforming a complete graph into its 

single-row representation. This idea is a significant contribution in the sense that it 

generalizes the single-row routing as an effective application from other applications. 

Through this technique, any problem that can be represented by a graph is reducible to 

its the single-row routing representation. 

 

Finally, Chapter six is the conclusion and suggestions for further research. 
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CHAPTER 2 

 

 

 

 

RECONFIGURABLE MESH COMPUTING NETWORKS 
 

 

 

 

2.1 INTRODUCTION   

 

Observation, theory, and experimentation are basic action for classical science.  All 

these will lead to a hypothesis. From that, scientists will develop a theory to explain the 

phenomenon and design a physical experiment to test the theory. Usually the results of 

the experiment require the scientists either to refine the theory or completely reject it.  

And the process will repeat again and again. All this experiments may be too expensive 

or time consuming. Some may be unethical or impossible to perform.  

 

Contemporary science, then, is characterized by observation, theory, 

experimentation and numerical simulation. Numerical simulation is an increasingly 

important tool for scientists. Many important problems are just too complex that solving 

them via numerical simulation requires extraordinarily computers. High speed 

computers allow scientist to test their hypotheses in another way by developing a 
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numerical simulation of a phenomenon.  Instead of doing physical experiments, they can 

save time through effective simulations.   

 

The followings are some of the several categories of complex problems (Levin 

1989) that require massive numerical computations: 

 

1. Quantum chemistry, statistical mechanics, and relativistic physics. 

2. Cosmology and astrophysics. 

3. Computational fluid dynamics and turbulence. 

4. Biology, pharmacology, genome sequencing, genetic engineering, protein 

folding, enzyme activity and cell modeling. 

5. Global weather and environmental modeling. 

 

These entire problems can be solved by the fastest computer in the world which 

is built of numerous microprocessors. This computer is also known as parallel 

computer.  In order to keep up to this high speed computing, studying parallel 

algorithms is a necessity today.   

  

This chapter is divided into five sections. Section 2.1 is the introduction, while in 

Section 2.2, we discuss the importance of parallel computers. A good analogy is 

presented to make the problem easier to understand. Section 2.3 in this chapter reviews 

the paradigms of parallel processing.  From the Flynn’s taxonomy , the architecture of a 

parallel can be classified as SISD, SIMD, MISD, and MIMD. The next section discusses 

the memory models of computation which is divided into serial and parallel.  In a  serial 

computational model, the model is called random access machine (RAM), while in 

parallel, it is called parallel random access machine (PRAM). Section 2.5 presents the 

topology of the network, which is the way processors are organized. The last section is 

about the Reconfigurable Mesh network. We discuss the architecture of the 

reconfigurable mesh, the differences between a reconfigurable mesh network and the 

ordinary mesh network, and lastly an example on the application of reconfigurable mesh 

in sorting numbers.   
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2.2 WHY DO WE NEED PARALLEL COMPUTERS? 

 

The solution to a typical numerical problem in engineering today requires the use of 

several large size multi-dimensional arrays, multi-level loops and the thousands of lines 

of code, in a single program.  As a result, the program needs to be written in a very 

systematic manner, with proper software engineering techniques and implementations. 

The burden of a single computer system is greatly reducing by distributing the load to 

the processors in the system.  As a result, the individual processors are not too 

overloaded and the same amount of work can be completed in a much faster time with a 

network of cooperating processors.   

 

A computer, as described in Zomaya (1996), is a digital electronic device with 

either a sequential or parallel design. A sequential computer is a random access memory 

model (RAM) that contains one processing element (processor) and an attached main-

memory unit in an architecture known as the von Neumann design. This digital machine 

reads and executes instructions and data sequentially using only one processor. In 

contrast, a parallel computer consists of a set of at least two computing elements, all of 

which are connected in a network so that each one of them will be able to communicate, 

and share resources and energy with others in performing a job. The parallel counterpart 

to the RAM model, called the parallel random access memory (PRAM), has a set of 

synchronous processors connected to a shared memory. 

 

Much of the original contributions to the parallel processing ideas evolves from 

the Kolmogorov’s Theorem, presented as follows: 
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Kolmogorov’s Theorem (Kolmogorov, 1957): Any continuous function f(x1,x2,...,xn) of 

n variables x1,x2,...,xn on on the interval In can be represented in the form 

f x x x h g xn j ij i
i

n

j

n

( , ,..., ) ( )1 2
11

2 1

=








==

+

∑∑  (2.1) 

where hj and gij’s are continuous functions of one variable. Furthermore, the gij’s are 

fixed, monotonic increasing functions that are not dependent on f(x1,x2,...,xn). This 

theorem provides a very useful development of parallel algorithms that relate a problem 

with its solution in implicit or explicit manner. 

 

A good analogy we can use to describe how the serial and parallel computers 

work is in the construction of a house.  If there is only one worker who will do all the 

entire job (bricklaying, plumbing, and installing wiring, etc)  by himself, he is going to 

take a very long time to finish a house.  All the tasks will be done one by one in a 

sequence and this is called the sequential approach which is very slow way.  However, 

by splitting the tasks to several workers, the construction can be completed much faster.  

The workers can be assigned different and independent tasks simultaneously, and this 

contributes to faster completion.   

 

If we compare it with modern computers today, we can see that a computer with  

a single processor are most likely the house constuction with only a worker.  This single 

processor which does the computational work such as the addition, multiplication, and 

the comparison of two numbers.  Programmers divide the computational work into a few 

sequence steps (a program) and the sequence will be executed step by step.  This is 

surely a very slow way to execute a task.  Figure 2.1 shows a conventional computer 

based on a single processor that illustrates this classical idea. 
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Figure 2.1: a conventional processor 

 

This reason has lead many computer  designers to develop the solution for this 

problem.  The slowness of the computer in executing a task are caused by the access to 

memory.  When the data is fetched from the memory, all the processor’s functional unit 

that perform the computation must remain idle.  After executing, the result must be sent 

to the memory and again, this will involve some extra overhead.  Another problem 

arises when the processor needs to fetch more than one operand at the same time.  While 

the first operand is fetched, the second operand must wait until the first has completed 

its job.  A solution to this problem lies in a co-operative system called interleaved 

memory.  Interleaved memory consists of a small number of separately accessible 

memory units.  In this system, several units of memory can be accessed at the same time 

through separate channels.  Data too can be fetched without having to wait for channels 

to clear first.  

 

Another reason that causes the slowness in a computer is the tedious process of 

computations.  Imagine a very large number to be multiply with another large number, 

of course, it will take a few small steps before the computation can be done.  In a 

conventional computer, this step is done in a way which cause some processor idle 

while waiting for a task to be executed.  A pipelined processor, as shown in Figure 2.2, 

3.65 × 104 × 
4.45 × 103

104+3

3.65 × 4.45 
= 16.24

16.24 × 107 

= 1.62 × 108
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can be used to solve this problem.  It is effective for applications that require many 

repetitions of the same operation. 

 

 
 

Figure 2.2: A pipelined processor 

 

The same house construction anology can also apply in parallel computer.  It 

seems like parallel when there are many workers doing different parts of the job.  What 

makes the system is good is because each individual has several function unit.  All the 

workers are differentiate by their speciality either in doing bricklaying, plumbing or 

wiring.  This system is also said to have a coarse grain size because the tasks assigned to 

each worker are in certain amount.  These people are similar with processors in the 

parallel computer.   

 

The laborers are communicated with each other.  For example, bricklayers 

working next to each other must stay in close communication to make sure the build a 

uniform wall between section.  This is called the nearest-network topology.  However, 

such a system can lead to overhead because while sending the message to each other, the 

workers may talk a lot and do less job.  That is why there must be another good 

topology that can overcome this bottleneck.   

 

3.65 × 104 × 
4.45 × 103 

104+3 = 107

4.71 × 102 × 
5.20 × 105 

8.39 × 106 × 
1.05 × 103 

102+5 = 107

2.55×102 × 
6.11 ×109 

106+3 = 109 

4.71 × 5.20 
= 24.49 

3.65 × 4.45 
= 16.24 

16.24 × 107 

= 1.62 × 108
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2.3 PARALLEL PROCESSING PARADIGMS 

 

Computers operate simply by executing a set of instructions on a given data.  A stream 

of instructions inform the computer of what to do at each step.  From the concepts of 

instruction stream and data stream, Flynn (Flynn, 1972) classified the architecture of a 

computer into four.  Instruction stream is a sequence of instructions performed by a 

computer;  a data stream is a sequence of data manipulated by an instruction stream.  

The four classes of computers are: 

 

• Single instruction stream, single data stream (SISD) 

• Single instruction stream, multiple data stream (SIMD) 

• Multiple instruction stream, single data stream (MISD) 

• Multiple instruction stream, multiple data stream (MIMD) 

 

 

2.3.1 Single instruction stream, single data stream (SISD) 

 

Most serial computers belong to the SISD class that have been designed based on the 

von Neumann architecture.  In such computers, the instructions are executed 

sequentially which means the computer executes one operation at a time.  The algorithm 

used in this class is known as a sequential algorithm.  Although a SISD computer may 

have multiple functional units, there are still under the direction of a single control unit. 

Figure 2.3 illustrates a SISD computer. 

 

 
 

Figure 2.3: SISD 

 

 

 Data stream Instruction 
stream 

Control  
Unit 

Processing
Unit 

Memory 
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2.3.2 Single instruction stream, multiple data stream (SIMD) 

 

SIMD machines consist of N processors, N memory, an interconnection network and a 

control unit.  All the processor elements in the machine are supervised by the same 

control unit.  These processors will be executing the same instruction at the same time 

but on different data.  In terms of memory organization, these computers are classified 

as shared memory or local memory.  To get an optimal performance, SIMD machines 

need a good algorithm to manipulate many data by sending instruction to all processors.  

Processor arrays fall into this category.     

 

 

2.3.3 Multiple instruction stream, single data stream (MISD) 

 

Among all four, MISD is the least popular model for building commercial parallel 

machine.  Each processor in MISD machine has its own control unit and shares a 

common memory unit where data reside.  Parallelism is realized by enabling each 

processor to perform a different operation on the same data at the same time.  Systolic 

arrays are known to belong to this class of architectures. Systolic means a rhythmic 

contraction.   A systolic array is a parallel computer that rhythmically ‘pumps’ data from 

processor to processor.  The might be some changes in the data everytime it goes 

through the processors because each processor may modify the data before passing it to 

the next processor.  Figure 2.4 shows a typical network based on the SIMD model. 
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Figure 2.4: SIMD Model 

 

 

2.3.4 Multiple instruction stream, multiple data stream (MIMD) 

 

MIMD machines are the most general and powerful system that implements the 

paradigm of parallel computing. In MIMD, there are N processors, N streams of 

instructions and N streams of data.  As shown in Figure 2.5, each processor in MIMD 

has its own control unit. 

 

Figure 2.5: MIMD Model 
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2.4 MEMORY COMPUTATIONAL MODELS 

 

There are two models of computation.  First is the serial model of computation while the 

other one is the parallel model of computation.  The random access memory (RAM), as 

shown in Figure 2.6, is the sequential model of computation. The model consists of a 

memory, a read-only input tape, a write-only output tape, and a program. 

.   

 
 

Figure 2.6: The RAM model of sequential computation 

 

       

Parallel processing actually is information processing that emphasizes the 

concurrent manipulation of data elements belonging to one or more processors solving a 

single problem.  While a parallel computer is a multiple processor computer capable of 

parallel processing.  A theoretical model for parallel computation is the parallel random 

access machine (PRAM). 
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The PRAM model, as shown in Figure 2.7, allows parallel-algorithm designers 

to treat processsing power as an unlimited resource, much as programmers of computers 

with virtual memory are allowed to treat memory as an unlimited resource. It is 

unrealistically simple which means it ignores the complexity of interprocessor 

communication.  By doing that, it can focus on the parallelism inherent in a particular 

computation.  A PRAM consists of a control unit, global memory, and an unbounded set 

of processors, each with it’s own private memory.   A  PRAM computation begins with 

the input stored in global memory and a single active processing element.  During each 

step of the computation an active, enabled processor may read a calue from a single 

private or global memory location, perform a single RAM operation and write into one 

local or may activate another processor.   

 

 

 

Figure 2.7: The PRAM model of parallel computation 

 

 

PE1 memory 
PE2 memory

PE3 memory
PE4 memory

Global (shared) memory

Control



 17

2.5 PROCESSOR ORGANIZATIONS / TOPOLOGY 

 

The topology of a network describes how processors are distributed and organized in it.  

In terms of graph,  the processors are represented as nodes and the edges linking any 

pair of nodes in the graph are the communication links between the two processors (El-

Rewini et al., 1992).  Some common types of processor organizations include the mesh, 

binary trees, hypertree, butterfly, pyramid, hypercubes, shuffle-exchange and the De 

Bruijn model. 

 

These processor organizations are evaluated according to criteria that help 

determine their practicality and versatility.  The criteria include: 

 

1. Diameter 

      The diameter of a network is the largest distance between two nodes.    

 

2. Bisection width 

The bisection width of a network is the minimum number of edges that 

must be removed in order to divide the network into two halves.   

 

3. Number of edges per nodes 

The number of edges per nodes should be maintained as a constant 

independent of the network size.  This is because it would be easier for the 

processor organizations to scale the system with large number of nodes.   

 

4. Maximum edge length 

It is best if the nodes and edges of the network can be laid out in three 

dimensional space.  By doing this, the maximum edge length can be a 

constant independent of the network size.   
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In this chapter, we focus on the reconfigurable mesh (RMesh) network as a 

platform for solving the task scheduling, image processing and routing problems.  Mesh-

based architectures have attracted strong interest because of the following reasons:  

 

• The wiring cost is cheap as the complexity is lower compared to other 

models, such as the hypercube.   

• It has a close match for direct mapping on many application problems, such 

as in task scheduling and image processing. 

 

A regular mesh of size NN × has a communication diameter equals to  

)1(2 −N .  The time needed by this network to solve problem like comparing or 

combining data is )(NO .  To improve the time complexity, that is to get the most 

minimun computation time, researchers have studied a new architecture based on a 2 or 

3 dimensional mesh which provide additional communication links  between the 

processors of the mesh.   

 

 

2.6 RECONFIGURABLE MESH NETWORK (RMESH) 

 

Reconfigurable mesh is a theoretical parallel computing model which is being used to 

develop parallel algorithms independent of the hardware factors (Miller and Prasanna-

Kumar, 1993).  Several fast algorithms for the reconfigurable mesh networks have been 

developed, among others, as in Stout (1992) for the padded sort problem, and Olariu et 

al. (1993) for the component labelling and convex hull construction problem . These 

applications contribute in the design of high-performance central processing units (CPU) 

and other very large-scale integration VLSI circuits. A suitable realization for this model 

is the message-passing transputer-based system where each transputer represents a 

processing element with memory module each, and has communication links with other 

transputer.  The architectures allow the network topology to change dynamically as 

required by the algorithm.  As the result, the interprocesser communication will be more 

flexible and efficient. 
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2.6.1 Reconfigurable Mesh Architecture 

 

In a reconfigurable mesh network, the processors are arranged into n-dimensional arrays 

of processors (Olariu et al., 1993).  Figure 2.8 shows a 2-dimensional RMesh. Torus, as 

shown in Figure 2.9 occurs when wraparound connection are present.  Wraparound 

connection means the connection of the processors at the edge with processors at the 

another edge of the same row or column.  For example, processors on the first row are 

connected through their north ports to the south ports of processors in the last row.   

                

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
 

   Figure 2.8:  2-dimensional RMesh with 16 processing elements 
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                                                    Figure 2.9:  Torus 

 

   

The computational model in Figure 2.8 shows a 44 ×  network of 16 processing 

elements, PE[k], for   k = 1, 2, …., 16.  For  the n-dimensional mesh, each processing 

element in the network has n2  external ports.  As this model is a two-dimensional 

network, each processing element has 4 external ports, namely, ‘North’, ‘South’, ‘East’ 

and ‘West’.   

 

                                                               

                                                                North Port   

 

 

                           West Port East Port 

 

                     

                                                                South Port   

                                                                                                                                                

Figure 2.10:  Four external ports for a node in a 2-dimensional RMesh network 
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 Figure 2.10  shows a processor in the Reconfigurable Mesh network.  

Communication between the processing elements in the reconfigurable mesh can be 

configured dynamically in one or more buses.  A bus is a doubly-linked list of 

processing elements, with every processing element on the bus being aware of its 

immediate neighbors. A bus begins in a processing element, pass through a series of 

other processing elements and ends in another processing element. A bus that passes 

through all the processing elements in the network is called the global bus, otherwise it 

is called a local bus.  

 

Figure 2.8 shows two local buses }14,13,9,5,1,2{)1( =B  and 

}4,8,7,3,2,6,10,14,15,16,12{)2( =B , where the numbers in the lists represent the 

processing element numbers arranged in order from the first (starting) processing 

element to the last (end). As an example from the figure, communication between 

]9[PE  and ]13[PE  on the bus )1(B  is made possible through the link 

}].13[,].9[{ nPEsPE . 

 

The processing elements in a bus cooperate to solve a given problem by sending 

and receiving messages and data according to their controlling algorithm. A positive 

direction in a bus is defined as the direction from the first processing element to the last 

processing element, while the negative direction is the opposite. Note that the contents 

in the list of each bus at any given time t  can change dynamically according to the 

current computational requirements. 
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2.6.2 Data Transmission in Mesh Networks 

 

We illustrate the idea of data transmission through the diagrams in Figures 2.11a and 

2.11b. In this mesh network, data transmission from PE[1] to PE[16] requires 6 hops.  

The path can be written as follows: 

 

PE [1]   PE [5]   PE [9]   PE [13]   PE [14]   PE [15]  PE [16]   

 

It can be seen that the path needs ( )12 −N  or 6 steps for data transmission.   

 

 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16  

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16  
 

Figure 2.11a:  2D mesh with fixed 

connection 

Figure 2.11b : 2D reconfigurable mesh 

 

 

However, with the reconfigurable mesh, data transmission between the two 

processors reduces to a constant time. Only two steps are needed by a RMesh network 

for the same communication between PE [1] to PE [16].  First, it needs to set the 

switches and recognize which port can be connected with the next processor.  Second 

step is transfering the data by a local bus.  In this case, the local bus can be writtan as 

( ) { }16,15,14,13,9,5,11 =B   
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Reconfigurable mesh network is created in order to provide the flexibility to 

change the interconnection pattern.  So, it is more dynamic and easy to use.  While for 

mesh network, it is a static network.  What makes RMesh network dynamic is because 

of the switches it got in every Processing Elements or nodes.  This switches are also 

known as external ports.  For 2-dimensional network, there are four ports that is North, 

South, East and West.     
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s ss  
Figure 2.13: A few patterns of the switch connection. 

 

 

2.7 Sorting Algorithm Example on RMesh 

 

In this section, we illustrate the operation of a reconfigurable mesh network through an 

example in solving the sorting problem. Given a set of numbers, 6, 9, 1, 5, we need to 

sort these numbers in ascending order using the Rmesh model. The solution is outlined 

as follows: 

 

Step 1 

Make a table with these numbers.  Compare the numbers in the first column with 

numbers in the first row.  If value of the numbers in the row are same or bigger than the 

value of the numbers in the column, tick 0 in the box.  But if not, tick 1.     
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Table 2.1: Numbers to sort 

            6 9 1 5 

6 0 0 1 1 

9 1 0 1 1 

1 0 0 0 0 

5 0 0 1 0 

 

 

Step 2 

Now that we have the binary number, we can draw the Reconfigurable Mesh network.   

For 0, we draw a horizontal line through the nodes.  While for 1, we draw a vertical line. 

Figure 2.14 illustrates the steps in solving this problem on Rmesh. 

 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

6

1 100

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 101

9

Number 6 at the second rank Number 9 at the first rank 
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 000

5

 

 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

0 000

1

Number 5 at the third rank Number 1 at the last rank 

 

Figure 2.14: Numbers in descending order from above 

 

2.8 Summary 

 

This chapter is an overview of the parallel computing systems. One particular network 

of interest is the reconfigurable mesh system. Rmesh is made up of a rectangular array 

of processors where each processor has four ports configured dynamically according to 

the program requirements. We discuss the practicality of Rmesh in solving several 

number-crunching applications, such as in image processing and task scheduling. 

 



 

 

 

 

CHAPTER 3 

 

 

 

 

DYNAMIC MULTIPROCESSOR SCHEDULING ON RMESH 
 

 

 

 

3.1 Introduction 
 

Task scheduling is a combinatorial optimization problem that is known to have large interacting 

degrees of freedom and is generally classified as NP-complete (El-Rewini et al., 1994). Most 

solutions to the problem have been proposed in the form of heuristics. These include approaches 

using list scheduling, queueing theory, graph theoretic and enumerated search. Task scheduling 

is defined as the scheduling of tasks or modules of a program onto a set of autonomous 

processing elements (PEs) in a parallel network, so as to meet some performance objectives. The 

main objective in task scheduling is to obtain a scheduling model that minimizes the overall 

execution time of the processing elements. Another common objective is to distribute the tasks 

evenly among the processing elements, an objective known as load balancing. Task scheduling 

applications can be found in many areas, for example, in real-time control of robot manipulators 

(Hwang et al., 1989), flexible manufacturing systems (Ramamritham and Stankovic, 1989), and 

traffic control (Ramamritham and Stankovic, 1989).  
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In terms of implementation, task scheduling can be classified as either static or dynamic. In 

static scheduling, all information regarding the states of the tasks and the processing elements 

are known beforehand prior to scheduling. In contrast, all this information is not available in 

dynamic scheduling and it is obtained on the fly, that is, as scheduling is in progress. Hence, 

dynamic scheduling involves extra overhead to the processing elements where a portion of the 

work is to determine the current states of both the tasks and the processing elements. 

 

In this chapter, we consider the task scheduling problem on the reconfigurable mesh 

architecture. A reconfigurable mesh is a bus-based network of  identical PE[k], for 

, positioned on a rectangular array, each of which has the capability to change its 

configuration dynamically according to the current processing requirements. Figure 3.1 shows a 

 reconfigurable mesh of 20 processing elements. Due to its dynamic structure, the 

reconfigurable mesh computing model has attracted researchers on problems that require fast 

executions. These include numerically-intensive applications in computational geometry (Olariu 

et. al, 1994), computer vision and image processing (Olariu et. al, 1995) and algorithm designs 

(Nakano and Olariu, 1998). 

N

Nk ,...,2,1=

54 x  

 

 

 
 

Figure 3.1: A reconfigurable mesh of size  54 x  
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This chapter is organized into five sections. Section 3.1 is the introduction. Section 3.2 is 

an overview of the dynamic scheduling problem, while Section 3.3 describes our model which is 

based on the reconfigurable mesh computing model. The simulation results of our model are 

described in Section 3.4. Finally, Section 3.5 is the summary and conclusion. 

 

 

3.2 Dynamic Task Scheduling Problem 

 

Dynamic scheduling is often associated with real-time scheduling that involves periodic tasks 

and tasks with critical deadlines. This is a type of task scheduling caused by the nondeterminism 

in the states of the tasks and the PEs prior to their execution. Nondeterminism in a program 

originates from factors such as uncertainties in the number of cycles (such as loops), the and/or 

branches, and the variable task and arc sizes. The scheduler has very little a priori knowledge 

about these task characteristics and the system state estimation is obtained on the fly as the 

execution is in progress. This is an important step before a decision is made on how the tasks are 

to be distributed.  

 

The main objective in dynamic scheduling is usually to meet the timing constraints, and 

performing load balancing, or a fair distribution of tasks on the PEs. Load balancing improves 

the system performance by reducing the mean response time of the tasks. In Lin and 

Raghavendran (1991), load balancing objective is classified into three main components. First, is 

the information rule which describes the collection and storing processes of the information used 

in making the decisions. Second, is the transfer rule which determines when to initiate an 

attempt to transfer a task and whether or not to transfer the task. Third, is the location rule which 

chooses the PEs to and from which tasks will be transferred. It has been shown by several 

researchers that with the right policy to govern these rules, a good load balancing may be 

achieved.  

 

Furthermore, load balancing algorithms can be classified as source-initiative and server-

initiative (Lin and Raghavendran, 1991). In the source-initiative algorithms, the hosts where the 
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tasks arrive would take the initiative to transfer the tasks. In the server-initiative algorithms, the 

receiving hosts would find and locate the tasks for them. For implementing these ideas, a good 

load-balancing algorithm must have three components, namely, the information, transfer and 

placement policies. The information policy specifies the amount of load and task information 

made available to the decision makers. The transfer policy determines the eligibility of a task for 

load balancing based on the loads of the host. The placement policy decides which eligible tasks 

should be transferred to some selected hosts. 

 

Tasks that arrive for scheduling are not immediately served by the PEs. Instead they will 

have to wait in one or more queues, depending on the scheduling technique adopted. In the first-

in-first-out (FIFO) technique, one PE runs a scheduler that dispatches tasks based on the 

principle that tasks are executed according to their arriving time, in the order that earlier arriving 

tasks are executed first. Each dispatch PE maintains its own waiting queue of tasks and makes 

request for these tasks to be executed to the scheduler. The requests are placed on the schedule 

queue maintained by the scheduler. This technique aims at balancing the load among the PEs and 

it does not consider the communication costs between the tasks. In Chow and Kohler (1979), a 

queueing model has been proposed where an arriving task is routed by a task dispatcher to one of 

the PEs. An approximate numerical method is introduced for analyzing two-PE heterogeneous 

models based on an adaptive policy. This method reduces the task turnaround time by balancing 

the total load among the PEs. A central task dispatcher based on the single-queue multiserver 

queueing system is used to make decisions on load balancing. The approach is efficient enough 

to reduce the overhead in trying to redistribute the load based on the global state information. 

 

Several balance-constrained heuristics, such as in Saletore (1990), consider 

communication issues in balancing the load on all PEs. The approach adds balance constraint to 

the FIFO technique by periodically shifting waiting tasks from one waiting queue to another. 

This technique performs local optimization by applying the steepest-descent algorithm to find 

the minimum execution time. The proposed cost-constraint heuristic further improves the load 

balancing performance by checking the uneven communication cost and quantify them as the 

time needed to perform communication. 
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Our performance index for load balancing is the mean response time of the processing 

elements. The response time is defined as the time taken by a processing element to response to 

the tasks it executes. In general, load balancing is said to be achieved when the mean response 

time of the tasks is minimized. A good load balancing algorithm tends to reduce the mean and 

standard deviation of the task response times of every processing elements in the network. 

 

Scheduler

task arrivals

task departures

µ1

µc

µ3

µ2

λ1

λ4

λ3

λ2

PE[1]

PE[c]

PE[3]

PE[2]

 
 

Fig.3.2: The m/m/c queueing model 

 

In our work, task scheduling is modeled as the  Markovian queueing system. An 

algorithm is proposed to distribute the tasks based on the probability of a processing element 

receiving a task as the function of the mean response time at each interval of time and the overall 

mean turnaround time. Tasks arrive at different times and they form a FIFO queue. The arrival 

rate is assumed to follow the Poisson distribution with a mean arrival rate of 

cmm //

λ . The service rate 

at processing element  is assumed to follow the exponential distribution with mean k kµ . Our 

idea is illustrated through a simulation model called DSRM which is explained in Section 3.4. 
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In general, the mean response time R  for tasks arriving at a processing element is given 

from the Little’s law defined in (Kobayashi, 1978), as follows: 

 
λ
NR =  (3.1) 

where  is the mean number of tasks at that processing element. In a system of  processing 

elements, the mean response time is given as follows (Kobayashi, 1978): 

N n

 
kk

kR
λµ −

=
1  (3.2) 

where kλ is the mean arrival rate and kµ  is the mean service rate at the processing element k. It 

follows that the mean response time for the whole system is given as follows (Kobayashi, 1978): 

 ∑
=

=
n

k
kR

n
R

1
*

1   (3.3) 

where . ∑
≠=

=
n

k k

n
0,1
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3.3  Reconfigurable Mesh Computing Model 

 

Our computing platform consists of a network of 16 processing elements arranged in a 

reconfigurable mesh. A suitable realization for this model is the message-passing transputer-

based system where each node in the system is a processor which includes a memory module. In 

addition, each processor in the system has communication links with other processors to enable 

message and data passing. 
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3.3.1 Computational Model 

 

The computational model is a  network of 16 processing elements, , for k , 

as shown in Figure 3.3. Each processing element in the network has four ports, denoted as 

   and , which represent the north, south, east and west 

communicating links respectively. These ports can be dynamically connected in pairs to suit 

some computational needs.  

44 x  ][kPE 16,...,2,1=

nkPE ].[ , skPE ].[ , ekPE ].[ wkPE ].[

 

Communication between the processing elements in the reconfigurable mesh can be 

configured dynamically in one or more buses. A bus is a doubly-linked list of processing 

elements, with every processing element on the bus being aware of its immediate neighbours. A 

bus begins in a processing element, pass through a series of other processing elements and ends 

in another processing element. A bus that passes through all the processing elements in the 

network is called the global bus, otherwise it is called a local bus. Figure 3.3 shows two local 

buses  and }14,13,9,5,1,2{)1( =B }4,8,7,3,2,6,10,14,15,16,12{)2( =B

)1

, where the numbers in the 

lists represent the processing element numbers arranged in order from the first (starting) 

processing element to the last (end). As an example, from Figure 3.3, communication between 

 and  on the bus  is made possible through the link { . ]9[PE ]13[PE (B }].13[,].9[ nPEsPE
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
 

 

Fig.3.3: A  reconfigurable mesh network with two subbuses 44 x  

 

 

The processing elements in a bus cooperate to solve a given problem by sending and 

receiving messages and data according to their controlling algorithm. A positive direction in a 

bus is defined as the direction from the first processing element to the last processing element, 

while the negative direction is the opposite. Note that the contents in the list of each bus at any 

given time t  can change dynamically according to the current computational requirements. 

 

 

3.3.2 Scheduling Model and Algorithm 

 

In the model,  assumes the duty as the controller to supervise all activities performed by 

other processing elements in the network. This includes gathering information about the 

incoming tasks, updating the information about the currently executing tasks, managing the 

buses and locating the positions of the PEs for task assignments.  

]1[PE
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In our model, we assume the tasks to be nonpreemptive, independent and have no 

precedence relationship with other tasks. Hence, the computational model does not consider the 

communication cost incurred as a result of data transfers between tasks. We also assume the 

tasks to have no hard or soft executing deadlines. At time 0=t , the controller records  

randomly arriving tasks, for 

0Q

QQ ≤≤ 00

i].[

0Q

, and immediately places them in a FIFO queue, where 

 is a predefined maximum number of tasks allowed. Each task Task  is assigned a number i  

and a random length, denoted as Task . The controller selects  connected PEs to form 

the bus  and assigns the  tasks to the q  PEs in . At this initial stage, the controller 

creates the bus list  to consist of a single bus , that is, 

Q ][i

0q

0({B

length

0)0(B )0(B

S )0(B )}S = . The PEs then start 

executing their assigned tasks, and their status are updated to “busy”. Each PE broadcasts the 

information regarding its current execution status and the task it is executing to the controller, 

and the latter immediately updates this information.  

 

This initial operation is repeated in the same way until the stopping time t  is 

reached. At time t ,  random new tasks arrive and they are immediately placed in the FIFO 

queue. The queue line is created in such a way that every task will not miss its turn to be 

assigned to a PE. There are some Q  tasks who failed to be assigned from the previous time 

slots, and these tasks are automatically in the front line. Hence, at any given time t , there are 

 tasks in the queue, of which all Q  tasks are in front of the Q  tasks. In an attempt to 

accommodate these tasks, the controller forms  buses in the list 

StopTime=

(),...,1(), mBB

tQ

w

wt QQ + w t

Sm )}0({B= . 

Each bus  has q  connected PEs and this number may change according to the current 

processing requirements. The controller may add or delete the contents of each bus , 

depending on the overall state of the network. A PE in a bus  that has completed executing 

a task may be retained or removed from this bus, depending on the connectivity requirements for 

accommodating the tasks. The controller also checks the status of other PEs not in the list S . 

These PEs are not “busy” and may be added to the connecting buses in . At the same time, 

some PEs may be transferred from one bus in  to another bus. In addition, the controller may 

also add or delete one or more buses in the list  to accommodate the same processing needs. 

)( jB j

)

S

( jB

)( jB

S

S
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Finally, when the buses have been configured a total of q  “free” PEs are then assigned to the q  

tasks in the front queue. When all the tasks have been completely executed, the controller 

compiles the information in its database to evaluate the mean arrival time 

t t

kλ , the mean 

executing time kµ , and the mean response time  of each PE[k] in the network. kR

S
)0(

)}0=
0(B

t +
)( jB

S

S = S

tq

jB(

R

 

Our algorithm for scheduling the tasks dynamically on the reconfigurable mesh is 

summarised as follows: 

 
 

At t , the controller records Q  newly arriving tasks; 0= 0

The controller selects  connected PEs at random to form the bus ; 0q )0(B
The Q  new tasks are assigned to the PEs in ; 0 )0(B
The controller flags the assigned PEs in  as “busy”; B
The controller creates the bus list ({B ; 

The controller updates the state information of the PEs in ; )}{S =
for t  to StopTime 1=
  new tasks arrive while Q  tasks still waiting; tQ w

 The controller places all the Q wQ  tasks in the FIFO queue; 

The controller checks the state information of the PEs in  of the

list  where : )}(),...,1(),0({ mBBB ⊆)
 The controller checks the state information of the PEs not in ; S
 The controller decides if the contents of  need to change; )( jB
 The controller decides if the list  needs to change; S
 The controller selects “free” PEs, assign them to the buses in ; S
 The controller assigns  PEs to the  front tasks; tq
 The controller updates the state information of the PEs in ; 

The controller evaluates kλ , kµ , and  of PE[k] in ; k S
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3.4 Simulation and Analysis of Results 

 

The simulation is performed on an Intel Pentium II personal computer. A C++ Windows-based 

simulation program called Dynamic Scheduler on Reconfigurable Mesh (DSRM) has been 

developed to simulate our model. DSRM assumes the tasks to have no partial orders, no 

communication dependence, no timing constraints and are nonpreemptive. Figure 3.4 shows a 

sample run of some randomly arriving tasks on a 4  network. In DSRM, every time tick  is a 

discrete event where between 0 to 10 randomly determined number of tasks are assumed to enter 

the queue waiting to be assigned to the PEs. For each task, its arrival time (randomly 

determined), length (randomly determined) and completion time, is displayed as a green or 

orange bar in the Gantt chart.  

4x t

 

DSRM has some flexible features which allow a user-defined mesh network sizes of m , 

where . In addition, DSRM also displays the status of each processor in the 

network at time  as a square. A green square indicates the processor is busy as it has just been 

assigned a task, while a red square indicates the processor is also currently busy as it is still 

executing a previously assigned task. A black square indicates the processor is currently idle 

and, therefore, is ready for assignment. Figure 3.4 shows an instance of this discrete event at 

.  is busy as it has just been assigned with Task 98, while  is also busy as it is 

still executing Task 92. In contrast,  is currently idle and is waiting for an assignment.  

nx 

64,...,2,1, =nm

t

]3[PE20=t ]7[PE

]11[PE

 36



 
 

Fig.3.4: Sample run from DSRM 

 

 

Results from a sample run of 209 successfully assigned tasks on a  network are shown 

in Table 3.1. Due to its dynamic nature, not all the tasks that arrive at time  managed to be 

assigned successfully on the limited number of processors. In this sample, 35 tasks failed to be 

assigned and this gives the overall success rate of 85.7%, which is reasonably good. In general, 

the overall success rate can be improved by controlling factors such as reducing the maximum 

number of arriving tasks at every time tick t  and increasing the network size. In addition, it is 

possible to have a 100% success rate by bringing forward the unsuccessfully assigned tasks at 

time  to enter the queue at time 

44 x 

t

t 1+t , 2+t  and so on. These factors normally impose some 

timing constraints on the tasks, such as the execution deadline, and are presently not supported in 

DSRM. 

The results from Table 3.1 show a fairly good distribution of tasks on the processors with a 

mean of 13.0625, with PE[1] having the highest number of tasks (17), while PE[5] has the 
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lowest assignment (9). The standard deviation is 2.3310, while the overall mean response time is 

1.880. The tasks have a total execution time of 824 time units, with a mean of 51.5 and a 

standard deviation of 5.1720 on each processor. The table also shows the performances of each 

processor in the network, in terms of its mean arrival time, mean service time and mean response 

time, which describes a reasonably good distribution.  

 

Table 3.1: Sample run of 209 successful randomly generated tasks on 16 PEs 

PE 
 

No. of  
Tasks 

Total Exec.  
Time 

Mean Arrival  
Time 

Mean Service 
Time 

Mean Response 
Time 

1 17 45 0.261538 0.377778 8.60294 
2 16 53 0.246154 0.301887 17.9427 
3 12 60 0.184615 0.2 65 
4 11 45 0.169231 0.244444 13.2955 
5 9 48 0.138462 0.1875 20.3922 
6 12 50 0.184615 0.24 18.0556 
7 10 54 0.153846 0.185185 31.9091 
8 16 52 0.246154 0.307692 16.25 
9 12 54 0.184615 0.222222 26.5909 

10 11 44 0.169231 0.25 12.381 
11 14 50 0.215385 0.28 15.4762 
12 15 52 0.230769 0.288462 17.3333 
13 15 60 0.230769 0.25 52 
14 13 58 0.2 0.224138 41.4286 
15 11 44 0.169231 0.25 12.381 
16 15 55 0.230769 0.272727 23.8333 

      

Total 209 824    

Mean 13.0625 51.5   1.880 
Std.Dev. 2.3310 5.1720    
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3.5 Summary and Conclusion 

 

This chapter describes dynamic task scheduling model implemented on the reconfigurable mesh 

computing model. The model is illustrated through our simulation program called Dynamic 

Simulator on Reconfigurable Mesh (DSRM) which maps a randomly generated number of tasks 

onto a network of  processors at every unit time  based on our scheduling algorithm. 

DSRM produces reasonably good load balancing results with a high rate of successful assigned 

tasks, as demonstrated in the sample run. 

nm x  t

 

DSRM considers the tasks to have no partial orders, no communication dependence, no 

timing constraints and are nonpreemptive. These important factors will be considered in our 

future work as they are necessary in order for the model to be able to support many real-time and 

discrete-event requirements. 
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CHAPTER 4 

 

 

 

 

RMESH MODEL FOR THE EDGE DETECTION PROBLEM 
 
 
 

 
 
 
 
4.1 Introduction 

 

This chapter presents our work in detecting the edges of an image using the reconfigurable mesh 

network. Edge detection is an important component of image processing which involves massive 

computations. Fast computers and good algorithms are some of the requirements in image 

processing. Due to its dynamic structure, the reconfigurable mesh computing model has attracted 

researchers on problems that require fast executions. These include numerically-intensive 

applications in computational geometry (Olariu et. al, 1994), computer vision and image 

processing (Olariu et. al, 1995) and algorithm designs (Nakano and Olariu, 1998). 

 

The chapter is organized into four sections. Section 4.1 is the introduction. In Section 4.2, 

we discuss the edge detection problem and some methods for solving this problem. The 

reconfigurable mesh computing platform and model is explained in Section 4.3. In Section 4.4, 

we present our parallel Laplacian algorithm on the reconfigurable mesh network for solving the 

edge detection problem. Finally, Section 4.5 is the summary and conclusion. 
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4.2 Edge Detection Problem 

 

The edges of an image form a separation line between pixels of the low intensity and the high 

intensity.  Edge detection is a technique of getting this boundary line which holds the key to 

other image processing requirements, such as object recognition, image segmentation, image 

enhancement and image manipulation. Through edge detection, pixels can grouped according 

their variation in grey level or colour values based on some predefined threshold value. This 

information is vital to segmenting the image into two or more regions so that objects in the 

image can be detected or manipulated in ways appropriate to the problem. 

 

Edge detection techniques aim to locate the edge pixels that form the objects in an image, 

minus the noise. Three main steps in edge detection are noise reduction, edge enhancement and 

edge localization. Noise reduction involves the removal of some unwanted noise pixels that 

sometime overshadow the real image. In edge enhancement, a filter is applied that responds 

strongly at edges of the image and weakly elsewhere, so that the edges may be identified as local 

maxima in the filter’s output. Edge localization is the final step that separates the local maxima 

caused by the edges or by the noise. 

 

The Laplacian edge detection method is a second order convolution that measures the local 

slopes of x  and  of an image (Effold, 2000). For an image of size y ),( yxf rq x 

,1,0

, the intensity 

of a pixel at coordinate (i,j) is represented in discrete form as , where ijf 1,...,2 −= ri  and 

. The Laplacian of this image is defined as follows: 12,1,0 −= qj ,...,
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Assuming  1=∆=∆ yx

  (4.2) 1,1,,1,,1
2 4 −+−+ +++−=∇ jijijijiji ffffff

 

and this produces the  x  high pass filter [4]: 
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Similarly, the  high pass filter is given by the matrix [4]: y
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The sequential Laplacian method for detecting the edges of an image is given as follows: 

 
/* Sequential Laplacian algorithm */ 

zLet = number of edges; 
Let  be the ),( yExE x  and  output, respectively; y
Set the edge threshold ET  be a constant; 
Set  as the left-hand corner pixel of the output image; ),( yHxH
for j=0 to  q
 for i=0 to r  
  Set f = pixel value at (i,j); ij

Set ; 0=z
for j=1 to    1−q
 for i=1 to 1−r  

  )4( 1,,1,,11, −+−+ −−+−= jijijijiji fffffabsxE ; 

  )8( 1,11,1,1,1,,11,11,1,1 −+−−−+−++++− −−−−+−−−−= jijijijijijijijiji fffffffffabsyE ; 

  Set xyE ; yExE +=
  if  ETxyE ≥

   ; ++z
   Set E +i and xHxz =].[ xHyzE =].[ +j; 

   Plot the edge pixel at ; )].[,].[( yzExzE
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4.3 Reconfigurable Mesh Computing Model 

 

Our computing platform consists of a network of 16 processing elements arranged in 

reconfigurable meshes. A suitable realization for this model is the message-passing transputer-

based system where each transputer represents a processing element with a processing element 

and a memory module each, and has communication links with other transputers. 

 

Figure 4.2 shows a 4 x 4 network of 16 processing elements, , for the rows 

 and columns . Each processing element in the network is capable of 

executing some arithmetic and logic operations. In addition, each processing element has some 

memory and four ports for communication with other PEs, denoted as   

 and , which represent the north, south, east and west links respectively. 

These ports can be dynamically connected in pairs to suit some computational needs.  

],[ jiPE

jiPE ].,

3,2,1,0=i

ejiPE ].,[

3,2,1,0=j

n[ , sjiPE ].,[ ,

wjiPE ].,[

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3
 

 

Fig. 4.1: A 4 x 4 reconfigurable mesh network with two subbuses 
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Communication between processing elements in the reconfigurable mesh can be 

configured dynamically in one or more buses. A bus is a doubly-linked list of processing 

elements, with every processing element on the bus being aware of its immediate neighbors. A 

bus begins in a processing element, pass through a series of processing elements and ends in 

another processing element. A bus that passes through all the processing elements in the network 

is called the global bus, otherwise it is called a local bus. Figure 4.2 shows two local buses 

 and , where the numbers in the lists 

represent the processing element numbers arranged in order from the first (starting) processing 

element to the last (end). As an example from the figure, communication between  and 

 on the bus  is denotated as { . 

}14,13,9,5,1,2{)1( =B

]0,3[PE B

}4,8,7,3,2,6,10,14,15,16,12{)2( =B

].0,3[,].0,2[ nPEsPE

]0,2[PE

)1( }

 

The processing elements in a bus cooperate to solve a given problem by sending and 

receiving messages and data according to their controlling algorithm. A positive direction in a 

bus is defined as the direction from the first processing element to the last processing element, 

while the negative direction is the opposite. Note that the contents in the list of each bus at any 

given time t  can change dynamically according to the current computational requirements. 

 

 

4.4 RM Model for Detecting the Edges 

 

Our computing model is based on a n  reconfigurable mesh network. As the model resembles 

a rectangular array, the computing platform is suitable for mapping the pixels of a 

nx 

rq x image 

directly for fast executions. For this purpose, we assume qn <  and rn < . 

 

The Laplacian convolution of a rq x image involves scanning the  portion of the 

image beginning from the top left-hand corner of the image to the right, and continues downward 

continuously until the bottom right-hand corner is reached. This windowing process computes 

the  second derivatives of  with respect to 

nn x 

f x  and , given as  and  in Equation (4.1), 

respectively. The convolution output at (i,j) is then given as 

y xE

xyE

yE

yE+xE= . This value is 

then compared to the edge threshold ET : if , an edge is present at location ET≥xyE

 44



)].[,].[( yzExzE

ijf

, where  is the edge number, otherwise the pixel is not an edge. Some initial 

assignments:  is the intensity of the pixel at (i,j),  

z

ET  is the edge threshold and (  

indicates the home coordinate where the binary edge image needs to be constructed. 

), yHxH

),( yExE x
),( yHxH

T
T

4q n

)11+ −

)1,1 −+8 ,− jifjif
yE

ifyE

xyE

xH

600 x 

 

It follows that our parallel algorithm using the RM model is summarized as follows: 

 
/* Parallel Laplacian algorithm using a  reconfigurable mesh */ nn x 
Let  be the  and  output, respectively; y
Set  as the left-hand corner pixel of the output image; 

Let the intensity at pixel (i,j) be ; ijf
At PE[0,0], set the number of edges 0=z ; 
At PE[0,0], set the edge threshold ET  to be a constant; 
PE[0,0] broadcasts E  southbound to PE[0,k], for k=1,2,…, n; 
PE[0,k] broadcasts E  westbound to PE[h,k], for h=1,2,…, n; 
for u=0 to  step , where   

 for v=0 to  step , where 4r n  n
rn=4r  

  par j=u to u+n 
   par i=v to v+ n 
    Set h = 1 + i% n; 
    Set k = 1 + j% n; 
    PE[h,k] evaluates 4( ,,1,,1, −+− −−+= jijijijiji fffffabsxE  and 

  ( 1,1,1,1,11,11,1,1 −−−+−++++ −−−−+−−−−= jijijijijijij ffffffabs ; 

    PE[h,k] evaluates xyE xE += ; 

    if  at PE[h,k] ET≥
     PE[h,k] broadcasts a positive flag to PE[0,0];  
     At PE[0,0], set 1+← zz  with the positive flag; 

     At PE[h,k], set E xz =].[ +i and +j; xHyzE =].[
     At PE[h,k], plot the edge pixel at ; )].[,].[( yzExzE
  
 

As can be seen, the above algorithm has the complexity of , against the sequential 

complexity of O . Finally, a C++ program to simulate the above algorithm has been 

developed. The program detects edges of up to 800  bitmap images, to produce their 

corresponding binary images. 

)/( 2nqrO

)(qr
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4.5 Summary and Conclusion 

 

We have presented a parallel Laplacian method using the reconfigurable mesh network for 

detecting the edges of an image . The algorithm is implemented in a C++ program that simulates 

 networks of various sizes to support up to 800  bitmap images. The method has the 

complexity of . 

nn x 600 x 

)/( 2nqrO
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CHAPTER 5 

 

 

 

 

SINGLE-ROW ROUTING USING THE ENHANCED SIMULATED 
ANNEALING TECHNIQUE 

 
 
 

 
 
 
 
5.1 Introduction  

 

A typical VLSI design involves extensive conductor routings which make all the necessary wirings 

and interconnections between the PCB modules, such as pins, vias, and backplanes. In very large 

systems, the number of interconnections between the microscopic components in the circuitry may 

exceed thousands or millions. Therefore, the need to optimize wire routing and interconnection in the 

circuit is crucial for efficient design. Hence, various routing techniques such as single-row routing, 

maze routing, line probe routing, channel routing, cellular routing and river routing have been applied 

to help in the designs.  

 

In So (1974), a divide-and-conquer approach has been proposed to deal with the complicated 

wiring problem in VLSI circuit design. The method begins with a systematic decomposition of the 

general multilayer routing problem into a number of independent single layer and single-row routing 

problems. This approach defines single-row routing problems for every horizontal and vertical line of 
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points in the original problem. The solutions of these sub-problems are then combined to contribute 

towards the overall solution to the original problem. Single-row routing (SRR) is a combinatorial 

optimization problem that finds its application in the design of VLSI multi-layer printed circuit boards 

(PCBs). The main objective in the single-row routing problem is to obtain a realization from the given 

routing that minimizes congestion on both the upper and lower streets of the circuit.  

 

Single row routing problem has been shown to be NP-complete with large number of interacting 

degrees of freedom (Raghavan and Sahni, 1983). Most solutions to the problem have been expressed in 

the form of heuristic algorithms based on graph theory (as in Deogun and Sherwani, 1988), exhaustive 

search (as in Tarng et al, 1984) and greedy algorithms (as in Du and Liu, 1987). In Salleh and Zomaya 

(1999), a simulated annealing model called SRR-7 (Single-Row Routing Model 7) was introduced for 

solving the problem with the objective of minimizing both the street congestion (Q) and the number of 

doglegs (D). The model is based on an energy function E as a collective set representing both Q and D. 

Since the two parameters are allowed to vary freely during the annealing steps, the energy may, in 

some cases, produce optimum solution in one while ignoring the other. 

 

In this chapter, we further improve on our earlier simulated annealing technique by expressing 

the energy as a function of one parameter. This process can be achieved by pivoting the other 

parameter to values not higher than its present value. The new approach is called ESSR (Enhanced 

Simulated annealing for Single-row Routing). In addition, ESSR involves the simultaneous swappings 

of all the nets in any single iteration. This approach has the effect of a faster convergence to the global 

minimum. The chapter is organized as follows: Section 5.2 is the problem statement, Section 5.3 

discusses previous methods for solving the single-row routing problem, Section 5.4 is on our model, 

Section 5.5 presents the experimental results and analysis, while Section 5.6 is the conclusion. 

 

 

5.2 Problem Background  

5.2.1 Problem Formulation 

In the single-row routing problem (Raghavan and Sahni, 1983), we are given a set of n evenly spaced 

terminals (pins or vias) V={vj}, j=1,2,...,n arranged horizontally from left to right in a single row called 
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the node axis. The problem is to construct nets in the list },...,,{ 21 mNNNL =  from the intervals 

. Each of these intervals is formed from a pair of two (or sometimes more) terminals 

through non-intersecting vertical and horizontal lines. The nets are to be drawn from left to right and 

the reverse direction is not allowed. The terminals for a given net are also called the net touch points. 

Physically, each net represents a conductor path for its terminals to communicate. Each path joining 

the terminals is called a track. An interval )

},...,,{ 21 mIIII =

,( ebI i =  is the horizontal range between two terminals vb 

and ve that makes up the net Ni. A unit interval (a,a+1) is the interval between two successive 

terminals va and va+1.  

 

The area above the node axis is called the upper street, while that below is the lower street. The 

number of horizontal tracks in the upper and lower streets are called the upper street congestion Cu and 

lower street congestion Cl respectively. The street congestion Q of a realization is defined as the 

maximum of its upper and lower street congestions, that is, Q ),max( lu CC= . The congestion of an 

interval (b,e) can also be expressed as the density ρ, defined as the number of nets covering that 

interval.  

 

Each terminal vj has a cut number cj, defined as the number of horizontal tracks a vertical line 

drawn through that point cuts. The nets cut by the vertical line are termed as the nets that cover the 

terminal. The nets are said to cover from above (below) if they lie above (below) the terminal. It can be 

shown that the street congestion given by Q ),max( lu CC=  can also be expressed as (Raghavan and 

Sahni, 1983): 

 

 Q = max{number of nets covering a terminal}. (5.1) 
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Our earlier algorithm (Salleh and Zomaya, 1999) evaluates the street congestion Q based on equation 

(5.1), as follows: 

 
Algorithm SRR_CONGESTION 
begin 
 Set =Q ; 0
 for  to , where 1=j J =J total number of terminals 

  if Q  ) on abovefrom  covers net of max(number jv <

   Q number of net covers from above on ; = jv
  endif; 
  if Q max(number of net covers from below on ); < jv
   Q number of net covers from below on ; = jv
  endif; 
 endfor; 
end; 
 

 

The upper (lower) cut number cju (cjl) is the number of nets cut by the vertical line through vj 

from above (below). The cut number qi of net Ni is the maximum of the cut numbers of the net left and 

right terminals. For the interval (b,e), cb and ce are the net total beginning (left) and end (right) cut 

numbers, respectively. The vertical position of a terminal vj in a net ordering is called position, denoted 

by pos (j). 

 

A vertical line crossing the node axis in a given realization is called a dogleg. A dogleg is 

necessary since it represents the sudden detour of a track in order to avoid crossing another track. The 

presence of doglegs, however, increases the system overhead as they add to the circuit complexity. 

Therefore, minimizing the number of doglegs D is another important circuit design objective as it 

contributes towards the design of a more compact realization.  
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1 5

3 10

2 7

6 8

4 9

N1

N4

N5

N2

N3

 
 

Fig. 5.1: Net ordering },,,,{ 45231 NNNNNL =  with the reference line 

 

Figure 5.1 shows five nets in the order },,,,{ 45231 NNNNNL =  formed from the following 

intervals: , , )5,1(1 =N )7,2(2 =N )10,3(3 =N , )9,4(4 =N 5 and )8,6(=N . The line joining the 

vertices successively from left to right is called reference line. The reference line is important in the 

design as it gives a preview of the graphical realization. It can be seen, for example, from the figure 

that v6 is covered from above by N2 and N3, and from below by N4. The net ordering in the figure gives 

a street congestion value Q , as v3= 5 has 3 nets covering from below ( ) and v3=lC 4 has 3 nets 

covering from above (Cu=3). In the figure, a dogleg is marked from the crossing of the reference line 

on any interval. It is easy to verify that the number of doglegs D is 3 with a dogleg present in each of 

of the intervals (3,4), (4,5) and (5,6).  
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The following algorithm (Salleh and Zomaya, 1999) outlines a method to determine the number 

of doglegs  in the interval  using the horizontal position  of vertex i : jd )1,( +jj )(ipos

 
Algorithm SRR_NDOGS 
begin 
Set ; 0=jd
In the given interval )1,( +jj : 

 for i  to  1= m
  if Ni covers  )1,( +jj
   if )1()()( +≤≤ jposiposjpos   

    ; 1+← jj dd
   endif; 
   if )1()()( +≥≥ jposiposjpos  

    ; 1+← jj dd
   endif; 
  endif; 
 endfor; 
end; 

 

In Olariu and Zomaya (1996), a graph theoretic technique has been applied to produce the 

maximal interlocking set from a set of net intervals. The results have been used to obtain a time- and 

cost-optimal realization without doglegs with O(log n) time complexity using 
n

n
log

 processors in the 

CREW-PRAM model. It has been shown that the realization is possible only if the corresponding 

overlap graph is bipartite. 

 

Vertices that are local maxima with respect to the reference line are called peaks, while those that 

are local minima are valleys. In the above figure, v3, v5 and v7 are peaks, while v2, v4 and v6 are valleys. 

It is also noted that N2, for example, has 4 segments formed from the intersection between the 

reference line and the interval (2,7). The segments of a net Ni are labeled as Ni,r, for i=4 and r=1,2,3,4. 

The number of segments in a given interval (b,e) is determined as follows (Salleh and Zomaya, 1999): 

 

 No. of segments = No. of doglegs on (b,e) +1 (5.2) 
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The height  of the segment  is defined as the vertical unit distance of that segment from the 

node axis and is determined as follows: 

rih , riN ,

 

 Maximum number of nets covering a peak or a valley in  (5.3) =rih , riN ,

 

Algorithm SRR_SegmentHeight (Salleh and Zomaya, 1999) below outlines a method to determine 

the height  of the segment : rih , riN ,

 
Algorithm SRR_SegmentHeight 
begin 
 Given a segment : riN ,

 Set rh ; 0, =i

 if the number of peaks > the number of valleys 
  for w  to , where 1= rw =rw number of peaks in  riN ,

   if  number of nets covering  from    

    number of nets covering  from ; 

<rih ,

=rih ,

wv

wv
riN ,

riN ,

   endif; 
   Update 1,, −← riri hh ; 

  endfor; 
 endif; 
 if the number of peaks < the number of valleys 
  for w  to , where 1= rw =rw number of valleys in  riN ,

   if  number of nets covering  from  <rih , wv riN ,

    number of nets covering  from ; =rih , wv riN ,

   endif; 
   Update 1,, +← riri hh ; 

  endfor; 
 endif; 
end; 
 

 

A height with a “+” value means the segment is in the upper street, while the “-” value means it 

is in the lower street. It can been seen from the figure that the heights of segments N2,1, N2,2, N2,3 and 

N2,4 are -1, +1, -2 and +1, respectively. Also, the height of N4 is -3 as 3 nets cover the valley v5 and 2 

nets covering v7. It is also easy to verify that the maximum height of the segments in an interval gives 

the street congestion of that net. 
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5.2.2 Necessary and Sufficient Conditions 

 

A realization or routing is said to be achieved when all the nets are successfully drawn for the given 

terminals, satisfying all the following conditions (Ting et al., 1976): 

 

(1) N Ni jI = φ , for i≠j 

(2)  UN ni = { ,2,..., }1

(3) Each path is made up of horizontal and vertical segments only. 

(4) The paths do not cross. 

(5) The path movement is in forward direction, and backward move is not allowed. 

 

The optimality of SRR is very much related to the order of the nets in a given list, L. Hence, SRR 

produces solutions in a similar fashion to the travelling salesman problem. For example, Figure 5.2 

shows the graphical realization corresponding to the net ordering },,,,{ 45231 NNNNNL =  from 

Figure 5.1. 

7
8 9

101 3
2 4

5
6

N1

N5

N4

N2

N3

 
 

Fig. 5.2: Realization from the ordering },,,,{ 45231 NNNNNL =  
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The following relationships for j=1,2,...,m are obtained from (Kuh et. al, 1979): 

 

)(max juju cC =  (5.4a) 

)(max jljl cC =  (5.4b) 

),max( lu CCQ = =  (5.5) )},{max(max jljuj
cc

 

An optimal realization is a realization that represents the best permutation of nets which satisfies a 

number of optimality conditions. Several possible performance metrics defining optimal realizations 

are stated as follows: 

 

(1) Realization with minimum congestion on both streets. Our problem of finding an optimal 

realization amounts to a massive search for the best ordering of m nets among the m!/2 

permutations that produce Q )min(min Q= . The objective function is, therefore Q, and our 

problem is to find Q  which is the global minimum. )Qmin(min =

(2) Realization with minimum number of doglegs. The objective function in this case is the number 

of doglegs D generated in the realization, and our objective is to find . With a 

small number of doglegs, the circuit physical size is reduced and this helps in making it more 

compact. 

)min(min DD =

(3) Realization with a bounded number of doglegs d0 in every unit interval. Since each interval in the 

node axis  have equal spacing, it is expected that the distribution of doglegs among them, 

, will vary. Some intervals will have too many doglegs, while some others may not have 

any. This adds constraints to its design since an unbalanced distribution may cause excessive 

conductor wiring in some area. Therefore, it is desired that the interval crossings are bounded at 

every interval, and that the doglegs are evenly distributed at all intervals. 

)1,( +ii

1, +iid

(4) Realization that minimizes the maximum number of doglegs in every net. With a small number 

of doglegs in a net, the overall length of the track is shortened. This, in turn, reduces 

communication between the terminals and, therefore, improves the circuit performance. 

(5) A combination of one or more of the above. 
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In general, it is difficult to determine an optimal realization for a given problem due to the large 

number of interacting variables in the problem, especially when the number of nets is large. A feasible 

realization, that is, the one that approximates the solution close to its optimal value, is accepted in 

many cases. The feasible solution must, however, satisfy the necessary and sufficient conditions stated 

in the following theorems: 

 

Theorem 5.1 (Kuh et al., 1979): Let )(min iim qq =  and )(max iiM qq = , then { }tm qqQ ,maxmin ≥ , for 

, and i=1,2,...,m, where m is the total number of nets.  2/Mt qq = 

}
 

This theorem asserts that the lower bound for a congestion is given by Q  while 

the upper bound is max . However, the optimal solution 

{ tm qq ,maxmin ≥

)( ii
q { }tq,mqQ maxmin =  is not guaranteed and 

it may be impossible to find especially when the size of the problem grows. The following two 

theorems describe this situation: 

 

Theorem 5.2 (Kuh et al., 1979): An optimal realization with street congestion Q  exists 

if and only if there exists such an ordering that, for each v

 2/min Mq=

 k+





j with c q where k=1,2,...,qj M= / 2 M-

, the net associated with vqM / 2 j is covered from above and below by at least k nets. 

 

Theorem 5.3 (Kuh et al., 1979): An optimal realization with street congestion   pqMQ += 2/min  

exists if and only if p is the least nonnegative integer for which the p-excess property holds. The p-

excess property states that for each vj the net associated with vj is covered by at least k-p nets from 

above and below, given by  where k=p+1,...,kqc tj +=  2/MM qq − . 
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5.3 Review of State of the Art 

 

Due to their practical importance, single-row routing problem has been studied extensively. In Kuh et 

al. (1979), an algorithm based on a graph-theoretical interpretation of the problem produces optimal 

solutions. However, the method has the complexity O(m!) for m nets, which is exponential. In 

Raghavan and Sahni (1983), an optimal solution is obtained when the number of tracks available on 

each street is known in advance. The heuristic method is also exponential in nature. Several other 

solutions using heuristics produced over the past few years also end up with exponential complexities. 

This development suggests that the problem is, in general, intractable and, therefore, is NP-complete. 

 

In Tarng et al. (1984), the nets are arranged by placing those with lower cut number in outer 

rows and those with higher cut numbers to the middle. It also suggests that the cut number cj of any 

terminal vj is to be divided properly between cju and cjl at those terminals where the cut number is 

larger than the net minimum cut number qm. 

 

Some terminologies are used to describe Tarng et al.’s heuristic. Given a net list L={N1,N2,...,NI} 

and a division of L into two sublists L1 and L2 such that L1∩L2=φ and L1∪L2=L. The internal cut 

number of Ni∈L1 in L with respect to L1 is defined as the cut number of Ni in L1. The residual cut 

number of Ni in L with respect to L1 is defined as the cut number of Ni in {L2∪Ni}.  

 

In the implementation, the nets are first sorted according to their classes, followed by the internal 

cut numbers and finally by the residual cut numbers. Nets are said to belong to the same class if they 

have the same number of cut numbers. Nets in the same class are arranged in the descending internal 

cut numbers. If two nets belong to the same class and have the same internal cut numbers, then the one 

with larger residual cut number precedes the one with smaller residual cut number. The classification 

method produces a zoning list based on the cut numbers and further zoning based on virtual tracks. 

Example 1 below illustrates how the heuristic is implemented. 

 

Example 1: Given a set of net intervals: N1=(1,5), N2=(2,6), N3=(3,7), N4=(4,12), N5=(10,11), 

N6=(9,15), N7=(8,18), N8=(13,16) and N9=(14,17). We need to find the net ordering that produces the 

minimum street congestion. 
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Table 5.1: Classification of nets in Example 1 

i interval qi class int.cut no. res. cut no. 
N5 (10,11) 3 L0 2 1 
N9 (14,17) 3 L0 2 1 
N1 (1,5) 3 L0 1 2 
N4 (4,12) 3 L0 1 2 
N6 (9,15) 3 L0 1 2 
N2 (2,6) 2 L1 1 1 
N3 (3,7) 2 L1 1 1 
N8 (13,16) 2 L1 0 2 
N7 (8,18) 1 L2 0 1 

 

Table 5.1 classifies the nets according to the cut number qi, internal cut numbers and residual cut 

numbers, from the given intervals. Figures 5.3 shows the resulting net ordering and realization, 

respectively. The final net ordering from the algorithm is given as follows: 

, with },,,,,,,,{ 536971482 NNNNNNNNNL = 2=Q  and 5=D . The realization is optimal in terms 

of minimum street congestion. By coincidence, the number of doglegs is also optimum although the 

algorithm does not take this criteria as a performance objective. 
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Fig. 5.3(a): Final net ordering based on virtual tracks 
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Fig. 5.3(b): Final realization with 2=Q  and 5=D  

 

Tarng et al.’s heuristic has a number of shortcomings. It was demonstrated in Du and Liu (1987) that 

Tarng's heuristic generates optimal solutions in cases where all the given nets cover at least one 

common terminal. In cases where not all the nets cover a common terminal, the heuristic may not be 

optimal. Therefore, there is a need to further rearrange the nets using other net properties to improve 

on the results. 

 

Du and Liu’s heuristic considers the net grouping situation before sorting the nets according to 

their classes, internal cut numbers and residual cut numbers. A group is defined as the set of nets that 

cover more than one terminal. Therefore, in a given situation more than one group of nets maybe 

formed. Tarng et al.’s heuristic is optimal only if all the nets can be formed into one group. In contrast, 

Du and Liu’s heuristic improves the computational complexity in the worst-case performance to 

O(mn). In most other cases, the algorithm performs faster and generates better near-optimal solutions. 

We briefly illustrate Du and Liu's heuristic using Example 1. Figure 5.4(a) shows the net position 

when the zoning considers net classification into groups. The heuristic produces the list 

 with },,,,,,,,{ 536971482 NNNNNNNNNL = 2=Q  and 6=D , which is optimal in terms of 

minimum street congestion. Figure 5.4(b) shows the realization from this list. 
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Fig. 5.4(a): Classification according to zones 
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Fig. 5.4(b): Final realization with 2=Q  and 6=D  

 

 

5.4 Enhanced Simulated Annealing Approach 
 

Both heuristic approaches in Section 5.3 consider the minimum street congestion as the only 

performance objective. The realization may produce many intolerable doglegs although the objective 

of minimum street congestion is achieved. As mentioned earlier, the presence of doglegs may increase 

the track length, and this adds to the circuit complexity and overhead.  Therefore, it is our objective in 

this section to find a realization that minimizes both the street congestion Q and the number of doglegs 

D.  

 

Earlier in Salleh and Zomaya (1999), we presented a model for minimizing both Q and D using 

simulated annealing. It is possible to apply simulated annealing (SA) in VLSI design as demonstrated 
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by Rutenbar (1989). In his work, SA is used to design the chip layout and floorplanning. As discussed 

earlier, simulated annealing is a hill-climbing, gradient-descent technique that has the disadvantage of 

slow convergence to the solution. However, SA often produces good solutions that are comparable to 

other techniques. The SA method based on the Metropolis Algorithm (Aarts and Korst, 1989 and 

Kirkpatrick et al., 1983) implements the Boltzmann distribution function as its energy minimization 

network. This probability function is known to have the mechanism to escape from getting trapped in a 

local minimum. Therefore, convergence is guaranteed although at the expense of long computation 

time. In addition, SA is easier to implement as the objective function does not have to be in an explicit 

functional representation. 

 

5.4.1 Energy Formulation 

 

Our objective in this subsection is to obtain a realization that minimizes both the street congestion Q 

and the number of doglegs D. However, this objective is very difficult to achieve as the two 

components are separate but dependent entities. While having one component minimized, the other 

tends to show some resistance to minimization. We solved this difficulty by expressing both 

components as a single energy function. To express this requirement, the energy in a given net 

ordering is expressed as the total length of all the tracks.  

 

Since the horizontal length of each interval is fixed, this energy depends on the vertical length of 

the tracks. That is, the total energy EL of nets in a given list is directly proportional to the sum of the 

energy of net segments, given as follows (Salleh and Zomaya, 1999),: 

 

 ∑∑
= =

=
m

i

m

j
jiL

i

hE
1 1

,  (5.6) 

 

where mi is the number of segments in the net Ni, for i=1,2,...,m. In this equation, jih ,  is the energy of 

segment j of net i, which is the absolute value of the height h  of that segment relative to the node 

axis. 

ji,
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Figure 5.5 shows a list  from Example 1. Using 

Equation (5.6), it is easy to verify that 

},,,,,,,,{ 317852946 NNNNNNNNNL =

33=LE . 
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Fig. 5.5: An ordering showing net segments and their heights 

 

 

5.4.2 ESSR Model 

 

Simulated annealing is an iterative improvement process of local search for the global minimum of a 

given energy function. This method is based on the simple and natural technique of trial and error. SA 

requires the definition of a solution space, a cost function and a set of moves that can be used to 

modify the solution. Through the iterative improvement method, one starts with an initial solution y0 

and compares this solution with its neighbors. A solution ′y  is said to be a neighbor of a solution y if 

can be obtained from y via one of the moves. The neighbors of y′y 0 are examined until a 

neighborhood solution y with a lower cost is discovered. In this case, y becomes the new solution and 

the process is continued by examining the neighbors of the new solution. The algorithm terminates 

when it arrives at a solution which has no neighboring solution with a lower cost. 
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In our previous solution (Salleh and Zomaya, 1999), a pertubation is performed to examine the 

neighbors by swapping the position of two nets at random. The resulting change in energy ∆E is then 

evaluated. If the energy is reduced, or 0≤∆E , the new configuration is accepted as the starting point 

for the next move. However, if the energy increases, or 0>∆E , the move generates the Boltzmann 

probability, given by T
E

e
∆

−
etancaccep =}Pr{ . The move is accepted if this probability is greater than a 

threshold probability of acceptance ε and rejected otherwise. The value of ε is proportional to the rate 

of acceptance of rejection. With a higher value, the number of moves accepted for  are reduced 

and the same rule applies vice versa. 

0>∆E

 

The above technique works well in producing optimal solutions in cases of up to 80 nets. 

However, the time taken for convergence may be very long in some cases. This problem may be 

caused by the fact that only one pair of nets are swapped at a given temperature. Furthermore, 

simulated annealing is a stochastic process which depends on the strict Boltzmann probability for 

convergence. We improve on the convergence through ESSR, which involves the movement of all nets 

rather than just one, at any given temperature. 

 

We now describe how ESSR works. First, the parameters are initialized according to simulated 

annealing requirements. At the initial temperature T 0T=  (T  is assigned  a value such as 100), the 

following parameters are given random values: the reducing parameter α (for example  α = 0.9) and the 

Boltzmann probability threshold ε (for example ε = 0.85). An initial net list  is chosen at random 

and its energy  is evaluated. A pair of nets, denoted as 

0

0L

0E r , are then chosen and their positions are 

swapped to produce a new configuration . We then evaluate the energy , congestion Q  and 

dogleg . The energy difference 

rL

r

rE r

rD 0EEE −=∆  is computed. The acceptance  or rejection 

(no change in ) of this new configuration follows the same rule as above. We next choose another 

pair of nets for swapping different from the previous pair, and apply the same energy update criteria to 

determine if  changes or not. The same process is repeated until all 

)0 rL←(L

0L

0L 


 2
m


  pairs of nets have been 

tested for the energy update. The final list  may or may not change during these swapping 

processes. 

0L

 63



 

The above procedure is repeated at each temperature , ,…,T  where T , for 

 and T  is the critical temperature, or the temperature at which the energy stabilizes. At 

each of these decreasing temperatures, the Boltzmann probability tends to decrease. This means there 

is a higher rejection rate. Hence, the acceptance procedure becomes stricter, to allow more stable 

solutions. At , the energy  is at its global minimum and the individual from  and  with 

the lower energy then represents the desired net configuration. 

1T 2T c 1α −← kk T

uL vL

ck ,...,2,1= c

cTT = cE

 

We further enhance the convergence criteria in ESSR by preserving the street congestion value 

, while at the same time allowing the number of doglegs to decrease. This is necessary since the 

energy function 

Q

E  is a function of both Q  and . A minimum D E  contributes to minimum Q  and  

as a grouped object, but not necessarily on each of these variables individually. Therefore, by pivoting 

one parameter, for example Q , to some fixed value 

D

E  can be made directly proportional to the other 

parameter . At each temperature T  the last street congestion value Q  is maintained in such a way 

that changes to the net configuration are allowed only if the new value Q  is lower or has the same 

value as Q , besides obeying the acceptance/rejection rule. However, at the following temperature 

,  is only allowed to change to the same value or to a lower value, according to its energy 

change.  

D

k

k k

r

1+kT kQ
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Fig. 5.6: ESSR flowchart 

 

 

 65



The whole steps in the implementation of ESSR is shown as a flowchart in Figure 5.6. In 

addition, Algorithm ESSR below summarizes our simulated annealing model for this problem: 

 
Algorithm ESSR 
(by pivoting Q ) 
begin 
Select a suitable value for α 1≈ , for 10 α << ; 

Let  and select the starting temperature T ; 0=k 0

Choose an initial list ;  0L
Compute  (using Equation 6) and Q  (using SRR_CONGESTION); 0E 0

while T  is in the cooling range kT=
for  to 1=j  2/m  

Select one pair of nets and swap their positions to form ; rL
Evaluate the new energy  and congestion Q ; rE r

if Q  kr Q≤
   if ( 0≤−= kr EEE∆ ), or (if 0>∆E  and exp( ε)/ >∆− kTE )  

    Update L  and rk L← rk EE ← ; 

    Evaluate Q  and update Qr rk Q← ; 
   endif; 
  endif; 
 endfor; 

Test for the stopping criteria: 
 if ∆ δ<E  after some small number of iterations 

  Evaluate the final D  using SRR_NDOGS; k

  Obtain the final values , Q ,  and ; kE k kD kL
  Obtain the realization from ; kL
  Stop and exit; 
 else 
  Update 1+← kk  and 1α −← kk TT ; 
 endif; 
endwhile; 

 

Example 2: This example illustrates ESSR using the nets in Example 1. We set the initial temperature 

, the reducing parameter α  and the threshold probability of acceptance ε1000 =T 95.0= 95.0= . It 

can be verified that this net list results in 33=LE

,,, 76 NN

. The iterative improvement process in ESSR 

reorders the nets to  at equilibrium after 24 moves with the 

final net energy . Figure 7.7 shows the graph of the net energy against the accepted moves, 

while Table 7.2 tabulates the instances of the accepted moves with the Boltzmann probability. 

},,,{ 31582 NNNNNL =

17=

,, 49 NN

LE
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Fig. 5.7: Comparison between ESSR and SRR-7 

 

The final net ordering yields  and 2=Q 5=D , which is optimal both in terms of minimum street 

congestion and minimum number of doglegs. Figure 5.8 shows the graphical realization of the nets at 

equilibrium. 
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Fig. 5.8: Final net realization of Example 1 using ESSR 
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6.5 Experimental Results and Analysis 

 

We tested our model on several net sizes and configurations. A program called ESRR.EXE, coded in 

C, has been developed to perform the simulations. The results are compared to our earlier model SSR-

7 (Salleh and Zomaya, 1999), and to the heuristic approaches by Tarng et al. (1984), and Du and Liu 

(1987). 

 

In all the cases, we use T  as the initial value for the thermostatic temperature T. This 

value is gradually reduced geometrically using Algorithm SRR_SA, with α . The threshold 

probability of acceptance is set at  ε . 

1000 =

.0=

95.0=

9

 

Table 5.2: Comparison of experimental results 

Data  Q,D 
Set# No. of Nets ESSR SRR-7 Tarng et al. Du and Liu 

1 8 2,5 2,5 2,6 2,6 
2 9 2,5 2,5 2,5 2,6 
3 10 3,5 3,5 3,8 3,7 
4 12 5,3 5,3 5,8 5,9 
5 13 5,5 5,5 5,8 4,10 
6 14 5,8 5,8 5,12 5,10 
7 18 (set 18a) 6,9 6,10 5,14 5,10 
8 18 (set 18b) 6,14 6,14 6,17 6,16 
9 20 (set 20a) 6,13 6,13 6,19 5,18 
10 20 (set 20b) 7,12 7,14 7,24 7,21 
11 24 8,13 8,13 7,24 7,21 
12 30 11,17 11,18 10,25 10,26 
13 36 11,28 13,27 11,37 11,40 
14 40 (set 40a) 15,25 16,28 16,34 16,43 
15 40 (set 40b) 16,28 16,29 16,38 16,34 
16 40 (set 40c) 16,32 16,35 not 

available 
not available 

17 50 23,155 23,161 not 
available 

not available 

18 80 24,304 28,312 not 
available 

not available 
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Figure 5.9 shows a ESSR simulation of 20 nets using Model 9 from the above table. An initial 

list is first obtained at T  to produce 100= 251=E , 7=Q  and 53=D .  is pivoted at this value or 

lower while 

Q

E  and  values are allowed to vary according to the annealing steps. Obviously, the 

energy drops almost proportionally as the number of doglegs during the simulation. The simulation 

produces  until T  where the value drops to 6, while 

D

7=Q 9.35= 88=E  and . The energy 

stabilizes at T  for  6  and 

17=D

5.8= ,82=E =Q 13=D , which are all minimum. The results obtained 

from this model are very optimum both in terms of minimum street congestion and minimum number 

of doglegs. The results obtained in other models, as tabulated in Table 5.2, also optimum in most 

cases. 
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Fig. 5.9: Energy against the number of doglegs in ESSR by pivoting Q 

 

Table 5.2 also suggests that ESSR performs better than the other three previous methods when 

the number of nets is large. This effect can be seen especially in cases of 40, 50 and 80 nets where the 

time taken for convergence to the equilibrium is longer. Both, the energy and the number of doglegs, 

drop drastically during the annealing steps. For example, in our 50-net set, the initial values are 

,  and  At equilibrium these values converge to , 810,6=E 26=Q .667=D 352,1=E 23=Q  and 

. Our 80-net set in Model 18 initially has 155=D 792,11=E , 26=Q  and  at 206,1=D 100=T . 

After 256 steps the energy stabilizes at 006,2=E  to produce 24=Q  and . 304=D
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5.6 Summary and Conclusion 

 

This chapter describes our enhanced simulated annealing technique for the single-row routing 

problem. The problem has its origin in the complex VLSI design. Massive connections between pins 

and vias in the circuitry require their breakdown into smaller single-row components, as described by 

So (1974). The components are solved individually to generate solutions which can then be combined 

to provide the overall solution to the problem. Single-row routing is a divide-and-conquer approach 

that is frequently used in solving the VLSI design problem. 

 

In this chapter, we propose ESSR (Enhanced Simulated annealing for Single-row Routing) for 

solving the single-row routing problem. The main objective in this problem is to produce a realization 

that minimizes both the street congestion and the number of doglegs. Simulated annealing is based on 

the thermostatic cooling properties of atoms in physical systems. By performing slow cooling, the nets 

in the single-row routing problem align themselves according to a configuration with the lowest 

energy. In general terms, the energy is represented as the absolute sum of the heights of the net 

segments. This energy is directly proportional to both the street congestion and the number of doglegs. 

In our approach, we pivot the street congestion value while having the energy drops directly 

proportional to the number of doglegs. This action has the effect of minimizing the number of doglegs 

as the energy drops. 

 

Our experiments using ESSR produce optimal solutions with both minimum street congestion 

and minimum number of doglegs in most data sets, especially in cases where the number of nets is 

large. The results match well against our previous method (Salleh and Zomaya, 1999), and the 

methods by Tarng et al. (1984), and Du and Liu (1987). 
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CHAPTER 6 

 

 

 

 
SINGLE-ROW TRANSFORMATION OF COMPLETE GRAPHS 

 
 
 

 
 
 
 
6.1 Introduction  
 

Complete graph is a fully-connected graph where every node is adjacent to all other nodes in the 

graph. Very often, many applications in science and engineering are reducible to this type of 

graph. Hence, a simplified form of a complete graph contributes in providing the solutions to 

these problems. In this chapter, we present a technique for transforming a complete graph into a 

single-row routing problem. Single-row routing is a classical technique in VLSI design that is 

known to be NP-complete. We solved this problem earlier using a method called ESSR, as 

described in the previous chapter. The same technique is applied to the present work to transform 

a complete graph into a single-row routing representation. We also discuss the application of this 

work on the channel assignment problem in the wireless cellular telephone networks. 

 

In many cases, problems in engineering and other technical problems can be reduced as 

problems in graph theory. A problem of this nature is said to be reducible to the form of vertices 

and links of a graph, and the solution to the problem can be obtained by solving the graph 
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problem. Furthermore, several solutions to the problems in graph theory have found their roots in 

some well-known prototype problems, such as the the travelling salesman problem, the shortest 

path problem and the minimum spanning tree problem. Solutions to these problems are provided 

in the form of dynamic programming techniques, mathematical programming and heuristics. 

Most of these protototype problems have been proven to be NP-complete and, therefore, no 

absolute solutions to the problems are established. However, their reduction to the form of 

graphs have, in some ways, simplified their complexity and pave way for further improvement to 

their solutions. 

 

In this chapter, we study the relationship between a complete graph and its single-row 

representation. A complete graph is a graph where every vertex in the graph is adjacent to all 

other vertices. As described in the previous chapter, single-row routing is a classical problem 

about finding the most optimum routing from a set of terminals, or nodes, arranged in a single-

row. In the Very Large Scale Integration (VLSI) technology, the terminals are the pins and vias, 

and the routes consist of non-intersecting horizontal and vertical tracks called nets. The main 

goal in single-row routing is to find a realization that reduces the congestion in the network. 

 

We also propose a model for transforming a complete graph as nets in a single-row axis. 

The motivation for this proposal comes from the fact that some problems in engineering are 

reducible to the form of a complete graph. We study the mapping properties of a complete graph 

into its single-axis representation, in the form of the single-row routing problem. We devise a 

strategy for mapping this graph, and then apply the method for solving a graph-reducible 

problem, namely, the channel assignment problem in the wireless cellular telephone networks. 

 

Our chapter is organized into five sections. Section 6.1 is the introduction. Section 6.2 

describes the problem in the chapter, while in Section 6.3, we outline the details of the mapping 

strategy for converting the complete graph into its single-row axis representation. Finally, 

Section 6.4 discusses the application of this method on the channel assignment problem. We 

conclude the chapter with the summary and conclusion in Section 6.5. 
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6.2 Problem Formulation 
 

This chapter discusses the tranformation of a complete graph as a single-row routing problem. It 

is easy to verify that a complete graph, C , with  vertices has m m )1( −mm  links (or edges). This 

is because each vertex in the graph has a degree of )1( −m . The problem begins with the 

mapping of the links in this graph as terminals in a single-row axis. Single-row routing problem 

is an important component in finding an optimum routing in VLSI design (Raghavan and Sahni, 

1983). The single-row representation, , of the graph, C , consists of  zones and mS m m )1( −mm  

terminals, all aligned in a single-row axis. The terminals are to be formed in equally-spaced 

intervals along the single-row axis. In VLSI, each terminal represents a pin or via. In the single-

row routing problem, nets joining pairs of terminals are to be formed to allow communication 

between the terminals. A net is made up of non-intersecting horizontal and vertical lines that is 

drawn in the order from left to right.  

 

In order to produce a practical area-compact design, the nets have to be drawn according to 

the routes that will minimize the wiring requirements of the network. The main objective in the 

single-row routing problem is to determine the most optimum routing between pairs of the 

terminals so as to reduce the congestion in the whole network. It is also important that the 

routing is made in such a way that the interstreet crossings (doglegs) between the upper and 

lower sections of the single-row axis be minimized. This is necessary as the terminals in the 

single-row axis are very close to each other, and a high number of  interstreet crossings will 

generate an intolerable level of heat that may cause problems to the network. In optimization, the 

problem of minimizing the congestion in the network reduces to a search for the right orderings 

of the nets, based on a suitable energy function. 
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6.3 Complete Graph Partitioning Strategy 
 

A graph  consists of a set of vertices and edges, connecting some of these vertices. A graph 

where a path exists to connect any two pairs of vertices in the graph is called a connected graph, 

otherwise it is a disconnected graph. Node 

G

j  in the graph having  links with its neighbors is 

said to have a degree of . A graph with m  nodes where every node is a neighbor of every 

other nodes in the graph is a complete graph, . In , every vertex has the same degree of 

. 

d

jd

mC mC

1−m

 

6.3.1 Formation of Zones and Terminals from a Complete Graph 
 

In C , every link between a pair of vertices in the graph is mapped as a terminal in . 

Therefore, a  graph having  vertices and 

m mS

mC m )1( −mm  links is mapped into  zones with a 

total of  terminals in . A vertex with degree 

m

)1−(mm mS j  in the graph occupies a zone in  

with  terminals.  

mS

jd

 

We outline the overall strategy for mapping a complete graph. In general, the 

transformation of a complete graph, C , into its single row representation, , consists of two 

main steps. First, the vertices, v , are mapped into the zones, , that are numbered according to 

their vertex number, 

m mS

j jz

j , for . The next task is to determine the number of terminals 

in each zone, , in , which is simply the degree, d , of its corresponding vertex, v , in . 

Finally, we obtain the complete layout of  by combining all the terminals from each zone and 

number them successively beginning from the first zone to the last.  

m,...,j 2,1=

jz mS j j mC

mS
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Our method for creating the zones and their terminals in  from a complete graph, C , is 

outlined in Algorithm 6.1, as follows: 

mS m

/* Algorithm 6.1: Formation of zones and terminals in  from C  */ mS m

Given a complete graph C ; m

Draw the zones, , in , which corresponds to  in C , for ; jz mS jv m mj ,...,2,1=
for  to  1=j m
 Determine the degree, , of every vertex, , in C ; jd jv m

 Set =i ; 1
 for  to  1=k jd
  Set the terminal number, t ii = ;                                   

  Update +← ii ; 1
 

 

 

6.3.2 Construction of Nets from a Complete Graph 
 

In the previous section, we described a plan to form the zones and nets in  from C  using 

Algorithm 6.1. We illustrate the idea on the problem of forming a single-row representation 

of , a complete graph with m  vertices. In this problem, each vertex in the graph has a 

degree of 4. There are  zones, , for 

mS m

5C 5=

5=m iz 5,...,2,1=i  and the number of terminals on the 

single-row axis is . Hence, the number of nets formed is 20)1 =−m(m 10
2

( −mrm
)1
==

m . 

Figure 6.1 shows the zones and terminals in  formed from  when Algorithm 6.1 is 

applied. 

5S 5C
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Fig. 6.1: Formation of nets based on the zones and levels in  from C  5S 5

 

We now present a technique for forming the nets in the network that will contribute in 

minimizing the total energy in . The technique calls for the formation of the nets by grouping 

them first into several levels based on their width. The width of net k , denoted as , is defined 

as the difference between its beginning and end terminals, given as 

mS

kw

kkk be −w = . A level, , in 

 consists of a set of equal-width nets grouped in ascending order from the lowest width to the 

highest. Our strategy begins with Proposition 1 which consists of first forming levels where the 

nets with equal width are grouped. In this proposal, the nets in  are created by defining their 

end-points. Once the nets have been formed, the next step consists of sorting and renumbering 

the nets based on their beginning terminals, in ascending order from the lowest to highest. These 

two steps are to be described later in Algorithm 6.2. 

y

mS

mS
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Preposition 1: The th net in level  in , denoted as i y mS ),( ,,,,,, miymiymiy ebn = , formed from the 

complete graph, C , is grouped into levels based on its width, , according to the following 

relationships:  

m myw ,

 

 )1)(1()(,, −−+−= imymb miy , (6.1a) 

  (6.1b) myiymiy wbe ,,,, +=

 

for , and 1,...,2,1 −= my 1,...,2,1 −= mi . 

 

From Proposition 1, we obtain the width of the nets in level  of , given as follows: y mS

 

 ) , (6.2) 1)(1(1, −++= ymw my

 

and the number of nets in each level as follows: 

 

 ) . (6.3) (, ymr my −=

 

The strategy for grouping the nets into levels based on their width is to minimize the total 

network energy, given earlier in Equation (5.6). This goal can be achieved by forming nets 

starting from the shortest width, continue with the next shortest and so on. Starting with level 1, 

that is, , the nets are formed from two consecutive terminals from two different zones. This 

level has the most minimum width possible, given by 

1=y

1,1 =mw

i

. This minimum width has the 

advantage of producing the net energy equals 0, as the net can be drawn directly on the node 

axis. The i th net is formed from the last terminal in  and the first terminal in zone ( th, to z )1+i
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make sure that the width remains the same. Using Equations (6.1a) and (6.1b) from Proposition 

1, we then obtain the i th net in this level, ),( ,,1,,1,,1 mimimi ebn = , given as 

 and )1()1(,,1 −−+−= immb mi )(1 1,1,,1 += imi b

2z

e . 

2)1(1,2 =++= mmw m +

)(1()2(,,2 −+−= imb mi m mi wb ,2,2mi,,2 +=

mS
m

rr
m

=1

1=y
1

y
y ,ry

1= yr
i y

y
y

ry ,...,2,1=
r,...,2,1=

, ,,, miss eb

1=

y

,mi

2
m

kb

)1( −m

),( kk e= ),( ,,,, mismis eb

 

In level 2, the first net is obtained by having the second last terminal in  as its beginning 

terminal, and the second terminal of  as the ending terminal. This gives the width as 

. In general, the i th terminal in this level, 

1z

,,2 mi ),( ,,2,,2 mimi ebn = , is given 

by )1−  and e . 

 

/* Algorithm 6.2: Construction of nets in  */ 

Given a complete graph  with  vertices; C
Let the number of nets in level 1, ; 

The initial width of nets in level 1 is 1, that is, 1,1 =mw ; 

for  to r  
 if >y  

  Update the width of the nets in level , )1)(1(1, −++← ymw my ; 

  Update the number of nets in level , )( ymm −← ; 

 for i  to  

  Form the th net in level  as follows: 

   Update the left terminal of net , )1)(1()(,, −−+−← imymb miy ; 

   Update the right terminal of net , myiymiy wbe ,,,, +← ; 

for   

 for i  

  Sort (  in ascending order with  as the primary key; ) misb ,,

for k  to  

 Assign n  from the sorted ; 

 

 

Algorithm 6.2 above summarizes our method for constructing the nets based on the 

levels of the nets with equal width. In this algorithm, the nets are formed based on Equations 
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(6.1a) and (6.1b). The number of nets and their width in each level are determined from 

Equations (6.2) and (6.3), respectively. Once the nets have been formed, the algorithm then sorts 

and renumbers the nets based on their beginning terminals, in ascending order from the lowest to 

highest. Algorithm 6.2 prepares the nets before the next important step, which is their 

execution in ESSR to determine their optimum routing. 

 

We illustrate the idea of constructing the nets using Proposition 1 through an example with 

a complete graph of five vertices, . The zones and terminals are obtained by applying 

Algorithm 6.1. By applying Equations (6.1a) and (6.1b) from Proposition 1, we obtain the 

nets grouped into 4 levels, as shown in Figure 6.1. Algorithm 6.2 transforms the C  into 

, and the results are shown in Table 6.1. We then apply ESSR to the nets to obtain the results 

in the form of an ordering with minimum energy, 

5C

5

5S

11=E , as shown in Figure 6.2. The final 

realization of the network with Q  and 3= 1=D  is shown in Figure 6.3. 

 

Table 6.1: Formation of nets in  from C  5S 5

Level,  y Width,  5,yw #nets,  yr nets 

1 1 4 (4,5), (8,9), (12,13), (16,17) 

2 7 3 (3,10), (7,14), (11,18) 

3 13 2 (2,15), (6,19) 

4 19 1 (1,20) 
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Fig. 6.2: Nets ordering with minimum energy, 11=E , of  using Algorithm ESSR 5C
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Fig. 6.3: Final realization of C  with 5 11=E , 3=Q  and  1=D
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We also apply the method to several other models of complete graphs. Table 6.2 

summarizes the results of these graphs with  vertices, , in their single-row representations. 

Figure 6.4 shows the final realization of the routing obtained using ESSR from . 

m mC

10C

 

Table 6.2: Summary of results for some complete graphs, C  m

mC  #nets E  Q  D  

5=m  10 11 3 1 

6=m  15 28 4 40 

8=m  28 128 9 21 

10=m  45 403 16 53 

 

Fig. 6.4: Realization of an optimum assignment of 45 nets from  from Table 6.2. 10C

 

 81



6.4 Application on the Frequency Assignment Problem 
 

In this section, the single-row mapping strategy is applied to the problem of assigning radio 

channels in a wireless cellular telephone network. In the wireless cellular telephone network 

(Mathar and Mattfeldt, 1993), the assignment of radio frequencies to the mobile users within the 

network can be modeled as the problem of mapping a complete graph into non-intersecting 

single-row nets. This network consists of a geographical region partitioned into several cells 

where each cell is allocated with a base station (BS). A base station has a transmitter and a 

receiver for receiving and transmitting messages from/to mobile users within its cell. The base 

stations in the network are linked with high-speed cables to the mobile switching center (MSC), 

which functions as a controller to allow communication between any two mobile users in the 

network by assigning a channel each to each of them. When a call is made from a cell, a request 

is received by the base station of the cell. The base station relays this request to the mobile 

switching center (MSC). Assuming the call is made and received within the network, a channel 

each needs to be assigned to the caller and the receiver. In this network, MSC plays an important 

role in assigning a pair of different channels to both the caller and the receiver, to allow 

immediate circuit switching.  

 

In this problem, we model the channels as the edges of a complete graph. The cells in the 

network are then represented as nodes in the graph. In the single-row axis, each of these cells is a 

zone and the channels allocated to a cell are terminals in the zone. Communication between two 

mobile users from two different cells is established through a net linking their two terminals. We 

model the single-row communication to be handled by the mobile switching center. This is 

because MSC has a control on all channel assignments in the network, and this important task 

must be done immediately without delay when requests for calls are received. In addition, MSC 

must also be able to provide services associated with problems in channel assignments, such as 

location finding of mobile users, and channel handovers as a mobile user moves from one cell to 

another.  
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We illustrate our model using an example with a network of five cells. The problem 

reduces to the complete graph, C , which is represented as the zones, , for  in , 

as shown in Figure 6.1. Hence, 20 channels are available for assignments and each of these 

channels is represented as a terminal in the single-row axis. The channels are formed using the 

same technique discussed in Section 6.3, to produce the results as shown in Table 6.1 (the 

channels are numbered by assuming there are no electromagnetic interferences on the channels) . 

Figure 6.4 is then the final realization of the optimum routing of the nets obtained using ESSR. 

5 jz 5,...,2,1=j 5S

 

6.5 Summary and Conclusion 
 

In this chapter, we propose a method for transforming a complete graph, , into its single-row 

representation, . We first describe the single-row routing problem, which is a classical 

technique in VLSI design. We relate the problem to our earlier work which solved the problem 

using a method based on simulated annealing, called ESSR. The transformation from C  to  

involves the formation of nets based on Proposition 1. The proposition groups the nets with equal 

width which contributes in reducing the overall energy of the network. The whole process is 

implemented using Algorithms 6.1 and 6.2. We then apply ESSR to the network to obtain 

some reasonably good results for optimum routing. Finally, we also describe briefly the 

application of this transformation technique in solving the channel assignment problem in the 

wireless cellular telephone networks. 

mC

mS

m mS
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APPENDIX 

 

The enclosed CD-ROM has three main programs: 

 
1. DSRM: this is our simulation program described in Chapter 3. 

 
Name of program: DSRM.exe 
 
Description: This model schedules randomly generated tasks dynamically on the 44 x  

reconfigurable mesh network. Tasks arrive at every time slot with randomly 

determined length, and are mapped to the available processors according to 

the DSRM parallel algorithm. 

 

 
2. Our simulation program described in Chapter 4. 
 

Name of program: IPRM.exe 
 

Description: This model performs edge detection on a given image using the 44 x   

reconfigurable mesh network using the Laplacian convolution technique. 

 
 
3. Our simulation program described in Chapter 5. 
 

Name of program: SRR2.exe 
 

Description: This program is the simulation model of ESSR on a network of 80 nets 

(160 pins). At every temperature mark, 10 nets are chosen at random and 

are swapped according to the simulated annealing process. 
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