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ABSTRACT

The machining operation can be generally classified into two types which are 

traditional machine and non-traditional (modem) machine. There are two types of 

machining employed in this research, end milling (traditional machining) and 

abrasive waterjet machining (non-traditional machining). Optimizing the process 

parameters is essential in order to provide a better quality and economics machining. 

This research develops an optimization algorithm using artificial bee colony (ABC) 

algorithm to optimize the process parameters that will lead to minimum surface 

roughness (Ra) value for both end milling and abrasive waterjet machining. In end 

milling, three process parameters that need to be optimized are the cutting speed, 

feed rate and radial rake angle. For abrasive waterjet, five process parameters that 

need to be optimized are the traverse speed, waterjet pressure, standoff distance, 

abrasive grit size and abrasive flow rate. These machining process parameters 

significantly impact on the cost, productivity and quality of machining parts. The 

ABC simulations are developed to achieve the minimum Ra value in both end milling 

and abrasive waterjet machining. The results obtained from the simulation are 

compared with experimental, regression modelling, Genetic Algorithm (GA) and 

Simulated Annealing (SA). In end milling, ABC reduced the Ra by 10% and 8% 

compared to experimental and regression. In abrasive waterjet, the performance was 

much better where the Ra value decreased by 28%, 42%, 2% and 0.9% compared to 

experimental, regression, GA and SA respectively.
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ABSTRAK

Secara umumnya, operasi pemesinan boleh dikelaskan kepada dua jenis iaitu 

mesin tradisional dan mesin bukan tradisional (mesin moden). Terdapat dua jenis 

pemesinan yang digunakan dalam penyelidikan ini, mesin pengisaran hujung 

(pemesinan tradisional) dan mesin pelelas je t air (pemesinan bukan tradisional). 

Mengoptimumkan proses parameter adalah penting untuk menyediakan kualiti yang 

lebih baik dan ekonomi pemesinan. Penyelidikan ini membangunkan algoritma 

pengoptimuman menggunakan algoritma koloni lebah buatan (ABC) bagi kedua-dua 

mesin pengisaran hujung dan mesin pelelas jet air. Terdapat tiga parameter mesin 

pengisaran hujung yang perlu dioptimumkan iaitu kelajuan memotong, kadar suapan 

dan sudut meraih jejarian. Bagi mesin pelelas je t air terdapat lima parameter yang 

perlu dioptimumkan iaitu kelajuan traverse, tekanan jet air, jarak standoff, saiz kersik 

melelas dan kadar aliran yang melelas. Parameter pemesinan memberi kesan yang 

ketara ke atas kos, produktiviti dan kualiti bahagian-bahagian pemesinan. Simulasi 

ABC dibangunkan untuk mencapai nilai minimum Ra dalam kedua-dua mesin 

pengisaran hujung dan mesin pelelas jet air. Keputusan yang diperolehi daripada 

penyelidikan dibandingkan dengan eksperimen, pemodelan regresi, Algoritma 

Genetik (GA) dan simulasi penyepuhlindapan (SA). Dalam mesin pengisaran hujung, 

ABC mengurangkan Ra sebanyak 10% dan 8% berbanding dengan eksperimen dan 

regresi. Di mesin pelelas jet air, prestasi adalah lebih baik dimana nilai Ra menurun 

sebanyak 28%, 42%, 2% dan 0.9% berbanding dengan eksperimen, regresi, GA dan
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In highly competitive manufacturing industries nowadays, the manufacturer 

ultimate goals are to produce a high quality product with less cost and time 

constraints. Thus, the flexible manufacturing system (FMS) has been introduced 

since 1960 to achieve this goals by introducing the fully automation of computer 

numerically controlled (CNC) machine tools. The idea of FMS is to provide a fully 

automated machine that required a minimum supervision in 24 hours per day. In the 

traditional FMS, it consists of a huge number of CNC which handled by complex 

software and it is undeniable very costly. Nowadays, a smaller version of FMS is 

being used which is commonly refer as Flexible Manufacturing Cell (FMC) where it 

consists two or more CNC machines only. According to Mike et al. (1998), CNC 

machine tools require less operator input, provide greater improvements in 

productivity, and increase the quality of the machined part. Generally, the machining 

operations can be classified into two types which are traditional and non-traditional 

(modem). The traditional machining operations include turning, milling, boring, and 

grinding while non-traditional or modem machining operations include abrasive 

w aterjet machining, electron beam machining and photochemical machining.
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According to Rao and Pawar (2009), the selection of machining process 

parameters is a very crucial part in order for the machine operations to be success. To 

choose the process parameters, it is usually based on the human (or manufacturing 

engineers) judgement and experience. However, the chosen of process parameters 

usually did not give an optimal result. This is due to in the machining processing; a 

number of factors also could interrupt thus preventing in achieving high process 

performance and quality (Bemados and Vosniakos, 2002). Figure 1.1 below showed 

the machining parameters that affect surface roughness, Ra. To improve this quality, 

one of the indications is by referring to the machining performances measures, Ra 

(Zain et al, 2010a). In manufacturing, the quality of the product focused on the 

surface texture particularly the Ra because it affects the product end results such as 

the appearance, function and reliability. There are many factors to produce a specific 

roughness such as in end milling where it depends on the cutting speed, feed rate, 

velocity of the traverse, cooling fluids and the mechanical properties of the piece 

being machined. Any small changes in one of these factors could affect the results of 

the surface produced.

C - H i n n  T n n i e  P m n Br t i «  Machining Parameters

SURFACE
ROUGHNESS

Cutting force variation

Workpiece Properties Cutting Phenomena

Figure 1.1 Parameters that affect Ra (Benardos and Vosnaikos, 2003

Various techniques have been considered by a number of researchers to 

model and optimize machining problems. This technique includes statistical 

regression, conventional optimization technique such as Taguchi method, response
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surface methodology (RSM) and iterative mathematical search technique. Other 

techniques such as Artificial neural network (ANN) and Fuzzy set-theory based 

modelling also have been applied. Apart from that, a number of researches also have 

been done using the concept of non conventional optimization technique such as 

genetic algorithm (GA), simulated annealing (SA), particle swarm optimization 

(PSO), tabu search (TS) and ant colony optimization (ACO).

The study of insect and animal behaviour has attracted many researchers 

attention to better understand their colony and behaviour so that it could be modelled 

to solve complex problems in real world. Ant colony optimization (ACO) for 

example is one of the swarm intelligence techniques that were introduced by Dorigo 

et al. (1996) which were inspired by the foraging behaviour of ants. Similar to the 

concept of ACO, recently a new algorithm known as artificial bee colony (ABC) 

algorithm was introduced by Karboga in 2005. This algorithm mimics the intelligent 

behaviour of the honey bees swarm in foraging foods. ABC algorithm has been 

applied in many applications particularly in job scheduling, optimization and data 

clustering. A comparative study by Karaboga and Akay (2009) shows that standard 

ABC gives an excellent performance for optimizing a large set of numerical test 

unimodal function such as Sphere and Rosenbrock. It was found that ABC gave a 

better result in terms of local and global optimization due to the selection schemes 

employed and neighbouring production mechanism used. The results are then 

compared with other swarm optimization algorithms such PSO, differential evolution 

algorithm and evolution strategies. From the literature review, there is no research 

has been carried out so far to apply ABC optimization techniques for optimization of 

process parameters in end milling and abrasive waterjet (AWJ) machining. Recently, 

a research was carried out by Rao and Pawar (2009) to optimize the process 

parameter such as number of passes, depth of cut for each pass, speed and feed in a 

multi-pass milling machining operations using non-traditional optimization 

algorithms such as PSO, SA and ABC. The results showed that ABC and PSO 

produced a better solution compared to SA where the convergence rate is higher and 

the number of iterations is lowered.
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Based on the previous research by Zain et al. (2010a, 2010b, 2010c), it shows 

that the use of GA and SA give a promising result in minimizing Ra both in end 

milling and AWJ machining compared to the experimental and regression modelling. 

In Zain et al. (2010a, 2010b), GA and SA techniques were used to optimize the 

process parameters in end milling machining operation.

The results showed that GA and SA have given a much lower Ra value when 

compared to the experimental, regression model and response surface methodology 

(RSM) technique by 27%, 26% and 50%, respectively. In Zain et al. (2010c) the 

same optimization technique was used to optimize the process parameters in AWJ 

machining operations. The results show both techniques produced a minimum 

surface roughness value compared to experimental data and regression modelling. In 

this study ABC algorithm is considered in minimizing Ra for both end milling and 

AWJ machining. Consequently, the Ra of ABC is compared to Ra produced by 

experimental, regression modelling, GA optimization and SA optimization.

The research question can be stated as:

How efficient is the performance o f ABC optimization to optimize process 

parameters fo r  minimizing surface roughness in end milling and AW J machining 

operations compared to experimental, regression modelling, GA optimization and SA 

optimization.

1.2 Statement of problems
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Based on the problem statements mentioned above, the objectives of the 

study are:

i. To develop ABC based algorithm in optimizing surface roughness of 

machining process.

ii. To estimate the optimal set of process parameters in end milling and AWJ for 

giving a minimum value of Ra.

iii. To validate the proposed method with the existing techniques such as, 

experimental, regression modelling, GA optimization and SA optimization.

1.3 Objectives of the study

1.4 Scope of the study

The scopes of this study are:

i. The experimental data sets are based on the experiment conducted by 

Mohruni (2008) for end milling machining operations and Caydas and 

Hascalik (2008) for AWJ machining operations.

ii. The optimization approach method used is ABC algorithm.

iii. The performance and results are compared with experimental, regression 

modelling, GA optimization and SA optimization.



1.5 Significance of the study
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This study is to investigate the performance of ABC algorithm in optimizing 

process parameters for minimizing Ra in both end milling and AWJ machining 

operations. To indicate the effectiveness of this computational approach, the end 

results which are the Ra values will be compared with experimental, regression 

modelling, GA optimization and SA optimization. From the literature review, there is 

no effort taken so far by researchers to apply ABC algorithm for the machining 

optimization problems both in end milling and AWJ machining operation. So, it can 

be concluded that this study gives a new contribution in the area of machining.

1.6 Organization of the thesis

This thesis consists of six chapters. Chapter 1 describes the introduction to 

the research, problem background, problem statement, objective and scope of the 

study. Chapter 2 presents the literature review of the study. Chapter 3 discussed 

about the research methodology that applied in this study. Chapter 4 discussed the 

implementation of ABC optimization while Chapter 5 discussed the analysis of the 

results of ABC optimization. Finally, Chapter 6 discussed the conclusion and 

recommended the future work of the research.




